JPH0673449A - Production of high strength fire resistant steel sheet for building - Google Patents
Production of high strength fire resistant steel sheet for buildingInfo
- Publication number
- JPH0673449A JPH0673449A JP23014592A JP23014592A JPH0673449A JP H0673449 A JPH0673449 A JP H0673449A JP 23014592 A JP23014592 A JP 23014592A JP 23014592 A JP23014592 A JP 23014592A JP H0673449 A JPH0673449 A JP H0673449A
- Authority
- JP
- Japan
- Prior art keywords
- less
- strength
- temperature
- steel sheet
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、耐火鋼板の製造方法に
関し、詳しくは、 600℃の高温においても216N/mm2以上
の高い耐力を有する引張強さ490N/mm2級の建築用高強度
耐火鋼板の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fire-resistant steel plate, and more specifically, it has a high tensile strength of 490 N / mm 2 and a high strength for construction, which has a high yield strength of 216 N / mm 2 or more even at a high temperature of 600 ° C. The present invention relates to a method for manufacturing a fireproof steel plate.
【0002】[0002]
【従来の技術】建築用鋼板は、常温での諸特性を有する
ように設計・製造されているが、一般的には温度の上昇
にともないその強度は低下する。日本鋼構造協会発行の
JSSC Vol.4 No.33 1968 には、 SM50Bの高温時の降伏点
または 0.2%耐力は、高温になるにしたがい徐々に低下
し、 500℃以上での低下は著しく、常温時の値の 2/3に
低下する温度は 400〜500 ℃であると記してある。2. Description of the Related Art Architectural steel sheets are designed and manufactured to have various properties at room temperature, but their strength generally decreases with increasing temperature. Published by Japan Steel Structure Association
In JSSC Vol.4 No.33 1968, the yield point or 0.2% proof stress of SM50B at high temperature gradually decreases as the temperature becomes higher, and the decrease at 500 ° C or more is remarkable. The temperature down to 3 is stated to be 400-500 ° C.
【0003】高温用鋼板としては、JIS 、ASTM等に規定
されているボイラ・圧力容器用のCr−Mo系鋼板が広く使
用されている。これらは、数十万時間という長時間使用
の場合の鋼板であり、その保証温度は 350〜400 ℃であ
る。As high temperature steel sheets, Cr-Mo steel sheets for boilers and pressure vessels, which are specified in JIS, ASTM, etc., are widely used. These are steel plates used for a long time of several hundreds of thousands of hours, and the guaranteed temperature is 350 to 400 ° C.
【0004】従来のSi−Mn系の建築用490N/mm2級鋼板で
は、 350℃を超えると火災時に構造部材に要求される耐
力である長期耐力(常温耐力の2/3 )の216N/mm2を下回
るため、鉄骨の温度が 350℃を超えないように、工事
費、工期などの面から足枷となる耐火被覆施工が義務ず
けられている。しかし、最近追加された『新耐火設計
法』では、鋼板が600 ℃において常温の規格降伏強度の
2/3 以上を有する場合など、高温における強度に応じ
て、耐火被覆量の削減が認められるようになっている。In the conventional Si-Mn-based 490 N / mm 2 class steel sheet for construction, when the temperature exceeds 350 ° C, the long-term proof strength (2/3 of room temperature proof strength) of 216 N / mm, which is the proof stress required for structural members during a fire. Since it is less than 2 , it is obligatory to apply fireproof coating, which is a shackle from the viewpoint of construction cost and construction period, so that the temperature of the steel frame does not exceed 350 ℃. However, in the recently added "new fireproof design method", the steel plate has a normal yield strength at room temperature of 600 ° C.
Depending on the strength at high temperature, such as when it has more than 2/3, the reduction of the amount of refractory coating has been recognized.
