JPH04193907A - Production of 50kgf/mm2 class refractory steel plate for construction use - Google Patents

Production of 50kgf/mm2 class refractory steel plate for construction use

Info

Publication number
JPH04193907A
JPH04193907A JP32638590A JP32638590A JPH04193907A JP H04193907 A JPH04193907 A JP H04193907A JP 32638590 A JP32638590 A JP 32638590A JP 32638590 A JP32638590 A JP 32638590A JP H04193907 A JPH04193907 A JP H04193907A
Authority
JP
Japan
Prior art keywords
less
steel
temperature
steel plate
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32638590A
Other languages
Japanese (ja)
Inventor
Kaoru Shinozaki
薫 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32638590A priority Critical patent/JPH04193907A/en
Publication of JPH04193907A publication Critical patent/JPH04193907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve yield strength at high temp. without deteriorating weldability and to secure superior toughness at a large heat input welded joint by heating a slab of steel in which the value of Pcm and chemical components are specified, respectively, and performing rolling while specifying temp. and reduction of area, respectively. CONSTITUTION:A steel having a composition which consists of 0.05-0.15% C, <=0.60% Si, 0.50-1.80% Mn, <=0.03% P, <=0.03% S, 0.002-0.10% solAl, 0.10-<0.40% Mo, 0.005-0.060% Nb, 0.005-0.030% Ti, 0.0020-0.0070% N, 0.0005-0.0050% Ca, and the balance Fe with inevitable impurities and in which the value of Pcm represented by <=0.24% is used. A slab of this steel is heated up to >=1050 deg.C and reduction of area at <=1000 deg.C is regulated to >=50%, and rolling is finished at >850 to <950 deg.C. By this method, a 50kgf/mm<2> class refractory steel plate for construction use having >=22kgf/mm<2> yield strength at 600 deg.C and reduced in yield ratio can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐火鋼板の製造方法に関し、詳しくは、60
0℃の高温においても高い耐力を有する建築用50kg
f/mm2級耐火鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a fire-resistant steel plate.
50kg for architectural use with high proof strength even at high temperatures of 0℃
The present invention relates to a method for manufacturing f/mm class 2 fire-resistant steel plate.

(従来の技術) 建築用鋼板は、常温での緒特性を有するように設計・製
造されているか、−膜面には温度の上昇にともないその
強度は低下する。日本鋼構造協会発行のJSSCVol
、4 No、331968には、5M50Bの高温時の
降伏点または0.2%耐力は、高温になるにしたかい徐
々に低下し、500℃以上での低下は著しく、常温時の
値の273に低下する温度は400〜500℃であると
記しである。
(Prior Art) Architectural steel plates are designed and manufactured to have strong properties at room temperature, or the strength of the film surface decreases as the temperature rises. JSSC Vol published by Japan Steel Construction Institute
, 4 No. 331968 states that the yield point or 0.2% yield strength of 5M50B at high temperatures gradually decreases as the temperature increases, and the decrease is significant at temperatures above 500°C, reaching the value of 273 at room temperature. It is noted that the decreasing temperature is 400 to 500°C.

高温用鋼板としては、J[S 、 ASTM等に規定さ
れているホイラ・圧力容器用のCr −Mo系鋼板が広
く使用されている。これらは、数十万時間という長時間
使用の場合の鋼板であり、その保証温度は350〜40
0℃である。
As high-temperature steel plates, Cr-Mo steel plates for foilers and pressure vessels, which are specified by J[S, ASTM, etc., are widely used. These are steel plates that can be used for long periods of time, such as hundreds of thousands of hours, and their guaranteed temperature is 350 to 40.
It is 0°C.

従来のSj−Mn系の建築用50kgf/mm2級鋼板
では、350℃を超えると火災時に構造部材に要求され
る耐力である長期耐力(常温耐力の273)の22kg
f/mm2を下回るため、鉄骨の温度か350℃を超え
ないように、工事費、工期なとの面から足珈となる耐火
被覆施工か義務ずけられている。しかし、最近追加され
た「新耐火設計法jては、鋼板か600℃において常温
の規格降伏強度の273以上を有する場合なと、高温に
おける強度におうして、耐火被覆量の削減か認められる
ようになっている。
With conventional Sj-Mn-based 50kgf/mm2 class steel plates for construction, when the temperature exceeds 350℃, the long-term yield strength (273 of room temperature yield strength), which is the strength required for structural members in the event of a fire, is 22kg.
f/mm2, it is mandatory to install a fireproof covering to prevent the temperature of the steel frame from exceeding 350℃ due to construction costs and construction schedules. However, under the recently added new fire-resistant design method, if the steel plate has a standard yield strength of 273 or higher at room temperature at 600°C, it is permitted to reduce the amount of fire-resistant coating depending on its strength at high temperatures. It looks like this.

