JP5293370B2 - Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same - Google Patents

Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same Download PDF

Info

Publication number
JP5293370B2
JP5293370B2 JP2009101227A JP2009101227A JP5293370B2 JP 5293370 B2 JP5293370 B2 JP 5293370B2 JP 2009101227 A JP2009101227 A JP 2009101227A JP 2009101227 A JP2009101227 A JP 2009101227A JP 5293370 B2 JP5293370 B2 JP 5293370B2
Authority
JP
Japan
Prior art keywords
less
steel
ctod
eqh
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009101227A
Other languages
Japanese (ja)
Other versions
JP2010248590A (en
Inventor
和洋 福永
義之 渡部
明彦 児島
嘉秀 長井
龍治 植森
力雄 千々岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009101227A priority Critical patent/JP5293370B2/en
Publication of JP2010248590A publication Critical patent/JP2010248590A/en
Application granted granted Critical
Publication of JP5293370B2 publication Critical patent/JP5293370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength steel having such unprecedented superior CTOD (Crack Tip Opening Displacement) properties as to satisfy the CTOD properties of an IC part in addition to the CTOD properties of an FL part at -60&deg;C, in multilayer welding or the like of small to intermediate heat input, and to provide a method for producing the same. <P>SOLUTION: The steel having superior CTOD properties in a weld heat-affected zone includes, by mass%, 0.015-0.045% C, 0.05-0.20% Si, 2.0-3.0% Mn, 0.008% or less P, 0.005% or less S, 0.004% or less Al, 0.005-0.015% Ti, 0.005% or less Nb, 0.0015-0.0035% O, 0.002-0.006% N and the balance iron with unavoidable impurities so that P<SB>CTOD</SB>is 0.065 or less and C<SB>eqH</SB>is 0.235 or less. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は小入熱溶接から中入熱溶接の溶接熱影響部(Heat Affected Zone;HAZ)のCTOD特性が優れた鋼及びその製造法に関し、特に、小入熱溶接から中入熱溶接時に最も靭性が劣化するFL部やIC部のCTOD特性が極めて良好で優れた靭性を示す溶接熱影響部のCTOD特性が優れた鋼及びその製造方法に関するものである。   The present invention relates to a steel excellent in CTOD characteristics of a heat affected zone (HAZ) from small heat input welding to medium heat input welding, and a method for producing the same. The present invention relates to a steel having excellent CTOD characteristics of a weld heat-affected zone exhibiting excellent toughness due to extremely good CTOD characteristics of FL and IC parts where toughness deteriorates, and a method for producing the same.

近年、厳しい使用環境で使用される鋼材が要求されている。例えば、北極圏等の寒冷地域等で用いられる海洋構造物や耐震性建築物等の鋼構造物に適した高強度の鋼材として、破壊靭性の指標であるCTOD(Crack Tip Opening Displacement)特性が優れた鋼材が要求されており、溶接部においても優れたCTOD特性が必要とされる。   In recent years, steel materials used in harsh usage environments have been demanded. For example, as a high-strength steel material suitable for steel structures such as marine structures and earthquake-resistant buildings used in cold regions such as the Arctic Circle, it has excellent CTOD (Cracking Tip Opening Displacement) characteristics that are indicators of fracture toughness. Steel materials are required, and excellent CTOD characteristics are required even in welds.

溶接熱影響部(HAZ)のCTOD特性は、FL部(Fusion Line;WM(溶接金属)とHAZ(溶接熱影響部)との境界)およびIC部(Intercritical HAZ;HAZとBM(母材)との境界)の2箇所の位置(ノッチ)で評価されるが、これまではFLのみがCTOD特性改善の対象とされていた。   The CTOD characteristics of the weld heat affected zone (HAZ) are as follows: FL portion (Fusion Line; boundary between WM (welded metal) and HAZ (weld heat affected zone)) and IC portion (Intercritical HAZ; HAZ and BM (base material)) Evaluation was made at two positions (notches) at the boundary of (1). Until now, only FL has been targeted for improvement of CTOD characteristics.

これは、試験温度があまり厳しくない条件では、FL部のCTOD特性を満足すれば、IC部のCTOD特性は十分な値が得られるため、問題となっていなかったことによる。   This is because, under conditions where the test temperature is not so severe, if the CTOD characteristic of the FL part is satisfied, a sufficient value can be obtained for the CTOD characteristic of the IC part.

しかしながら、−60℃もの厳しい試験条件下では、IC部で低CTOD値が発生するケースがかなりの頻度で発生することがわかり、その対策が求められてきた。   However, under severe test conditions of -60 [deg.] C., it has been found that cases where a low CTOD value occurs in the IC part occur with considerable frequency, and countermeasures have been demanded.

この対策として、例えば、小〜中入熱の溶接継手で−60℃の厳しい試験条件下での良好なCTOD特性が得られることを示している技術があるが(例えば、特許文献1参照)、ここでは、IC部のCTOD特性の記述はなされていない。   As a countermeasure, for example, there is a technique indicating that good CTOD characteristics can be obtained under a severe test condition of −60 ° C. with a small to medium heat input welded joint (see, for example, Patent Document 1). Here, the CTOD characteristics of the IC part are not described.

特開2007−002271号公報JP 2007-002271 A

本発明は、小〜中入熱の多層溶接等において、−60℃のFL部のCTOD特性に加え、IC部のCTOD特性も満足させるこれまでにない優れたCTOD(破壊靭性)特性を有する高強度の鋼およびその製造方法を提供することを課題とするものである。   The present invention has an excellent CTOD (fracture toughness) characteristic that has never been achieved so as to satisfy the CTOD characteristic of the IC part in addition to the CTOD characteristic of the FL part at −60 ° C. in the multilayer welding with small to medium heat input. It is an object of the present invention to provide a high-strength steel and a method for producing the same.