【0005】[0005]
【発明が解決しようとする課題】現状、高温耐力の優れ
た鋼板としては、前記のボイラ・圧力容器用鋼板がある
が、本鋼板は、600 ℃における耐力は216N/mm2以上を有
するが、溶接割れ感受性組成(PCM)が高いために、耐溶
接割れ性が悪く、予熱、後熱を行うなど溶接施工に難点
がある。さらに、溶接施工効率を高めるために用いられ
るエレクトロスラグ溶接やサブマージアーク溶接のよう
な大入熱溶接を施すと溶接熱影響部(HAZ)の靱性が
著しく低下するため、小入熱溶接が余儀なくされてい
る。At present, as a steel sheet having excellent high temperature proof stress, there is the above-mentioned steel sheet for boiler / pressure vessel, but this steel sheet has a proof stress at 600 ° C. of 216 N / mm 2 or more. Due to the high composition of weld cracking susceptibility (P CM ), the weld cracking resistance is poor and there are problems in welding such as pre-heating and post-heating. Furthermore, when large heat input welding such as electroslag welding or submerged arc welding, which is used to improve welding work efficiency, is performed, the toughness of the heat affected zone (HAZ) is significantly reduced, so small heat input welding is unavoidable. ing.
【0006】このため、建築用鋼の耐火被覆施工の低減
あるいは省略を図るために、高い高温耐力を有するとと
もに優れた溶接性、大入熱溶接継手靱性および母材特性
を有し、従来と同じ設計・施工ができる鋼板が必要とさ
れている。また、建築用鋼には、地震時の建築物の変形
能の点から、80%以下の降伏比の要求が強まっている。[0006] Therefore, in order to reduce or omit the construction of fireproof coating for building steel, it has a high-temperature proof stress and excellent weldability, large heat input welded joint toughness, and base metal characteristics, and is the same as the conventional one. Steel plates that can be designed and constructed are needed. Moreover, the demand for the yield ratio of 80% or less is increasing for the building steel from the viewpoint of the deformability of the building during an earthquake.
【0007】本発明は、上記の問題点を解決するために
なされたもので、化学成分を調整した鋼片を制御圧延す
ることによって、 600℃の高温においても216N/mm2以上
の高い耐力を有する建築用高強度耐火鋼板の製造方法を
提供することを目的とする。The present invention has been made to solve the above problems, and by controlling the rolling of a steel slab having a controlled chemical composition, a high yield strength of 216 N / mm 2 or more can be achieved even at a high temperature of 600 ° C. It is an object of the present invention to provide a method for producing a high-strength refractory steel sheet for construction having.
【0008】[0008]
【課題を解決するための手段】本発明は、従来の建築用
鋼における上記の問題点に鑑み、本発明者らが鋭意研究
を行った結果、化学成分、特に、sol.Al量を制限し、少
量のMo添加と、Nbの析出強化によって、溶接性を損なわ
ずに、高温耐力を大幅に改善し、さらに、TiNを活用す
ることにより優れた大入熱溶接継手靱性を確保できると
いう知見を得て完成されたもので、その第1発明は、C:
0.05〜0.15%、 Si:0.60%以下、 Mn:0.50〜1.80%、P:
0.03%以下、S:0.03%以下、sol.Al:0.003%以下、 Mo:
0.10%以上0.40%未満、Nb:0.005〜0.060 %、Ti:0.005
〜0.030 %、N:0.0020〜0.0070%、 Ca:0.0005〜0.0050
%を含有し、かつ、下記式で規定される PCMの値を0.24
%以下として、残部Feおよび不可避的不純物からなる鋼
片を1050℃以上の温度に加熱したのち、1000℃以下の圧
下率を50%以上とし、 850℃超え 950℃未満の温度範囲
で圧延を終了させ、 600℃における耐力が216N/mm2以上
である建築用高強度耐火鋼板の製造方法である。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B
(%)SUMMARY OF THE INVENTION The present invention has been carried out by the inventors of the present invention in view of the above problems in conventional building steels, and as a result, the chemical composition, particularly the sol.Al amount was limited. By adding a small amount of Mo and precipitating Nb to strengthen the weldability, the high-temperature yield strength can be significantly improved, and by utilizing TiN, excellent large heat input welded joint toughness can be secured. The first invention was completed with C:
0.05 to 0.15%, Si: 0.60% or less, Mn: 0.50 to 1.80%, P:
0.03% or less, S: 0.03% or less, sol.Al: 0.003% or less, Mo:
0.10% or more but less than 0.40%, Nb: 0.005 to 0.060%, Ti: 0.005
~ 0.030%, N: 0.0020-0.0070%, Ca: 0.0005-0.0050
%, And the value of P CM specified by the following formula is 0.24
%, The steel slab consisting of the balance Fe and unavoidable impurities is heated to a temperature of 1050 ° C or higher, and the rolling reduction of 1000 ° C or lower is set to 50% or higher, and rolling is completed in the temperature range of 850 ° C to less than 950 ° C. And a yield strength at 600 ° C. of 216 N / mm 2 or more. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
(%)
【0009】第2発明は、さらに鋼板の化学成分とし
て、 Cu:0.05〜0.50%、 Ni:0.05〜0.50%、 Cr:0.10〜
0.60%、 V:0.005〜0.060 %の内から選んだ1種または
2種以上を含有する請求項1の建築用高強度耐火鋼板の
製造方法である。The second aspect of the present invention further comprises, as chemical components of the steel sheet, Cu: 0.05 to 0.50%, Ni: 0.05 to 0.50%, Cr: 0.10 to
The method for producing a high-strength refractory steel sheet for construction according to claim 1, which contains one or more selected from 0.60% and V: 0.005 to 0.060%.