(発明か解決しようとする課題) 現状、高温耐力の優れた鋼板としては、前記のボイラ・
圧力容器用鋼板かあるか、本鋼板は、600℃における
耐力は22に2f/mm2以上を有するか、溶接割れ感
受性組成(PC,)か高いために、耐溶接割れ性か悪く
、予熱、後熱を行うなと溶接施工に難点かある。さらに
、溶接施工効率を高めるために用いられるエレクトロス
ラグ溶接やサブマーンアーク溶接のような大入熱溶接を
施すと溶接熱影響部(HAZ)の靭性か著しく低下する
ため、小人熱溶接か余儀なくされている。
(Problem to be solved by the invention) Currently, the above-mentioned boiler and steel sheets with excellent high-temperature yield strength are
Is there a steel plate for pressure vessels? This steel plate has a yield strength of 22 to 2 f/mm2 or more at 600°C, and has a high weld cracking susceptibility composition (PC), so it has poor weld cracking resistance, and it has poor weld cracking resistance after preheating. There is a problem with welding if you do not apply heat. Furthermore, when performing high heat input welding such as electroslag welding and subman arc welding, which are used to increase welding efficiency, the toughness of the weld heat affected zone (HAZ) decreases significantly, so we have no choice but to use dwarf heat welding. has been done.

このため、建築用鋼の耐火被覆施工の低減あるいは省略
を図るために、高い高温耐力を存するとともに優れた溶
接性、大入熱溶接継手靭性および母材特性を有し、従来
と同し設計・施工かできる鋼板か必要とされている。
For this reason, in order to reduce or eliminate the need for fire-resistant coating construction on architectural steel, we have developed a system that has high high-temperature yield strength, excellent weldability, high heat input weld joint toughness, and base metal properties, and is designed to reduce or eliminate the need for fire-resistant coating construction. Steel plates that can be constructed are needed.

また、建築用鋼には、地震時の建築物の変形能の点から
、80%以下の降伏比の要求か強まっている。
Furthermore, from the viewpoint of the deformability of buildings during earthquakes, there is an increasing requirement for architectural steel to have a yield ratio of 80% or less.

(課題を解決するための手段) 本発明は、従来の建築用鋼における上記の問題点に鑑み
、本発明者らか鋭意研究を行った結果、化学成分、特に
、少量のMo添加と、Nbの析出強化によって、溶接性
を損なわずに、高温耐力を大幅に改善し、さらに、Ti
Nを活用することにより優れた大入熱溶接継手靭性を確
保てきるという知見を得て完成されたもので、その第1
発明は、Coo、05〜0.15%、Si :0.60
%以下、Mn : 0.50〜1.80%、P:0.0
3%以下、S:0.03%以下、sol、 Al :0
.002〜0.10%、Mo:O,10%以上0.40
%未満、Nb:0.005〜0.060 %、Ti・0
.005〜0.030 %、N:0.0020〜0゜0
070%、Ca:0.0005〜0.0050%を含有
し、かっ、下記式で規定されるPCMO値を0.24%
以下として、残部Feおよび不可避不純物からなる鋼片
を1050℃以上の温度に加熱したのち、1000℃以
下の圧下率を50%以上とし、850℃超え950℃未
満の温度範囲で圧延を終了させ、600℃における耐力
か22kgf/mm2以上である建築用50kgf/m
m’級耐火鋼板の製造方法である。
(Means for Solving the Problems) In view of the above-mentioned problems in conventional architectural steel, the present inventors have conducted intensive research, and as a result, the present invention has been developed based on the chemical components, particularly the addition of a small amount of Mo and Nb. The precipitation strengthening of Ti significantly improves high temperature yield strength without impairing weldability.
This was completed based on the knowledge that superior high heat input weld joint toughness can be secured by utilizing N.
Invention: Coo, 05-0.15%, Si: 0.60
% or less, Mn: 0.50-1.80%, P: 0.0
3% or less, S: 0.03% or less, sol, Al: 0
.. 002~0.10%, Mo:O, 10% or more 0.40
%, Nb: 0.005-0.060%, Ti・0
.. 005~0.030%, N:0.0020~0゜0
070%, Ca: 0.0005 to 0.0050%, and the PCMO value defined by the following formula is 0.24%
As below, after heating a steel billet consisting of the remainder Fe and unavoidable impurities to a temperature of 1050°C or higher, the rolling reduction at 1000°C or lower is set to 50% or more, and rolling is completed in a temperature range of more than 850°C and less than 950°C, 50kgf/m for construction with proof stress of 22kgf/mm2 or more at 600℃
This is a method for manufacturing m' class fireproof steel plate.