本発明者らは、小入熱溶接から中入熱溶接時に最も靭性が劣化する溶接部のFL部とIC部との両方のCTOD特性を向上させることについて鋭意研究した。その結果、FL部とIC部との両方のCTOD特性の向上には、非金属介在物の低減が最も重要で、このためO(鋼中酸素)の低減が必須であるが、Oの低減により粒内変態フェライト(IGF)が減少するので、FL部のCTOD特性を劣化させる合金元素の低減が必要となること、そして、IC部のCTOD特性の向上は鋼板酸素の低減だけでは難しく、硬さの低減が有効であることを見出し、本発明を完成した。   The present inventors have intensively studied to improve the CTOD characteristics of both the FL portion and the IC portion of the welded portion where the toughness is most deteriorated during small heat input welding to medium heat input welding. As a result, the reduction of non-metallic inclusions is the most important for improving the CTOD characteristics of both the FL part and the IC part. For this reason, reduction of O (oxygen in steel) is indispensable. Since intragranular ferrite (IGF) decreases, it is necessary to reduce the alloy elements that degrade the CTOD characteristics of the FL part, and it is difficult to improve the CTOD characteristics of the IC part by simply reducing the steel sheet oxygen. As a result, the present invention has been completed.

本発明の要旨は、以下の通りである。   The gist of the present invention is as follows.

(1) 質量%で、
C:0.015〜0.045%、
Si:0.05〜0.20%、
Mn:2.0〜3.0%、
P:0.008%以下、
S:0.005%以下、
Al:0.004%以下、
Ti:0.005〜0.015%、
Nb:0.005%以下、
O:0.0015〜0.0035%、
N:0.002〜0.006%
を含有し、残部が鉄及び不可避不純物からなる化学成分の鋼であって、かつ下記(1)式で示すPCTODが0.045以下および下記(2)式で示すCeqHが0.235以下であることを特徴とする溶接熱影響部のCTOD特性が優れた鋼。
ここで、
CTOD=C ・・・・ (1)
eqH=C+Si/4.16+Mn/14.9+1.12Nb ・・・・ (2)
(1) In mass%,
C: 0.015-0.045%,
Si: 0.05-0.20%,
Mn: 2.0 to 3.0%,
P: 0.008% or less,
S: 0.005% or less,
Al: 0.004% or less,
Ti: 0.005 to 0.015%,
Nb: 0.005% or less,
O: 0.0015 to 0.0035%,
N: 0.002 to 0.006%
And the balance is steel of chemical composition consisting of iron and inevitable impurities, and P CTOD represented by the following formula (1) is 0.045 or less and C eqH represented by the following formula (2) is 0.235 or less. A steel excellent in CTOD characteristics of the heat affected zone of welding.
here,
P CTOD = C (1)
C eqH = C + Si / 4.16 + Mn / 14.9 + 1.12Nb (2)

(2) 前記鋼が、さらに、質量%で、
Cu:0.35%未満、
Ni:0.70%未満
の1種または2種を含有する化学成分の鋼であって、かつ下記(3)式で示すPCTODが0.065以下および下記(4)式で示すCeqHが0.235以下であることを特徴とする上記(1)に記載の溶接熱影響部のCTOD特性が優れた鋼。
ここで、
CTOD=C+Cu/22+Ni/67 ・・・・ (3)
eqH=C+Si/4.16+Mn/14.9+Cu/12.9
+1.12Nb ・・・・ (4)
(2) The steel is further in mass%,
Cu: less than 0.35%,
Ni: Steel having a chemical composition containing one or two of less than 0.70%, and P CTOD represented by the following formula (3) is 0.065 or less and C eqH represented by the following formula (4) is Steel having excellent CTOD characteristics of the weld heat affected zone according to (1) above, which is 0.235 or less.
here,
P CTOD = C + Cu / 22 + Ni / 67 (3)
C eqH = C + Si / 4.16 + Mn / 14.9 + Cu / 12.9
+ 1.12Nb (4)

(3) 前記鋼が、さらに、質量%で、
V:0.005〜0.020%
を含有する化学成分の鋼であって、かつ下記(5)式で示すPCTODが0.065以下および下記(6)式で示すCeqHが0.235以下であることを特徴とする上記(1)または(2)に記載の溶接熱影響部のCTOD特性が優れた鋼。
ここで、
CTOD=C+V/3+Cu/22+Ni/67 ・・・・ (5)
eqH=C+Si/4.16+Mn/14.9+Cu/12.9
+1.12Nb+V/1.82 ・・・・ (6)
(3) The steel is further in mass%,
V: 0.005-0.020%
The above-mentioned (3) characterized in that P CTOD represented by the following formula (5) is 0.065 or less and C eqH represented by the following formula (6) is 0.235 or less. Steel excellent in CTOD characteristics of the weld heat affected zone as described in 1) or (2).
here,
P CTOD = C + V / 3 + Cu / 22 + Ni / 67 (5)
C eqH = C + Si / 4.16 + Mn / 14.9 + Cu / 12.9
+ 1.12Nb + V / 1.82 (6)