【0010】[0010]
【作用】以下に、本発明における化学成分の限定理由に
ついて説明する。発明者は 600℃の耐力に及ぼすsol.Al
の影響について調査した。その結果を図1に示す。図1
はsol.Alを変化させたときの0.10%C-0.35%Si-1.00 %
Mn-0.015%P-0.005 %S-0.025 %Nb-0.012%Ti鋼の 600
℃での耐力の変化を示す。The reason for limiting the chemical components in the present invention will be described below. The inventor has found that the sol.
Was investigated. The result is shown in FIG. Figure 1
Is 0.10% C-0.35% Si-1.00% when sol.Al is changed
Mn-0.015% P-0.005% S-0.025% Nb-0.012% Ti steel 600
The change in proof stress at ° C is shown.
【0011】図1に示すように、sol.Alが 0.003%以下
において耐力が著しく向上していることがわかる。した
がって、sol.Alの含有量は 0.003%以下とする。なお、
溶鋼の脱酸にAlを使用しないため、溶鋼の脱酸はSi、M
n、Ti、Caで行うものとし、Al含有量の高いFeSi 2号の
使用量を制限し、溶鋼の脱酸には、溶鋼処理時の真空炭
素脱酸の活用が好ましい。As shown in FIG. 1, it can be seen that the yield strength is remarkably improved when sol.Al is 0.003% or less. Therefore, the content of sol.Al should be 0.003% or less. In addition,
Since Al is not used for deoxidation of molten steel, deoxidation of molten steel is Si, M
It is preferable to use n, Ti, and Ca, and to limit the amount of FeSi 2 having a high Al content used, and to deoxidize molten steel, use of vacuum carbon deoxidation during molten steel treatment.
【0012】C は、強度上昇に寄与する元素であるが、
0.05%未満では強度を確保することは困難であり、ま
た、0.15%を超えて多量に含有するときは、鋼の靱性お
よび溶接性が劣化する。したがって、C の添加量は0.05
〜0.15%の範囲とする。C is an element that contributes to the increase in strength,
If less than 0.05%, it is difficult to secure the strength, and if more than 0.15% is contained, the toughness and weldability of steel deteriorate. Therefore, the amount of C added is 0.05
The range is to 0.15%.
【0013】Siは、脱酸のために有効な元素であるが、
本発明はMnを含有しており、必ずしも添加を必要としな
いので下限は限定しない。また、Siは固溶強化に対して
有効な元素であるが、0.60%を超えて多量に含有すると
溶接性を劣化させる。したがって、Siの添加量は0.60%
以下とする。Si is an element effective for deoxidizing,
Since the present invention contains Mn and does not necessarily need to be added, the lower limit is not limited. Further, Si is an element effective for solid solution strengthening, but if it is contained in a large amount exceeding 0.60%, the weldability is deteriorated. Therefore, the addition amount of Si is 0.60%
Below.