Pex=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20十九イO/+5+V/10+5B
(%) 第2発明は、V:0.005〜o、oe%、Cu:0.
05〜0゜5%、Ni :0.05〜0.50%、Cr
:0.10〜0.60%の内から選んだ1種または2種
以上を含をする請求項(1)の建築用50kgf/mm
2級耐火鋼板の製造方法である。
Pex=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/2019iO/+5+V/10+5B
(%) The second invention has V: 0.005 to o, oe%, Cu: 0.
05-0°5%, Ni: 0.05-0.50%, Cr
: 50 kgf/mm for construction according to claim (1), which contains one or more selected from 0.10 to 0.60%.
This is a method for manufacturing second grade fireproof steel plate.

(作用) 以下に、本発明における化学成分の限定理由について説
明する。
(Function) Below, the reason for limiting the chemical components in the present invention will be explained.

Cは、強度上昇に寄与する元素であるが、0.05%未
満ては強度を確保することは困難であり、また、0.1
5%を超えて多量に含有するときは、鋼の靭性および溶
接性か劣化する。したがって、Cの添加量は0.05〜
0.15%の範囲とする。
C is an element that contributes to increasing strength, but if it is less than 0.05%, it is difficult to ensure strength;
When the content exceeds 5%, the toughness and weldability of the steel deteriorate. Therefore, the amount of C added is 0.05~
The range is 0.15%.

Siは、脱酸のために有効な元素であるが、本発明はM
n、 AIを含有しており、必ずしも添加を必要としな
いので下限は限定しない。また、Slは固溶強化に対し
て有効な元素であるか、0.60%を超えて多量に含有
すると溶接性を劣化させる。したがって、Siの添加量
は0.60%以下とする。
Although Si is an effective element for deoxidation, the present invention uses M
n, contains AI and does not necessarily require addition, so the lower limit is not limited. Further, Sl is an effective element for solid solution strengthening, and if contained in a large amount exceeding 0.60%, it deteriorates weldability. Therefore, the amount of Si added is 0.60% or less.

Mnは、鋼の強度および靭性を確保するために必要な元
素であるか、0.50%未満てはこのような効果は少な
く、また、1.80%を超えて多量に含有すると溶接性
と靭性を劣化させ、がっ、5M50の強度の上限を越え
る。したかって、Mnの添加量は0.50〜1.80%
の範囲とする。
Mn is an element necessary to ensure the strength and toughness of steel; if it is less than 0.50%, this effect will be small, and if it is contained in a large amount exceeding 1.80%, it will deteriorate weldability. It deteriorates toughness and exceeds the upper limit of 5M50 strength. Therefore, the amount of Mn added is 0.50 to 1.80%.
The range shall be .

Pは、ミクロ偏析により、HAZ靭性、母材靭性および
耐溶接割れ性を劣化させるので、0.03%以下とする
Since P deteriorates HAZ toughness, base metal toughness, and weld cracking resistance due to micro-segregation, it should be kept at 0.03% or less.

Sは、非金属介在物であるMnSを形成して、母材靭性
および加工性を劣化させるので、0.03%以下とする
S forms MnS, which is a nonmetallic inclusion, and deteriorates the toughness and workability of the base material, so the content is set to 0.03% or less.

sol、 AIは、脱酸に不可欠な元素であり、かつ、
AINとして結晶粒の微細化に寄与するため、0.00
2%以上の添加か必要であるか、0.10%を超えて多
量に添加すると酸化物系介在物か多くなり、靭性を劣化
させる。したかって、sol、 Alの添加量は0、0
02〜0.10%の範囲とする。
sol, AI are essential elements for deoxidation, and
0.00 to contribute to grain refinement as AIN
It is necessary to add 2% or more, and if it is added in a large amount exceeding 0.10%, the number of oxide inclusions increases and the toughness deteriorates. Therefore, the amount of sol and Al added is 0,0
The range is 0.02% to 0.10%.