(4) 質量%で、
C:0.015〜0.045%、
Si:0.05〜0.20%、
Mn:2.0〜3.0%、
P:0.008%以下、
S:0.005%以下、
Al:0.004%以下、
Ti:0.005〜0.015%、
Nb:0.005%以下、
O:0.0015〜0.0035%、
N:0.002〜0.006%
を含有し、残部が鉄及び不可避不純物からなる化学成分の鋼であって、かつ下記(1)式で示すPCTODが0.045以下および下記(2)式で示すCeqHが0.235以下である鋼を連続鋳造法によってスラブとし、その後950〜1100℃の温度に再加熱後、加工熱処理をすることを特徴とする溶接熱影響部のCTOD特性が優れた鋼の製造法。
ここで、
CTOD=C ・・・・ (1)
eqH=C+Si/4.16+Mn/14.9+1.12Nb ・・・・ (2)
(4) By mass%
C: 0.015-0.045%,
Si: 0.05-0.20%,
Mn: 2.0 to 3.0%,
P: 0.008% or less,
S: 0.005% or less,
Al: 0.004% or less,
Ti: 0.005 to 0.015%,
Nb: 0.005% or less,
O: 0.0015 to 0.0035%,
N: 0.002 to 0.006%
And the balance is steel of chemical composition consisting of iron and inevitable impurities, and P CTOD represented by the following formula (1) is 0.045 or less and C eqH represented by the following formula (2) is 0.235 or less. A method for producing a steel having excellent CTOD characteristics of the heat affected zone of welding, characterized in that the steel is a slab by a continuous casting method, and thereafter reheated to a temperature of 950 to 1100 ° C. and then subjected to a heat treatment.
here,
P CTOD = C (1)
C eqH = C + Si / 4.16 + Mn / 14.9 + 1.12Nb (2)

(5) 前記鋼が、さらに、質量%で、
Cu:0.35%未満、
Ni:0.70%未満
の1種または2種を含有する化学成分の鋼であって、かつ下記(3)式で示すPCTODが0.065以下および下記(4)式で示すCeqHが0.235以下の鋼であることを特徴とする上記(4)に記載の溶接熱影響部のCTOD特性が優れた鋼の製造法。
ここで、
CTOD=C+Cu/22+Ni/67 ・・・・ (3)
eqH=C+Si/4.16+Mn/14.9+Cu/12.9
+1.12Nb ・・・・ (4)
(5) The steel is further in mass%,
Cu: less than 0.35%,
Ni: Steel having a chemical composition containing one or two of less than 0.70%, and P CTOD represented by the following formula (3) is 0.065 or less and C eqH represented by the following formula (4) is The method for producing steel having excellent CTOD characteristics of the weld heat affected zone according to (4) above, wherein the steel is 0.235 or less.
here,
P CTOD = C + Cu / 22 + Ni / 67 (3)
C eqH = C + Si / 4.16 + Mn / 14.9 + Cu / 12.9
+ 1.12Nb (4)

(6) 前記鋼が、さらに、質量%で、
V:0.005〜0.020%
を含有する化学成分の鋼であって、かつ下記(5)式で示すPCTODが0.065以下および下記(6)式で示すCeqHが0.235以下の鋼であることを特徴とする上記(4)または(5)に記載の溶接熱影響部のCTOD特性が優れた鋼の製造法。
ここで、
CTOD=C+V/3+Cu/22+Ni/67 ・・・・ (5)
eqH=C+Si/4.16+Mn/14.9+Cu/12.9
+1.12Nb+V/1.82 ・・・・ (6)
(6) The steel is further in mass%,
V: 0.005-0.020%
Characterized in that it is a steel having a chemical composition containing PCTOD of 0.065 or less represented by the following formula (5) and C eqH represented by the following formula (6) of 0.235 or less. A method for producing steel excellent in CTOD characteristics of the weld heat-affected zone as described in (4) or (5) above.
here,
P CTOD = C + V / 3 + Cu / 22 + Ni / 67 (5)
C eqH = C + Si / 4.16 + Mn / 14.9 + Cu / 12.9
+ 1.12Nb + V / 1.82 (6)

本発明により製造した鋼は、小〜中入熱の多層溶接等の溶接時に最も靭性が劣化するFL部及びIC部のCTOD特性が極めて良好で優れた靭性を示す。これにより、海洋構造物、耐震性建築物等の厳しい環境で使用される高強度の鋼材の製造を可能とした。   The steel manufactured according to the present invention exhibits excellent toughness with extremely good CTOD characteristics of the FL part and the IC part where the toughness is most deteriorated during welding such as multilayer welding with small to medium heat input. This made it possible to manufacture high-strength steel materials used in harsh environments such as offshore structures and earthquake-resistant buildings.

CTODとFL相当再現熱サイクル試験でのCTOD特性との関係を示す図である。It is a diagram showing the relationship between CTOD characteristics in P CTOD and FL equivalent simulated thermal cycle test. ICHAZ相当再現熱サイクル試験でのHAZの硬さとCTOD特性の関係を示す図である。It is a figure which shows the relationship between the hardness of HAZ and a CTOD characteristic in an ICHAZ equivalent reproduction | regeneration thermal cycle test. eqHとICHAZ相当再現熱サイクル試験でのHAZ硬さの関係を示す図である。It is a figure which shows the relationship between CeqH and HAZ hardness in an ICHAZ equivalent reproduction | regeneration thermal cycle test.

以下に本発明の詳細を説明する。   Details of the present invention will be described below.

本発明者らの研究によれば、小〜中入熱(板厚50mmで1.5〜6.0kJ/mm)溶接HAZの−60℃のFL部とIC部のCTOD特性を満足させるためには、FL部のCTOD特性を満足させ、IC部のCTOD特性の向上を目的とした酸化物系の非金属介在物の低減が最も重要で、O(鋼中酸素)の低減が必須となる。   According to the study by the present inventors, in order to satisfy the CTOD characteristics of the FL part and the IC part of −60 ° C. of the welding HAZ of small to medium heat input (1.5 to 6.0 kJ / mm when the plate thickness is 50 mm). Therefore, it is most important to reduce oxide-based non-metallic inclusions for the purpose of satisfying the CTOD characteristics of the FL portion and improving the CTOD characteristics of the IC portion, and it is essential to reduce O (oxygen in steel).