【0014】Mnは、鋼の強度および靱性を確保するため
に必要な元素であるが、0.50%未満ではこのような効果
は少なく、また、1.80%を超えて多量に含有すると溶接
性と靱性を劣化させ、かつ、 SM490の強度の上限を越え
る。したがって、Mnの添加量は0.50〜1.80%の範囲とす
る。Mn is an element necessary to secure the strength and toughness of steel, but if it is less than 0.50%, such an effect is small, and if it is contained in a large amount exceeding 1.80%, weldability and toughness are improved. Deteriorates and exceeds the upper limit of SM490 strength. Therefore, the addition amount of Mn is set to the range of 0.50 to 1.80%.
【0015】P は、ミクロ偏析により、HAZ靱性、母
材靱性および耐溶接割れ性を劣化させるので、0.03%以
下とする。Since P deteriorates HAZ toughness, base metal toughness and weld crack resistance due to microsegregation, P is made 0.03% or less.
【0016】S は、非金属介在物である MnSを形成し
て、母材靱性および加工性を劣化させるので、0.03%以
下とする。S forms MnS which is a non-metallic inclusion and deteriorates the toughness and workability of the base material, so S is made 0.03% or less.
【0017】Moは、高温強度を確保するために不可欠な
元素であり、 600℃における耐力を著しく上昇させる。
しかしながら、0.10%未満ではこのような効果は得られ
ず、また、0.40%以上では溶接性を損なう。したがっ
て、Moの添加量は0.10%以上0.40%未満の範囲とする。Mo is an indispensable element for ensuring high temperature strength and significantly increases the yield strength at 600 ° C.
However, if it is less than 0.10%, such an effect cannot be obtained, and if it is 0.40% or more, the weldability is impaired. Therefore, the addition amount of Mo is set to a range of 0.10% or more and less than 0.40%.
【0018】Nbは、析出強化および変態強化による強度
上昇および細粒化による靱性の向上に有効な元素であ
り、このような効果を得るには 0.005%以上の添加が必
要である。しかし、0.060 %を超えて多量に添加すると
きは溶接継手靱性を劣化させる。したがって、Nbの添加
量は 0.005〜0.060 %の範囲とする。Nb is an element effective in increasing the strength by precipitation strengthening and transformation strengthening and improving the toughness by grain refinement. To obtain such an effect, 0.005% or more must be added. However, when added in excess of 0.060%, the weld joint toughness deteriorates. Therefore, the amount of Nb added should be in the range of 0.005 to 0.060%.
【0019】Tiは、TiN によりHAZのオーステナイト
粒の粗大化を抑制するとともに、粒内フェライトを生成
することから、大入熱溶接継手靱性の劣化軽減に有効な
元素である。しかし、 0.005%未満ではかかる効果を発
揮することができず、また、 0.030%を超えると溶接継
手靱性を劣化させる。したがって、Tiの添加量は 0.005
〜0.030 %の範囲とする。Ti is an element effective in reducing the deterioration of the high heat input welded joint toughness because TiN suppresses the coarsening of the austenite grains of the HAZ and produces intragranular ferrite. However, if it is less than 0.005%, such an effect cannot be exhibited, and if it exceeds 0.030%, the weld joint toughness deteriorates. Therefore, the amount of Ti added is 0.005
The range is to 0.030%.
【0020】N は、上記Tiと組み合わせることによっ
て、大入熱溶接継手靱性を改善する。しかし、0.0020%
未満ではこのような効果を発揮することができず、ま
た、0.0070%を超えると溶接継手靱性を劣化させる。し
たがって、N の添加量は0.0020〜0.0070%の範囲とす
る。N improves the large heat input welded joint toughness when combined with the above Ti. But 0.0020%
If it is less than 0.007%, such an effect cannot be exhibited, and if it exceeds 0.0070%, the toughness of the welded joint is deteriorated. Therefore, the amount of N 2 added is in the range of 0.0020 to 0.0070%.
【0021】Caは、微量で板厚方向の特性を改善する元
素であるが、0.0005%未満ではこのような効果は得られ
ず、また、0.0050%を超えるときは、このような効果は
飽和するとともに、大型介在物が発生し超音波欠陥を生
じやすくなる。したがって、Caの添加量は0.0005〜0.00
50%の範囲とする。[0021] Ca is an element that improves the properties in the plate thickness direction with a trace amount, but if it is less than 0.0005%, such an effect cannot be obtained, and if it exceeds 0.0050%, such an effect is saturated. At the same time, large inclusions are generated, and ultrasonic defects are likely to occur. Therefore, the addition amount of Ca is 0.0005 to 0.00
The range is 50%.