Moは、高温強度を確保するために不可欠な元素てあり
、600℃における耐力を著しく上昇させる。
Mo is an essential element for ensuring high-temperature strength, and significantly increases yield strength at 600°C.

しかしなから、0.10%未満てはこのような効果は得
られず、また、0.40%以上では溶接性を損なう。し
たかって、Moの添加量は0.10%以上領40%未満
の範囲とする。
However, if it is less than 0.10%, such an effect cannot be obtained, and if it is more than 0.40%, weldability is impaired. Therefore, the amount of Mo added is in the range of 0.10% or more and less than 40%.

Nbは、析出強化および変態強化による強度上昇および
細粒化による靭性の向上に有効な元素であり、このよう
な効果を得るには0.005%以上の添加か必要である
。しかし、0060%を超えて多量に添加するときは溶
接継手靭性を劣化さぜる。したかって、Nbの添加量は
0.005〜0060%の範囲とする。
Nb is an element effective in increasing strength through precipitation strengthening and transformation strengthening, and improving toughness through grain refinement, and in order to obtain such effects, it is necessary to add 0.005% or more. However, when added in a large amount exceeding 0.060%, the toughness of welded joints deteriorates. Therefore, the amount of Nb added is in the range of 0.005 to 0060%.

Tiは、TiNによりHAZのオーステナイト粒の粗大
化を抑制するとともに、粒内フェライトを生成すること
から、大入熱溶接継手靭性の劣化軽減に有効な元素であ
る。しかし、0.005%未満てはかかる効果を発揮す
ることかできず、また、0.030%を超えると溶接継
手靭性を劣化させる。したかって、T1の添加量は0.
005〜0.030%の範囲とする。
Ti suppresses the coarsening of austenite grains in the HAZ due to TiN, and also generates intragranular ferrite, so it is an effective element for reducing deterioration of the toughness of high heat input welded joints. However, if it is less than 0.005%, such an effect cannot be exhibited, and if it exceeds 0.030%, the toughness of the welded joint will deteriorate. Therefore, the amount of T1 added is 0.
The range is 0.005% to 0.030%.

Nは、上記Tiと組み合わせることによって、大入熱溶
接継手靭性を改善する。しかし、0.0020%未満て
はこのような効果を発揮することかできず、また、0.
0070%を超えると溶接継手靭性を劣化させる。した
かって、Nの添加量は0.0020〜0.0070%の
範囲とする。
N improves the toughness of high heat input welded joints by combining with the above Ti. However, if it is less than 0.0020%, such an effect cannot be exhibited;
If it exceeds 0.070%, the weld joint toughness will deteriorate. Therefore, the amount of N added is in the range of 0.0020 to 0.0070%.

Caは、微量で板厚方向の特性を改善する元素であるか
、0.0005%未満てはこのような効果は得られず、
また、0.0050%を超えるときは、このような効果
は飽和するとともに、大型介在物か発生し超音波欠陥を
生しやすくなる。したかって、Caの添加量は0.00
05〜0.0050%の範囲とする。
Ca is an element that improves properties in the thickness direction in a trace amount, or if it is less than 0.0005%, such an effect cannot be obtained.
Moreover, when it exceeds 0.0050%, such an effect is saturated and large inclusions are generated, which tends to cause ultrasonic defects. Therefore, the amount of Ca added is 0.00
The range is 0.05% to 0.0050%.

なお、本発明における第2発明では、上記の元素の他に
必要に応して、V 、Cu、 Ni、 Crの内から選
んだ1種または2種以上を添加することかできる。
In addition, in the second aspect of the present invention, in addition to the above-mentioned elements, one or more selected from among V, Cu, Ni, and Cr may be added as necessary.

■は、析出強化による強度上昇に有効な元素であるか、
0.005%未満てはこのような効果は殆と期待できず
、また、0.060%を超えると溶接性を劣化させる。
Is ■ an element effective in increasing strength through precipitation strengthening?
If it is less than 0.005%, such an effect can hardly be expected, and if it exceeds 0.060%, weldability will deteriorate.

したがって、■の添加量は0.005〜0、060%の
範囲とする。
Therefore, the amount of addition of (1) should be in the range of 0.005 to 0.060%.