つまり、従来技術では、優れたFL部のCTOD特性確保のために、Ti酸化物に代表される酸化物系の非金属介在物を粒内変態フェライト(Intragranular Ferrite;IGF)を変態核として利用するため、ある程度のOの添加が必要であった。その一方で、本発明者らの研究により、−60℃のFL部とIC部のCTOD特性を向上させるためには、酸化物系の非金属介在物の低減が必要なことを見出した。   That is, in the prior art, in order to ensure excellent CTOD characteristics of the FL portion, an oxide-based nonmetallic inclusion represented by Ti oxide is used as an intragranular ferrite (IGF) as a transformation nucleus. Therefore, some addition of O was necessary. On the other hand, the present inventors have found that it is necessary to reduce oxide-based nonmetallic inclusions in order to improve the CTOD characteristics of the FL portion and the IC portion at −60 ° C.

Oの低減によりIGFが減少するため、FL部のCTOD特性を劣化させる合金元素の低減が必要となる。図1に、FL相当再現HAZのCTOD特性とPCTODとの関係を示す。ここで、鋼成分のパラメータとして下記(7)式で表すことができるPCTODは、多数の実験室溶製鋼でのFL相当再現HAZのCTOD特性(Tδc0.1(FL))と鋼成分の解析から導出した経験式である。
CTOD=C+V/3+Cu/22+Ni/67 ・・・・ (7)
なお、上記式中の元素は、含有質量%を意味し、含有されていない場合は0とする。
図1に示したFL相当再現HAZにおいて、Tδc0.1(FL)≦−110℃という目標レベルは、多数の実験で得られた知見であり、板厚50〜100mmの鋼板の実継手FLノッチにおいて、−60℃で安定して0.25mm以上のCTOD値を得るために必要な値である。図1から、FL相当再現HAZにおいて、Tδc0.1(FL)≦−110℃とするためには、鋼成分パラメータPCTODを0.065%以下に制御する必要があることがわかる。
Since IGF is reduced by reducing O, it is necessary to reduce alloy elements that deteriorate the CTOD characteristics of the FL portion. Figure 1 shows the relationship between the FL equivalent simulated HAZ of CTOD characteristics and P CTOD. Here, P CTOD , which can be expressed by the following equation (7) as a parameter of the steel component, is the CTOD characteristic (T δc0.1 (FL) ) of the HA equivalent of many laboratory molten steels and the steel component This is an empirical formula derived from the analysis.
P CTOD = C + V / 3 + Cu / 22 + Ni / 67 (7)
In addition, the element in the said formula means content mass%, and is set to 0 when not containing.
In the FL equivalent reproduction HAZ shown in FIG. 1, the target level of T δc0.1 (FL) ≦ −110 ° C. is a knowledge obtained in many experiments, and is an actual joint FL notch of a steel plate having a thickness of 50 to 100 mm. In this case, it is a value necessary for stably obtaining a CTOD value of 0.25 mm or more at −60 ° C. From FIG. 1, it can be seen that in the FL equivalent reproduction HAZ, in order to satisfy T δc0.1 (FL) ≦ −110 ° C., it is necessary to control the steel component parameter P CTOD to 0.065% or less.

図1のTδc0.1(FL)について、FL相当再現熱サイクル処理(Triple cycle)、1st:1400℃(800〜500℃:15sec)、2nd:760℃(760〜500℃:22sec)、3rd:500℃(500〜300℃:60sec)を施した断面10mmx20mmの試験片を、BS7448(British Standard)に則り実施したCTOD試験により得られたものである。このTδc0.1(FL)は、各試験温度で3本実施したCTOD(δ)値の最低値が0.1mmを超える温度(℃)を意味する。なお、CTOD試験における板厚効果を考慮すると、板厚50〜100mmの鋼板の実継手FLノッチで−60℃を安定して0.25mm以上のCTOD値を得るためには、経験的にTδc0.1(FL)を−110℃以下にする必要がある。 With respect to T δc0.1 (FL) in FIG. 1, FL equivalent thermal cycle processing (Triple cycle), 1st: 1400 ° C. (800 to 500 ° C .: 15 sec), 2nd: 760 ° C. (760 to 500 ° C .: 22 sec), 3rd : Obtained by a CTOD test in which a test piece having a cross section of 10 mm × 20 mm subjected to 500 ° C. (500 to 300 ° C .: 60 sec) was carried out in accordance with BS7448 (British Standard). This T δc0.1 (FL) means a temperature (° C.) at which the minimum value of three CTOD (δ) values carried out at each test temperature exceeds 0.1 mm. In view of the plate thickness effect in CTOD test, in order to obtain a stable CTOD value of more than 0.25mm and the -60 ° C. in a real joint FL notch steel sheet having a thickness 50~100mm is empirically T? C0 .1 (FL) needs to be −110 ° C. or lower.

また、IC部のCTOD特性の向上は鋼中酸素の低減だけでは難しく、硬さの低減が有効であることを見出した。   Further, it has been found that it is difficult to improve the CTOD characteristics of the IC part only by reducing the oxygen in the steel, and it is effective to reduce the hardness.

図2に後述するIntercritical HAZ(ICHAZ)相当の再現熱サイクルを受けた試験片のCTOD特性とICHAZ相当の硬さの関係を、図3に鋼成分硬さパラメータCeqHとICHAZ相当HAZ硬さの関係を示す。 FIG. 2 shows the relationship between the CTOD characteristics of specimens subjected to reproducible thermal cycles equivalent to Intercritical HAZ (ICHAZ), which will be described later, and hardness equivalent to ICHAZ, and FIG. 3 shows the steel component hardness parameter C eqH and ICHAZ equivalent HAZ hardness. Show the relationship.

ここで、図2に示したICHAZ相当の再現HAZ(断面10mmx20mm)のTδc0.1(ICHAZ)が−110℃以下という目標レベルは多数の実験で得られた知見であり、板厚50〜100mmの鋼板の実継手のICノッチの−60℃で0.25mm程度のCTOD値を得るための必要値である。 Here, the target level that T δc0.1 (ICHAZ) of the reproduction HAZ (cross section 10 mm × 20 mm) equivalent to ICAZ shown in FIG. 2 is −110 ° C. or less is a knowledge obtained in many experiments, and the plate thickness is 50 to 100 mm. This is a necessary value for obtaining a CTOD value of about 0.25 mm at −60 ° C. of the IC notch of the actual joint of the steel plate.