【0022】なお、本発明における第2発明では、上記
の元素の他に必要に応じて、Cu、Ni、Cr、V の内から選
んだ1種または2種以上を添加することができる。In the second aspect of the present invention, one or more selected from Cu, Ni, Cr and V can be added in addition to the above elements, if necessary.
【0023】Cuは、固溶強化による強度上昇に有効な元
素であるが、0.05%未満ではこのような効果は少なく、
また、0.50%を超えると熱間加工時に表面割れを発生さ
せるとともに溶接性を劣化させる。したがって、Cuの添
加量は0.05〜0.50%の範囲とする。Cu is an element effective for increasing strength by solid solution strengthening, but if it is less than 0.05%, such an effect is small,
Further, if it exceeds 0.50%, surface cracking occurs during hot working and weldability deteriorates. Therefore, the amount of Cu added is in the range of 0.05 to 0.50%.
【0024】Niは、靱性の向上に有効な元素であるが、
0.05%未満ではこのような効果は得らず、また、0.50%
を超えるとこのような効果は飽和し、経済的にも無駄で
ある。したがって、Niの添加量は0.05〜0.50%の範囲と
する。Ni is an element effective for improving toughness,
If it is less than 0.05%, such an effect cannot be obtained, and 0.50%
If it exceeds, such effects will be saturated and it will be economically wasteful. Therefore, the addition amount of Ni is set to the range of 0.05 to 0.50%.
【0025】Crは、高温強度の向上に有効な元素である
が、0.10%未満ではこのような効果は期待できず、0.60
%を超えると溶接性を劣化させる。したがって、Crの添
加量は0.10〜0.60%の範囲とする。Cr is an element effective in improving the high temperature strength, but if it is less than 0.10%, such an effect cannot be expected, and 0.60
If it exceeds%, the weldability is deteriorated. Therefore, the addition amount of Cr is set to the range of 0.10 to 0.60%.
【0026】V は、析出強化による強度上昇に有効な元
素であるが、0.005 %未満ではこのような効果は殆ど期
待できず、また、0.060 %を超えると溶接性を劣化させ
る。したがって、V の添加量は 0.005〜0.060 %の範囲
とする。V is an element effective for increasing strength by precipitation strengthening, but if less than 0.005%, such an effect can hardly be expected, and if it exceeds 0.060%, weldability deteriorates. Therefore, the amount of V added should be in the range of 0.005 to 0.060%.
【0027】なお、第1発明および第2発明ともに、溶
接時の低温割れを防止するために、 PCM(溶接割れ感受
性組成)を0.24%以下に限定する。In both the first and second inventions, P CM (welding crack susceptibility composition) is limited to 0.24% or less in order to prevent cold cracking during welding.
【0028】つぎに、本発明における加熱、圧延条件の
限定理由について説明する。本発明は、上記、化学成分
を含有する鋼片を1050℃以上の温度に加熱したのち、10
00℃以下の圧下率を50%以上とし、 850℃超え 950℃未
満の温度範囲で圧延を終了させる必要がある。Next, the reasons for limiting the heating and rolling conditions in the present invention will be described. The present invention, after heating the steel slab containing the chemical components to a temperature of 1050 ℃ or more, 10
The rolling reduction at 00 ° C or lower should be 50% or higher, and the rolling should be completed within the temperature range of 850 ° C to less than 950 ° C.
【0029】加熱温度を1050℃以上に限定した理由は、
常温強度および高温強度の確保に必要なNbを鋼中に固溶
させるためである。また、1000℃以下の圧下率は、オー
ステナイト粒の微細化による優れた母材靱性を得るため
に50%以上が必要である。さらに、圧延終了温度につい
ては、圧延終了温度が850℃以下では、フェライトの細
粒化ならびに二相域圧延によるフェライトの加工硬化に
より、降伏比が高くなり、建築用鋼材に要求されている
80%以下の降伏比を得ることができない。また、圧延終
了温度が 950℃以上では、オーステナイトが粗粒となる
ため母材靱性が劣化する。したがって、圧延終了温度は
850℃超え950 ℃未満の温度範囲に限定する。The reason why the heating temperature is limited to 1050 ° C. or higher is as follows.