Cuは、固溶強化による強度上昇に有効な元素であるか
、005%未満てはこのような効果は少なく、また、0
.5%を超えると熱間加工時に表面割れを発生させると
ともに溶接性を劣化させる。したかって、Cuの添加量
は0.05〜0.5%の範囲とするN1は、靭性の向上
に有効な元素であるか、0.05%未満てはこのような
効果は得らず、また、0.5%を超えるとこのような効
果は飽和し、経済的にも無駄である。したかって、N1
の添加量は0.05〜0.5%の範囲とする。
Is Cu an effective element for increasing strength through solid solution strengthening?
.. If it exceeds 5%, surface cracks will occur during hot working and weldability will deteriorate. Therefore, the amount of Cu added is in the range of 0.05 to 0.5%.N1 is an effective element for improving toughness, or if it is less than 0.05%, such an effect will not be obtained. Furthermore, if the content exceeds 0.5%, this effect will be saturated and it will be economically wasteful. I want to, N1
The amount added is in the range of 0.05 to 0.5%.

Crは、高温強度の向上にを効な元素であるか、010
%未満てはこのような効果は期待できず、060%を超
えると溶接性を劣化させる。したかって、Crの添加量
は0.10〜0.60%の範囲とする。
Is Cr an element effective in improving high temperature strength?
If it is less than 0.6%, such an effect cannot be expected, and if it exceeds 0.60%, weldability will deteriorate. Therefore, the amount of Cr added is in the range of 0.10 to 0.60%.

なお、第1発明および第2発明ともに、溶接時の低温割
れを防止するために、P、、 (溶接割れ受性組成)を
0.24%以下に限定する。
In both the first invention and the second invention, in order to prevent cold cracking during welding, P (composition susceptible to welding cracks) is limited to 0.24% or less.

つぎに、本発明における加熱、圧延条件の限定理由につ
いて説明する。
Next, the reasons for limiting the heating and rolling conditions in the present invention will be explained.

本発明は、上記、化学成分を含有する鋼片を1050℃
以上の温度に加熱したのち、1000℃以下の圧下率を
50%以上とし、850℃超え950℃未満の温度範囲
で圧延を終了させる必要かある。
In the present invention, the above-mentioned steel slab containing the chemical components is heated to 1050°C.
After heating to the above temperature, it is necessary to set the rolling reduction rate at 1000°C or less to 50% or more and finish the rolling in a temperature range of more than 850°C and less than 950°C.

加熱温度を1050℃以上に限定した理由は、常温強度
および高温強度の確保に必要なNbを鋼中に固溶させる
ためである。また、1000℃以下の圧下率は、オース
テナイト粒の微細化による優れた母材靭性を得るために
50%以上か必要である。さらに、圧延終了温度につい
ては、圧延終了温度か850℃以下ては、フェライトの
細粒化ならびに二相域圧延によるフェライトの加工硬化
により、降伏比・か高くなり、80%以下の降伏比を得
ることかできない。
The reason why the heating temperature is limited to 1050° C. or higher is to dissolve Nb, which is necessary for ensuring room-temperature strength and high-temperature strength, into the steel. Further, the rolling reduction ratio of 1000°C or less is required to be 50% or more in order to obtain excellent base material toughness due to the refinement of austenite grains. Furthermore, when the rolling end temperature is below 850°C, the yield ratio increases due to grain refinement of ferrite and work hardening of ferrite due to two-phase region rolling, resulting in a yield ratio of 80% or less. I can't do anything.

また、圧延終了温度か950℃以上では、オーステナイ
トか粗粒となるため母材靭性か劣化する。したかって、
圧延終了温度は850℃超え950℃未満の温度範囲に
限定する。
Further, when the rolling end temperature is 950° C. or higher, the toughness of the base material deteriorates because it becomes austenite or coarse grains. I wanted to,
The rolling end temperature is limited to a temperature range of more than 850°C and less than 950°C.

(実施例) 以下に、実施例を挙げて本発明について説明する。(Example) The present invention will be described below with reference to Examples.