図2、3から再現HAZのTδc0.1(ICHAZ)を−110℃以下とするためには、硬さをHv176以下、鋼成分硬さパラメータ下記(8)式で表されるCeqHを0.235以下に制御する必要があることがわかる。より硬さを低くするために、0.225以下が望ましい。 2 and 3, in order to set T δc0.1 (ICHAZ) of the reproduced HAZ to −110 ° C. or less, the hardness is Hv 176 or less, and the steel component hardness parameter C eqH represented by the following equation (8) is set to 0. It turns out that it is necessary to control to .235 or less. In order to further reduce the hardness, 0.225 or less is desirable.

なお、試験方法としては、CTOD試験方法のBS7448(British Standard)を適用しており、用いたICHAZ相当再現熱サイクル処理(Triple cycle)は、1st:950℃(800〜500℃:20sec)、2nd:770℃(770〜500℃:22sec)、3rd:450℃(450〜300℃:65sec)である。ここで、
eqH=C+Si/4.16+Mn/14.9+Cu/12.9
+1.12Nb+V/1.82 ・・・・ (8)
と定義される。PCTODやCeqHの量を制限しても、その他の合金元素を適正化しなければ、高強度と優れたCTOD特性を兼ね備えた鋼は製造できない。
なお、上記式中の元素は、含有質量%を意味し、含有されていない場合は0とする。
In addition, BS7448 (British Standard) of the CTOD test method is applied as a test method, and the ICHAZ equivalent reproduction thermal cycle process (Triple cycle) used is 1st: 950 ° C. (800 to 500 ° C .: 20 sec), 2nd. : 770 ° C. (770 to 500 ° C .: 22 sec), 3rd: 450 ° C. (450 to 300 ° C .: 65 sec). here,
C eqH = C + Si / 4.16 + Mn / 14.9 + Cu / 12.9
+ 1.12Nb + V / 1.82 (8)
Is defined. Even if the amount of P CTOD or C eqH is limited, steel with high strength and excellent CTOD characteristics cannot be produced unless other alloy elements are optimized.
In addition, the element in the said formula means content mass%, and is set to 0 when not containing.

以下に本発明の限定理由について説明する。まず、本発明鋼材の組成限定理由について説明する。以下の組成についての%は、質量%を意味する。   The reason for limitation of the present invention will be described below. First, the reasons for limiting the composition of the steel of the present invention will be described. In the following composition,% means mass%.

C:0.015〜0.045%
Cは強度を得るため0.015%以上は必要であるが、0.045%超では溶接HAZの特性を劣化させ、−60℃のCTOD特性を満足できないため0.045%を上限とする。
C: 0.015-0.045%
C needs to be 0.015% or more in order to obtain strength, but if it exceeds 0.045%, the characteristics of the welded HAZ are deteriorated, and the CTOD characteristic at −60 ° C. cannot be satisfied, so 0.045% is made the upper limit.

Si:0.05〜0.20%
Siは良好なHAZ靭性を得るために少ない方が好ましいが、発明鋼ではAlを添加していないため、脱酸上0.05%以上は必要である。しかしながら、0.20%超ではHAZ靭性を害するため、0.20%を上限とする。より良好なHAZ靭性を得るためには、0.15%以下が望ましい。
Si: 0.05-0.20%
In order to obtain good HAZ toughness, it is preferable that the amount of Si is small. However, in the steel according to the present invention, Al is not added. However, if over 0.20%, the HAZ toughness is impaired, so 0.20% is made the upper limit. In order to obtain better HAZ toughness, 0.15% or less is desirable.

Mn:2.0〜3.0%
Mnはミクロ組織を適正化する効果が大きく安価な元素であることや、HAZ靭性に対して有害な粒界からの変態を抑制する効果を有し、HAZ靭性を害することが少ないために添加量を多くしたいが、3.0%超ではICHAZの硬さが増加し、靭性が劣化するため3.0%を上限とした。また、2.0%未満ではミクロ組織の適正化効果が小さいため、下限を2.0%とした。
Mn: 2.0 to 3.0%
Mn is an element that has a large effect of optimizing the microstructure and is inexpensive, and has an effect of suppressing transformation from grain boundaries that are harmful to HAZ toughness. However, if it exceeds 3.0%, the hardness of ICHAZ increases and the toughness deteriorates, so 3.0% was made the upper limit. Further, if the content is less than 2.0%, the effect of optimizing the microstructure is small, so the lower limit was made 2.0%.

P:0.008%以下
Pは、不可避不純物として含有され、粒界に偏析して鋼の靱性を劣化させるので、できるだけ低減することが望ましいが、工業生産的な制約もあり、0.008%を上限とした。より良好なHAZ靭性を得るためには、0.005%以下が望ましい。
P: 0.008% or less P is contained as an unavoidable impurity and segregates at the grain boundaries to deteriorate the toughness of the steel. Therefore, it is desirable to reduce it as much as possible, but there are also restrictions on industrial production. Was the upper limit. In order to obtain better HAZ toughness, 0.005% or less is desirable.

S:0.005%以下
Sは、不可避不純物として含有され、母材靭性、HAZ靭性の観点からともに少ない方がよいが、工業生産的な制約もあり、0.005%を上限とした。より良好なHAZ靭性を得るためには、0.003%以下が望ましい。
S: 0.005% or less S is contained as an inevitable impurity, and it is preferable that S is less in terms of base material toughness and HAZ toughness. However, due to industrial production restrictions, 0.005% was made the upper limit. In order to obtain better HAZ toughness, 0.003% or less is desirable.