This is because Nb, which is necessary for ensuring room temperature strength and high temperature strength, is dissolved in steel. Further, the rolling reduction of 1000 ° C. or less is required to be 50% or more in order to obtain excellent base material toughness due to the refinement of austenite grains. Further, regarding the rolling end temperature, when the rolling end temperature is 850 ° C or lower, the yield ratio becomes high due to the ferrite grain refinement and the work hardening of the ferrite by the two-phase rolling, and it is required for building steel materials.
A yield ratio of 80% or less cannot be obtained. When the rolling end temperature is 950 ° C or higher, the austenite becomes coarse grains and the toughness of the base material deteriorates. Therefore, the rolling end temperature is
Limit to the temperature range above 850 ℃ and below 950 ℃.
【0030】[0030]
【実施例】以下に、実施例を挙げて本発明について説明
する。供試鋼板は表1に示す化学成分を含有する鋼片を
1150℃に加熱後、1000℃以下で50%以上の圧下率を確保
するために、圧延中、60mm厚で 920〜950 ℃の温度で温
度調節を行い、圧延終了温度 890〜910 ℃の温度で板厚
25mmに仕上げたものである。これらの鋼板から試験片を
採取し、常温引張試験、シャルピ衝撃試験、 600℃での
高温引張試験、最高かたさ試験および再現熱サイクル後
のシャルピ衝撃試験を行った。その結果を表2に示す。
なお、最高かたさ試験はJIS Z 3101に準じて行い、再現
熱サイクル条件は1350℃×5 秒加熱で、 800から 500℃
までの冷却時間は 220秒である。EXAMPLES The present invention will be described below with reference to examples. The test steel plates are steel pieces containing the chemical components shown in Table 1.
After heating to 1150 ° C, in order to secure a reduction of 50% or more at 1000 ° C or less, during rolling, the temperature is adjusted at a temperature of 920 to 950 ° C with a thickness of 60 mm, and the rolling end temperature is 890 to 910 ° C. Plate thickness
It is finished to 25 mm. Test pieces were taken from these steel sheets, and a room temperature tensile test, a Charpy impact test, a high temperature tensile test at 600 ° C, a maximum hardness test, and a Charpy impact test after a simulated thermal cycle were performed. The results are shown in Table 2.
The highest hardness test is performed in accordance with JIS Z 3101, and the reproducible heat cycle conditions are 1350 ° C × 5 seconds heating, 800 to 500 ° C.
It takes 220 seconds to cool.
【0031】表1に本発明法A〜Fおよび比較例H〜J
の化学成分、PCMを、表2に引張特性、衝撃特性、高温
引張特性、溶接性およびHAZ靱性をそれぞれ示す。Table 1 shows the present invention methods AF and comparative examples HJ.
The chemical composition of PCM, P CM , and Table 2 show the tensile properties, impact properties, high temperature tensile properties, weldability and HAZ toughness, respectively.
【0032】表2から明らかなように、本発明法による
A〜Gは、 P CMは0.24%以下で、 600℃における耐力は
216N/mm2以上で優れた高温耐力を示し、常温の引張特性
は、490N/mm2級の値(耐力314N/mm2以上、引張強さ 490
〜610N/mm2)を勿論満足し、降伏比は建築用鋼材に要求
されている80%以下を十分に満足している。また、シャ
ルピ衝撃試験における破面遷移温度(vTrs)も−25℃以下
である。最高かたさはHV350 未満で良好な溶接性を示
し、さらに、再現熱サイクル試験によるHAZ靱性 (vE
20) も27J 以上で良好である。As is apparent from Table 2, according to the method of the present invention.
A to G is P cmIs less than 0.24%, and the yield strength at 600 ° C is
216N / mm2Excellent tensile strength at high temperature and tensile properties at room temperature
Is 490 N / mm2Class value (proof strength 314N / mm2Above, tensile strength 490
~ 610N / mm2) Is satisfied, and the yield ratio is required for steel for construction.
We are fully satisfied with less than 80%. Also,
Fracture transition temperature (vTrs) in lupi impact test is also below -25 ℃
Is. Maximum hardness of less than HV350 shows good weldability
In addition, the HAZ toughness (vE
20) Is also good at 27J or more.