供試鋼板は第1表に示す化学成分を含有する鋼片を11
50℃に加熱後、1000℃以下で50%以上の圧下率
を確保するために、圧延中、60mm厚て920〜95
0℃の温度て温度調節を行い、圧延終了温度890〜9
10℃の温度て板厚25mmに仕上げたものである。こ
れらの鋼板から試験片を採取し、常温引張試験、シャル
ビ衝撃試験、600℃ての高温引張試験、最高かたさ試
験および再現熱サイクル後のシャルビ衝撃試験を行った
。その結果を第2表に示す。なお、最高かたさ試験はJ
IS Z 3101に準して行い、再現熱サイクル条件
は1350℃X5秒加熱で、800から500 ’Cま
ての冷却時間は220秒である第1表に本発明法A−F
および比較法H−Jの化学成分、PCMを、第2表に引
張特性、衝撃特性、高温引張特性、溶接性およびH、A
、 Z靭性をそれぞれ示す。
The test steel plates were 11 pieces of steel containing the chemical components shown in Table 1.
After heating to 50°C, in order to ensure a rolling reduction of 50% or more at 1000°C or less, a 60mm thick 920-95
The temperature was adjusted at 0℃, and the rolling end temperature was 890~9.
It was finished to a thickness of 25 mm at a temperature of 10°C. Test pieces were taken from these steel plates and subjected to a normal temperature tensile test, a Charvi impact test, a high temperature tensile test at 600°C, a maximum hardness test, and a Charvi impact test after a simulated thermal cycle. The results are shown in Table 2. The highest hardness test is J.
It was carried out in accordance with IS Z 3101, and the reproducible thermal cycle conditions were heating at 1350°C for 5 seconds, and cooling time from 800 to 500'C was 220 seconds.
Table 2 shows the chemical composition and PCM of comparative method H-J, tensile properties, impact properties, high-temperature tensile properties, weldability, and H, A.
, respectively indicate Z toughness.

(以下余白) 第2表から明らかなように、本発明法によるA〜Gは、
PCMは0.24%以下で、600℃における耐力は2
2kgf/’mm2以上で優れた高温耐力を示し、常温
の引張特性は、50kgf/mm’級の値(耐力32k
gf/mm2J)上、引張強さ50〜62kgf/mm
2)を勿論満足し、降伏比は建築用鋼材に要求されてい
る80%以下を十分に満足している。また、ツヤルビ衝
撃試験における破面遷移温度(vTrs)も−35℃以
下である。
(Left below) As is clear from Table 2, A to G according to the method of the present invention are
PCM is 0.24% or less, yield strength at 600℃ is 2
It shows excellent high temperature yield strength at 2kgf/'mm2 or more, and the tensile properties at room temperature are 50kgf/mm' class value (proof strength 32k
gf/mm2J), tensile strength 50 to 62 kgf/mm
2) is of course satisfied, and the yield ratio fully satisfies the 80% or less required for architectural steel materials. Further, the fracture surface transition temperature (vTrs) in the Tsuyarubi impact test is also -35°C or lower.

最高かたさはHV350未満て良好な溶接性を示し、さ
らに、再現熱サイクル試験によるHAZ靭性(VLO)
も2.8kgf−m以上で良好である。
The maximum hardness is less than HV350, indicating good weldability, and the HAZ toughness (VLO) in a simulated thermal cycle test
2.8 kgf-m or more is also good.

一方、比較法Hは、600℃における耐力は22kgf
/mm”と高いか、Tiか0.005%未満のため、H
AZ靭性か低く、また、Cr、 MO,PCMか本発明
の限定範囲から高めに外れているため、最高かたさかH
V350以上てあり、溶接性か悪く、さらに母材の破面
遷移温度も高い。比較法Iは、HAZ靭性か良好である
か、高温強度の確保に存効なMoか0.10%未満のた
め、600℃における耐力は22kgf/mm2以上を
満足しない。比較法Jは、従来の建築用5゜kll!f
/mm2級鋼板の一例であるか、MoおよびNbか各々
0.10%未満、0.005%未満のため、600℃に
おける耐力は22kgf/mm2以上を満足せず、また
、Tiか0.005%未満のため、HAZ靭性も悪い。
On the other hand, Comparative method H has a yield strength of 22 kgf at 600°C.
H
AZ toughness is low, and Cr, MO, and PCM are highly outside the limited range of the present invention, so the maximum hardness is H.
V350 or higher, weldability is poor, and the fracture surface transition temperature of the base metal is also high. Comparative method I has good HAZ toughness and contains less than 0.10% Mo, which is effective in ensuring high-temperature strength, so the yield strength at 600° C. does not satisfy 22 kgf/mm 2 or more. Comparative method J is the conventional architectural 5゜kll! f
/mm2 class steel plate, Mo and Nb are less than 0.10% and less than 0.005% respectively, so the yield strength at 600°C does not satisfy 22kgf/mm2 or more, and Ti is less than 0.005%. %, HAZ toughness is also poor.