Al:0.004%以下
Alは、Ti酸化物を生成させるために少ない方が好ましいが、工業生産的に制約があり、0.004%を上限とした。
Al: 0.004% or less Al is preferably less in order to produce a Ti oxide, but there are restrictions on industrial production, and the upper limit is set to 0.004%.

Ti:0.005〜0.015%
Tiは、Ti酸化物を生成させミクロ組織を微細化させるが、多すぎるとTiCを生成し、HAZ靭性を劣化させるため、0.005〜0.015%が適正範囲である。よりHAZ靭性を改善するためには、0.013%以下が望ましい。
Ti: 0.005 to 0.015%
Ti produces a Ti oxide and refines the microstructure, but if it is too much, TiC is produced and the HAZ toughness is deteriorated, so 0.005 to 0.015% is an appropriate range. In order to further improve the HAZ toughness, 0.013% or less is desirable.

Nb:0.005%以下
Nbは、母材の強度と靭性の観点から有益であるが、HAZ靭性には有害である。このため、HAZ靭性を著しく低下しない範囲である0.005%まで添加できる。ただし、よりHAZ靭性を改善させるためには、0.002%以下に制限することがより望ましい。
Nb: 0.005% or less Nb is beneficial from the viewpoint of the strength and toughness of the base material, but is harmful to the HAZ toughness. For this reason, it can add to 0.005% which is the range which does not reduce HAZ toughness remarkably. However, in order to further improve the HAZ toughness, it is more desirable to limit it to 0.002% or less.

N:0.002〜0.006%
Nは、Ti窒化物生成に必要であるが、0.002%未満では効果が少なく、0.006%超では鋼片製造時に表面疵が発生するため、上限を0.006%とした。より良好なHAZ靭性を得るためには、0.005%以下が望ましい。
N: 0.002 to 0.006%
N is necessary for the formation of Ti nitride, but if less than 0.002%, the effect is small, and if it exceeds 0.006%, surface flaws occur during the production of steel slabs, so the upper limit was made 0.006%. In order to obtain better HAZ toughness, 0.005% or less is desirable.

O:0.0015〜0.0035%
Oは、TiのFL部のIGFの生成核としての酸化物の生成性から0.0015%以上が必須である。しかし、Oが多すぎると酸化物のサイズおよび個数が課題となって、IC部のCTOD特性を劣化させるため、0.0015〜0.0035%を制限範囲とした。より良好なHAZ靭性を得るためには、0.0030%以下が、より好ましくは0.0028%以下が望ましい。
O: 0.0015 to 0.0035%
O is required to be 0.0015% or more from the productivity of oxides as IGF production nuclei in the FL part of Ti. However, if O is too much, the size and number of oxides become problems, and the CTOD characteristics of the IC portion are deteriorated. In order to obtain better HAZ toughness, 0.0030% or less, more preferably 0.0028% or less is desirable.

次に選択的に添加する成分であるCu、Ni、Vについて説明する。   Next, Cu, Ni, and V, which are selectively added components, will be described.

Cu:0.35%未満
Cuは、HAZ靭性の劣化が少なく、母材の強度を向上させる効果があり有効で、ICHAZの硬さの増加も少なく有効であるが、高価な合金であるため、0.35%未満を制限範囲とした。なお、下限は特に限定するものではないが望ましくは0.01%以上である。
Cu: less than 0.35% Cu is less effective in reducing the HAZ toughness and effective in improving the strength of the base material, and is effective with little increase in hardness of ICHAZ, but is an expensive alloy. The limit range was less than 0.35%. The lower limit is not particularly limited, but is desirably 0.01% or more.

Ni:0.70%未満
Niは、HAZ靭性の劣化が少なく、母材の強度を向上させる効果があり有効で、ICHAZの硬さの増加も少なく有効であるが、高価な合金であるため、0.70%未満を制限範囲とした。なお、下限は特に限定するものではないが望ましくは0.01%以上である。
Ni: Less than 0.70% Ni is effective because it has little effect on the deterioration of HAZ toughness and improves the strength of the base metal, and is effective with little increase in hardness of ICHAZ. The limit range was less than 0.70%. The lower limit is not particularly limited, but is desirably 0.01% or more.

V:0.005〜0.020%
基本となる成分にさらにVを添加する目的は、母材強度の向上に有効なためであるが、この効果を発揮させるためには0.005%以上とすることが必要である。一方、0.020%を超えて添加するとHAZ靭性を害することになるので、HAZ靭性を大きく害しない範囲として、Vの上限を0.020%以下とした。
V: 0.005-0.020%
The purpose of further adding V to the basic component is to improve the strength of the base material, but in order to exert this effect, it is necessary to make it 0.005% or more. On the other hand, if added over 0.020%, the HAZ toughness is impaired, so the upper limit of V is set to 0.020% or less as a range that does not significantly impair the HAZ toughness.

鋼の成分を上記のように限定しても製造法が適切でなければ目的とした効果は発揮できない。このため、製造条件についても限定が必要である。以下で、製造条件限定の理由について説明する。   Even if the components of the steel are limited as described above, the intended effect cannot be exhibited unless the production method is appropriate. For this reason, it is necessary to limit the manufacturing conditions. Hereinafter, the reason for limiting the manufacturing conditions will be described.

本発明鋼は工業的には連続鋳造法で製造することが必須である。その理由は溶鋼の凝固冷却速度が速く、スラブ中に微細なTi酸化物とTi窒化物を多量に生成することが可能なためである。   The steel of the present invention is industrially required to be produced by a continuous casting method. The reason for this is that the solidified cooling rate of the molten steel is high, and a large amount of fine Ti oxide and Ti nitride can be generated in the slab.