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【表2】 [Table 2]
【0035】一方、比較例Hは、 600℃における耐力は
216N/mm2以上と高いが、Tiが 0.005%未満のため、HA
Z靱性が低く、また、Cr、Mo、 PCMが本発明の限定範囲
から高めに外れているため、最高かたさがHV350 以上で
あり、溶接性が悪く、さらに母材の破面遷移温度も高
い。比較例Iは、HAZ靱性が良好であるが、高温強度
の確保に有効なMoが0.10%未満のため、 600℃における
耐力は216N/mm2以上を満足しない。比較例Jは、従来の
建築用490N/mm2級鋼板の一例であるが、MoおよびNbが各
々0.10%未満、 0.005%未満のため、 600℃における耐
力は216N/mm2以上を満足せず、また、Tiが 0.005%未満
のため、HAZ靱性も悪い。On the other hand, Comparative Example H has a proof stress at 600 ° C.
216N / mm 2 and higher, but Ti is less than 0.005%, so HA
Z toughness is low and, because the Cr, Mo, is P CM deviates to increase from the limited range of the present invention, the maximum hardness is HV350 or more, is bad, even higher still fracture appearance transition temperature of the base metal weldability . In Comparative Example I, the HAZ toughness is good, but since Mo that is effective for ensuring high temperature strength is less than 0.10%, the yield strength at 600 ° C. does not satisfy 216 N / mm 2 or more. Comparative Example J is an example of a conventional 490 N / mm 2 grade steel sheet for construction, but since Mo and Nb are less than 0.10% and less than 0.005% respectively, the yield strength at 600 ° C does not satisfy 216 N / mm 2 or more. Moreover, since the Ti content is less than 0.005%, the HAZ toughness is also poor.
【0036】[0036]
【発明の効果】以上説明したように、本発明に係わる49
0N/mm2級建築用高強度耐火鋼板の製造方法は、化学成
分、特に、sol.Al量を制限し、少量のMo添加と、Nbの析
出強化によって、溶接性を損なわずに、高温耐力を大幅
に改善し、さらに、TiN を活用することにより優れた大
入熱溶接継手靱性を確保しているため、 600℃における
高い耐力と良好な溶接性を兼ね備え、かつ、降伏比の低
い鋼を製造することが可能であり、従来必要とされてい
た耐火被覆を大幅に低減あるいは省略することができ、
さらに、溶接施工および耐震面の点からも、構造物の安
全性を高めることができるという優れた効果を有するも
のである。As described above, according to the present invention,
0N / mm 2 class high-strength refractory steel plate for construction is manufactured by limiting the chemical composition, especially sol.Al amount, adding a small amount of Mo, and precipitating Nb to strengthen the high-temperature yield strength without impairing the weldability. Has been significantly improved, and by utilizing TiN, excellent toughness of large heat input welded joints has been secured, so steel with a high yield strength at 600 ° C and good weldability as well as a low yield ratio can be obtained. It is possible to manufacture, and it is possible to significantly reduce or omit the conventionally required refractory coating,
Further, it has an excellent effect that the safety of the structure can be enhanced in terms of welding work and seismic resistance.
【図1】600℃の耐力に及ぼすsol.Alの影響を示す図で
ある。FIG. 1 is a diagram showing an influence of sol.Al on a proof stress at 600 ° C.