(発明の効果) 以上説明したように、本発明に係わる建築用50kgf
/mm’級耐火w4板の製造方法は、化学成分、特に、
少量の助添加と、Nbの析出強化によって、溶接性を損
なわずに、高温耐力を大幅に改善し、さらに、TiNを
活用することにより優れた大入熱溶接継手靭性を確保し
ているため、600℃における高い耐力と良好な溶接性
を兼ね備え、かっ、降伏比の低い鋼を製造することか可
能であり、従来必要とされていた耐火被覆を大幅に低減
あるいは省略することかでき、さらに、溶接施工および
耐震面の点からも、構造物の安全性を高めることかでき
るという優れた効果を有するものである。
(Effect of the invention) As explained above, the construction of 50kgf according to the present invention
/mm' class fireproof W4 board manufacturing method is based on chemical components, especially:
A small amount of auxiliary addition and Nb precipitation strengthening greatly improves high-temperature yield strength without impairing weldability, and the use of TiN ensures excellent high-heat-input weld joint toughness. It is possible to manufacture steel with a low yield ratio that combines high yield strength and good weldability at 600°C, and it is possible to significantly reduce or omit the conventionally required fireproof coating, and furthermore, This has the excellent effect of increasing the safety of the structure in terms of welding work and earthquake resistance.

特許出願人 株式会社 神戸製鋼折 代 理 人 弁理士  全史 章−Patent applicant: Kobe Steel Ori Co., Ltd. Representative Patent Attorney Complete History Chapter-

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.05〜0.15%、Si:0.60%以
下、Mn:0.50〜1.80%、P:0.03%以下
、S:0.03%以下、sol.Al:0.002〜0
.10%、Mo:0.10%以上0.40%未満、Nb
:0.005〜0.060%、Ti:0.005〜0.
030%、N:0.0020〜0.0070%、Ca:
0.0005〜0.0050%を含有し、かつ、下記式
で規定されるP_C_Mの値を0.24%以下として、
残部Feおよび不可避不純物からなる鋼片を1050℃
以上の温度に加熱したのち、1000℃以下の圧下率を
50%以上とし、850℃超え950℃未満の温度範囲
で圧延を終了させ、600℃における耐力が22kgf
/mm^2以上であることを特徴とする建築用50kg
f/mm^2級耐火鋼板の製造方法。 P_C_M=C+Si/30+Mn/20+Cu/20
+Ni/60+Cr/20+Mo/15+V/10+5
B(%)
(1) C: 0.05-0.15%, Si: 0.60% or less, Mn: 0.50-1.80%, P: 0.03% or less, S: 0.03% or less, sol .. Al: 0.002~0
.. 10%, Mo: 0.10% or more and less than 0.40%, Nb
:0.005~0.060%, Ti:0.005~0.
030%, N: 0.0020-0.0070%, Ca:
Contains 0.0005 to 0.0050%, and the value of P_C_M defined by the following formula is 0.24% or less,
A steel billet consisting of the balance Fe and unavoidable impurities was heated to 1050°C.
After heating to a temperature above, the rolling reduction at 1000℃ or less is set to 50% or more, and the rolling is finished in a temperature range exceeding 850℃ and below 950℃, and the yield strength at 600℃ is 22kgf.
/mm^2 or more for architectural use 50kg
Method for producing f/mm^2 class fire-resistant steel plate. P_C_M=C+Si/30+Mn/20+Cu/20
+Ni/60+Cr/20+Mo/15+V/10+5
B (%)
(2)V:0.005〜0.06%、Cu:0.05〜
0.5%、Ni:0.05〜0.5%、Cr:0.10
〜0.60%の内から選んだ1種または2種以上を含有
することを特徴とする請求項(1)の建築用50kgf
/mm^2級耐火鋼板の製造方法。
(2) V: 0.005-0.06%, Cu: 0.05-0.05%
0.5%, Ni: 0.05-0.5%, Cr: 0.10
50 kgf for construction according to claim (1), characterized in that it contains one or more selected from ~0.60%.
/mm^Method for manufacturing class 2 fire-resistant steel plate.
JP32638590A 1990-11-27 1990-11-27 Production of 50kgf/mm2 class refractory steel plate for construction use Pending JPH04193907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32638590A JPH04193907A (en) 1990-11-27 1990-11-27 Production of 50kgf/mm2 class refractory steel plate for construction use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32638590A JPH04193907A (en) 1990-11-27 1990-11-27 Production of 50kgf/mm2 class refractory steel plate for construction use