スラブの圧延に際し、その再加熱温度は950〜1100℃とする必要がある。再加熱温度が1100℃を超えるとTi窒化物が粗大化して母材の靭性劣化やHAZ靭性改善効果が期待できないためである。また、950℃未満の再加熱温度では、圧延の負荷が大きく、生産性を著しく阻害するため、950℃が下限の再加熱温度である。再加熱温度は950〜1100℃でも十分に優れた母材靭性を確保可能であるが、さらに極めて優れた母材靭性が要求される場合は、再加熱温度は950〜1050℃とするのがよい。   In rolling the slab, the reheating temperature needs to be 950 to 1100 ° C. This is because if the reheating temperature exceeds 1100 ° C., the Ti nitride becomes coarse, and the toughness deterioration of the base metal and the effect of improving the HAZ toughness cannot be expected. Further, at a reheating temperature of less than 950 ° C., the rolling load is large and the productivity is remarkably impaired, so 950 ° C. is the lower limit reheating temperature. Even if the reheating temperature is 950 to 1100 ° C., a sufficiently excellent base material toughness can be secured. However, when extremely excellent base material toughness is required, the reheating temperature should be 950 to 1050 ° C. .

再加熱後の製造法は加工熱処理が必須である。加工熱処理は圧延温度を鋼成分に適した範囲に制御し、その後に必要に応じて水冷等を施す処理であり、この処理により、オーステナイト粒の微細化、およびミクロ組織の微細化を行うことができる。これにより、鋼材の強度向上や靭性を改善させることができる製造方法である。本発明鋼でも、優れたHAZ靭性が得られても、母材の靭性が劣っていると鋼材としては不十分なため加工熱処理法が必須である。なお、加工熱処理法の条件として、未再結晶域温度における累積圧下率が30%以上であるのが望ましい。   The heat treatment is essential for the production method after reheating. The thermomechanical treatment is a process in which the rolling temperature is controlled within a range suitable for the steel components, and then water cooling or the like is performed as necessary. By this process, the austenite grains can be refined and the microstructure can be refined. it can. Thereby, it is the manufacturing method which can improve the intensity | strength improvement and toughness of steel materials. Even in the steel according to the present invention, even if excellent HAZ toughness is obtained, a work heat treatment method is indispensable because the steel material is insufficient if the toughness of the base material is inferior. As a condition of the thermomechanical processing method, it is desirable that the cumulative rolling reduction at the non-recrystallization temperature is 30% or more.

加工熱処理の方法としては(1)制御圧延、(2)制御圧延−加速冷却、(3)圧延後直接焼入れ−焼戻しが挙げられるが、好ましい方法は(2)制御圧延−加速冷却法である。なお、この鋼を製造後脱水素処理などの目的でAr3変態点以下の温度に再加熱しても、本発明の特徴を損なうものではない。   Examples of the heat treatment method include (1) controlled rolling, (2) controlled rolling-accelerated cooling, and (3) direct quenching-tempering after rolling. A preferred method is (2) controlled rolling-accelerated cooling. In addition, even if this steel is reheated to a temperature below the Ar3 transformation point for the purpose of dehydrogenation after production, the characteristics of the present invention are not impaired.

以下、実施例および比較例に基づいて本発明を説明する。   Hereinafter, the present invention will be described based on examples and comparative examples.

転炉−連続鋳造−厚板工程で種々の鋼成分の厚鋼板を製造し、母材強度や溶接継手のCTOD試験を実施した。溶接は、一般的に試験溶接として用いられている潜弧溶接(SAW)法で、溶接溶け込み線(FL)が垂直になるようにK開先で溶接入熱は4.5〜5.0kJ/mmで実施した。   Thick steel plates of various steel components were manufactured in the converter-continuous casting-thick plate process, and the base material strength and the CTOD test of the welded joint were performed. Welding is a submerged arc welding (SAW) method that is generally used as test welding. The welding heat input is 4.5 to 5.0 kJ / K with a K groove so that the weld penetration line (FL) is vertical. mm.

CTOD試験はt(板厚)×2tのサイズでノッチは50%疲労き裂で実施し、ノッチ位置はFL(WMとHAZの境界)およびIC(HAZとBM(母材)の境界)の2箇所で、−60℃でそれぞれ5本の試験を実施した。   The CTOD test was performed with a size of t (plate thickness) x 2t and a notch with a 50% fatigue crack, and the notch position was 2 (FL (boundary between WM and HAZ)) and IC (boundary between HAZ and BM (base metal)). In each place, five tests were carried out at -60 ° C.

表1に鋼の化学成分を示し、表2に製造条件および母材、溶接継手のCTOD特性を示す。表2中の加工熱処理方法の記号は、以下の熱処理方法を意味する。
CR:制御圧延(強度・靭性に最適な温度域での圧延)
ACC:加速冷却(制御圧延に400〜600℃の温度域まで水冷後放冷)
DQ:圧延直後焼入れ−焼戻し処理(圧延直後に常温まで水冷し、その後に焼戻し処理)
また、表2中の溶接継手のCTOD試験結果において、δCAveは5本の試験結果の平均値を、δCminは5本の試験のうちの最低値を示す。
Table 1 shows the chemical composition of steel, and Table 2 shows the manufacturing conditions, the base metal, and the CTOD characteristics of the welded joint. The symbols of the heat treatment method in Table 2 mean the following heat treatment methods.
CR: Controlled rolling (rolling at a temperature range optimal for strength and toughness)
ACC: Accelerated cooling (controlled rolling and cooling to 400 to 600 ° C after water cooling)
DQ: quenching immediately after rolling-tempering treatment (water cooling to room temperature immediately after rolling, then tempering treatment)
Moreover, in the CTOD test result of the welded joint in Table 2, δ CAve represents the average value of the five test results, and δ Cmin represents the lowest value of the five tests.