Claims (2)
0.50〜1.80%、P:0.03%以下、S:0.03%以下、sol.Al:
0.003%以下、 Mo:0.10%以上0.40%未満、Nb:0.005〜
0.060 %、Ti:0.005〜0.030 %、N:0.0020〜0.0070%、
Ca:0.0005〜0.0050%を含有し、かつ、下記式で規定さ
れる PCMの値を0.24%以下として、残部Feおよび不可避
的不純物からなる鋼片を1050℃以上の温度に加熱したの
ち、1000℃以下の圧下率を50%以上とし、 850℃超え 9
50℃未満の温度範囲で圧延を終了させ、 600℃における
耐力が216N/mm2以上であることを特徴とする建築用高強
度耐火鋼板の製造方法。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B
(%)1. C: 0.05 to 0.15%, Si: 0.60% or less, Mn:
0.50 to 1.80%, P: 0.03% or less, S: 0.03% or less, sol.Al:
0.003% or less, Mo: 0.10% or more and less than 0.40%, Nb: 0.005〜
0.060%, Ti: 0.005-0.030%, N: 0.0020-0.0070%,
Ca: 0.0005 to 0.0050% is contained, and the value of P CM specified by the following formula is set to 0.24% or less, and a steel slab composed of the balance Fe and inevitable impurities is heated to a temperature of 1050 ° C or higher, and then 1000 The reduction rate below ℃ shall be 50% or more, and above 850 ℃ 9
A method for producing a high-strength refractory steel sheet for construction, characterized in that rolling is completed in a temperature range of less than 50 ° C and the yield strength at 600 ° C is 216 N / mm 2 or more. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
(%)
〜0.50%、 Ni:0.05〜0.50%、 Cr:0.10〜0.60%、 V:
0.005〜0.060 %の内から選んだ1種または2種以上を
含有する請求項1の建築用高強度耐火鋼板の製造方法。2. The chemical composition of the steel sheet is Cu: 0.05.
~ 0.50%, Ni: 0.05 ~ 0.50%, Cr: 0.10 ~ 0.60%, V:
The method for producing a high-strength refractory steel sheet for construction according to claim 1, which contains one or more selected from 0.005 to 0.060%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23014592A JPH0673449A (en) | 1992-08-28 | 1992-08-28 | Production of high strength fire resistant steel sheet for building |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23014592A JPH0673449A (en) | 1992-08-28 | 1992-08-28 | Production of high strength fire resistant steel sheet for building |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0673449A true JPH0673449A (en) | 1994-03-15 |
Family
ID=16903299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23014592A Pending JPH0673449A (en) | 1992-08-28 | 1992-08-28 | Production of high strength fire resistant steel sheet for building |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0673449A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0280230A2 (en) * | 1987-02-27 | 1988-08-31 | General Signal Corporation | Instrument for potentiometric electrochemical measurements in an electrolyte solution |
-
1992
- 1992-08-28 JP JP23014592A patent/JPH0673449A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0280230A2 (en) * | 1987-02-27 | 1988-08-31 | General Signal Corporation | Instrument for potentiometric electrochemical measurements in an electrolyte solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5407478B2 (en) | High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same | |
WO2014199488A1 (en) | Ultrahigh-tensile-strength steel plate for welding | |
JP5293370B2 (en) | Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same | |
JP5999005B2 (en) | Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same | |
JP5008879B2 (en) | High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate | |
JPH06316723A (en) | Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability | |
JP7506305B2 (en) | High-strength steel plate for large heat input welding | |
JP7410438B2 (en) | steel plate | |
JPH05117745A (en) | Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose | |
JPH0673449A (en) | Production of high strength fire resistant steel sheet for building | |
JPH10263817A (en) | Manufacture of high strength welded joint having excellent crack resistance | |
JP2000096187A (en) | High-strength welded steel tube | |
JP7506306B2 (en) | High-strength steel plate for large heat input welding | |
JP2002309339A (en) | Welded joint having heat affected zone with excellent toughness and fatigue resistance | |
JPH05112823A (en) | Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint | |
JPH04350120A (en) | Production of high strength refractory steel plate for construction use | |
JP4028815B2 (en) | 780 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof | |
JPH08333623A (en) | Production of refractory steel material for building construction, excellent in earthquake resistance and reduced in yield ratio | |
JPH06264136A (en) | Production of thick-walled refractory steel with low yield ratio for construction use, excellent in weldability | |
JP3390234B2 (en) | Steel with excellent heat input welding characteristics | |
JPS62256947A (en) | Tempered high-phosphorus-type weather-resisting steel plate excellent in weldability and toughness at low temperature | |
JPH07300618A (en) | Production of hot rolled steel strip for construction use, excellent in refractoriness and toughness | |
JPS61257456A (en) | High toughness and high phosphorus type weather resistant steel having superior weldability and giving welded joint of superior performance | |
JP2020204074A (en) | High strength steel sheet for high heat input welding | |
JP5445061B2 (en) | Manufacturing method of steel with excellent CTOD characteristics of weld heat affected zone |