Publications (1)

Publication Number Publication Date
JPH04193907A true JPH04193907A (en) 1992-07-14

Family

ID=18187215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32638590A Pending JPH04193907A (en) 1990-11-27 1990-11-27 Production of 50kgf/mm2 class refractory steel plate for construction use

Country Status (1)

Country Link
JP (1) JPH04193907A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228520A (en) * 1990-12-27 1992-08-18 Nippon Steel Corp Manufacture resistance welded steel tube excellent in fire resistance
JPH06316724A (en) * 1993-03-04 1994-11-15 Kobe Steel Ltd Production of refractory steel plate for construction use, low in acoustic anisotropy
JPH07305113A (en) * 1994-05-11 1995-11-21 Kobe Steel Ltd Production of low yield ratio thick fire resistant steel for building excellent in weldability
JP2015163730A (en) * 2014-01-28 2015-09-10 株式会社神戸製鋼所 Low-yield-ratio high-strength steel sheet high in work hardenability and excellent in uniform elongation and weldability and production method thereof
CN108368593A (en) * 2015-12-15 2018-08-03 株式会社Posco High strength steel and its manufacturing method with excellent low temperature strain-aging impact characteristics
WO2024063113A1 (en) * 2022-09-22 2024-03-28 株式会社神戸製鋼所 Steel base material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228520A (en) * 1990-12-27 1992-08-18 Nippon Steel Corp Manufacture resistance welded steel tube excellent in fire resistance
JPH06316724A (en) * 1993-03-04 1994-11-15 Kobe Steel Ltd Production of refractory steel plate for construction use, low in acoustic anisotropy
JPH07305113A (en) * 1994-05-11 1995-11-21 Kobe Steel Ltd Production of low yield ratio thick fire resistant steel for building excellent in weldability
JP2015163730A (en) * 2014-01-28 2015-09-10 株式会社神戸製鋼所 Low-yield-ratio high-strength steel sheet high in work hardenability and excellent in uniform elongation and weldability and production method thereof
CN108368593A (en) * 2015-12-15 2018-08-03 株式会社Posco High strength steel and its manufacturing method with excellent low temperature strain-aging impact characteristics
CN108368593B (en) * 2015-12-15 2020-10-02 株式会社Posco High-strength steel material having excellent low-temperature strain aging impact characteristics and method for producing same
WO2024063113A1 (en) * 2022-09-22 2024-03-28 株式会社神戸製鋼所 Steel base material

Similar Documents

Publication Publication Date Title
JP2008030086A (en) Method for producing high-strength clad steel plate
JPS59211528A (en) Production of non-tempered steel having low yield ratio
JPH04193907A (en) Production of 50kgf/mm2 class refractory steel plate for construction use
JPH04362156A (en) Steel excellent in fire resistance and toughness in welded joint part
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP3214281B2 (en) Low-temperature building steel
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JPH0788554B2 (en) Fireproof steel for construction
JP2764007B2 (en) Low yield ratio refractory steel sheet for building with excellent weldability and method of manufacturing the same
JPS62149850A (en) Weather resistant steel having excellent weldability and large heat input welded joint performance
JPH04350120A (en) Production of high strength refractory steel plate for construction use
JP2001247930A (en) Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method
JPH05117745A (en) Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose
JPH0252196A (en) Welding wire for fire resistant steel
JP4592173B2 (en) Martensitic stainless steel welded structure with excellent fire resistance
JPH05112823A (en) Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JP7506306B2 (en) High-strength steel plate for large heat input welding
JPH04180518A (en) Production of 50kgf/mm2 class refractory steel for building having excellent toughness of large heat input welded joint
JPH1068018A (en) Production of fire resistant steel sheet for structural purpose excellent in welding heat affected zone toughness
JPH03173715A (en) Production of 50kgf/mm2 class refractory steel for construction use excellent in weldability
JP3221322B2 (en) High toughness heat-resistant steel for large heat input welding and method for producing the same
JP3232118B2 (en) Hot-rolled steel strip for construction with excellent fire resistance and toughness and method for producing the same
JPH07207336A (en) Production of refractory steel products for building structural purpose
JP2020204092A (en) High strength steel sheet for high heat input welding
JPH0673449A (en) Production of high strength fire resistant steel sheet for building