本発明で製造した鋼板(本発明鋼)は降伏強度(YS)が424N/mm2以上、引張強度(TS)が501N/mm2以上で、−60℃のCTOD値がFLノッチのδCminで0.39mm以上、ICノッチのδCminで0.62mm以上の良好な破壊靭性を示した。 The steel sheet manufactured in the present invention (the steel of the present invention) has a yield strength (YS) of 424 N / mm 2 or more, a tensile strength (TS) of 501 N / mm 2 or more, and a CTOD value of −60 ° C. is δ Cmin of FL notch. Good fracture toughness of 0.39 mm or more and IC notch δ Cmin of 0.62 mm or more was exhibited.

これに対し、比較鋼の強度は発明鋼と概ね同等であるが、CTOD値が劣り、厳しい環境下で使用される鋼板として適切ではない。   On the other hand, the strength of the comparative steel is almost the same as that of the invention steel, but the CTOD value is inferior, and it is not suitable as a steel plate used in a severe environment.

鋼23〜42は表1から明らかなように、化学成分について本発明から逸脱した比較例を示したものである。これらの鋼は、それぞれC量(鋼23、鋼41)、Si量(鋼24)、Mn量(鋼25、鋼26)、P量(鋼27)、S量(鋼28)、Nb量(鋼29、鋼34)、V量(鋼30)、Al量(鋼31、鋼42)、Ti量(鋼32、鋼33)、O量(鋼35、鋼36)、N量(鋼37、鋼38)、PCTOD(鋼39)、CeqH量(鋼40)の条件が発明のものと異なっている。比較鋼の強度は発明鋼と概ね同等であるが、CTOD値が劣り、厳しい環境下で使用される鋼板として適切ではない。 As apparent from Table 1, Steels 23 to 42 show comparative examples deviating from the present invention in terms of chemical components. These steels are respectively C amount (steel 23, steel 41), Si amount (steel 24), Mn amount (steel 25, steel 26), P amount (steel 27), S amount (steel 28), Nb amount ( Steel 29, Steel 34), V amount (Steel 30), Al amount (Steel 31, Steel 42), Ti amount (Steel 32, Steel 33), O amount (Steel 35, Steel 36), N amount (Steel 37, The conditions of Steel 38), P CTOD (Steel 39), and C eqH amount (Steel 40) are different from those of the invention. The strength of the comparative steel is almost the same as that of the invention steel, but the CTOD value is inferior, and it is not suitable as a steel plate used in a severe environment.

また、鋼22の例にあるように、発明鋼でも加熱条件が満たされなければ、CTOD値が劣ることがわかる。   Further, as shown in the example of steel 22, it can be seen that the invention steel is inferior in CTOD value if the heating conditions are not satisfied.

Figure 0005293370
Figure 0005293370

Figure 0005293370
Figure 0005293370

Claims (6)

質量%で、
C:0.015〜0.045%、
Si:0.05〜0.20%、
Mn:2.0〜3.0%、
P:0.008%以下、
S:0.005%以下、
Al:0.004%以下、
Ti:0.005〜0.015%、
Nb:0.005%以下、
O:0.0015〜0.0035%、
N:0.002〜0.006%
を含有し、残部が鉄及び不可避不純物からなる化学成分の鋼であって、かつ下記(1)式で示すPCTODが0.045以下および下記(2)式で示すCeqHが0.235以下であることを特徴とする溶接熱影響部のCTOD特性が優れた鋼。
ここで、
CTOD=C ・・・・ (1)
eqH=C+Si/4.16+Mn/14.9+1.12Nb ・・・・ (2)
% By mass
C: 0.015-0.045%,
Si: 0.05-0.20%,
Mn: 2.0 to 3.0%,
P: 0.008% or less,
S: 0.005% or less,
Al: 0.004% or less,
Ti: 0.005 to 0.015%,
Nb: 0.005% or less,
O: 0.0015 to 0.0035%,
N: 0.002 to 0.006%
And the balance is steel of chemical composition consisting of iron and inevitable impurities, and P CTOD represented by the following formula (1) is 0.045 or less and C eqH represented by the following formula (2) is 0.235 or less. A steel excellent in CTOD characteristics of the heat affected zone of welding.
here,
P CTOD = C (1)
C eqH = C + Si / 4.16 + Mn / 14.9 + 1.12Nb (2)
前記鋼が、さらに、質量%で、
Cu:0.35%未満、
Ni:0.70%未満
の1種または2種を含有する化学成分の鋼であって、かつ下記(3)式で示すPCTODが0.065以下および下記(4)式で示すCeqHが0.235以下であることを特徴とする請求項1に記載の溶接熱影響部のCTOD特性が優れた鋼。
ここで、
CTOD=C+Cu/22+Ni/67 ・・・・ (3)
eqH=C+Si/4.16+Mn/14.9+Cu/12.9
+1.12Nb ・・・・ (4)
The steel is further mass%,
Cu: less than 0.35%,
Ni: Steel having a chemical composition containing one or two of less than 0.70%, and P CTOD represented by the following formula (3) is 0.065 or less and C eqH represented by the following formula (4) is The steel excellent in CTOD characteristics of the weld heat affected zone according to claim 1, wherein the steel is 0.235 or less.
here,
P CTOD = C + Cu / 22 + Ni / 67 (3)
C eqH = C + Si / 4.16 + Mn / 14.9 + Cu / 12.9
+ 1.12Nb (4)
前記鋼が、さらに、質量%で、
V:0.005〜0.020%
を含有する化学成分の鋼であって、かつ下記(5)式で示すPCTODが0.065以下および下記(6)式で示すCeqHが0.235以下であることを特徴とする請求項1または2に記載の溶接熱影響部のCTOD特性が優れた鋼。
ここで、
CTOD=C+V/3+Cu/22+Ni/67 ・・・・ (5)
eqH=C+Si/4.16+Mn/14.9+Cu/12.9
+1.12Nb+V/1.82 ・・・・ (6)
The steel is further mass%,
V: 0.005-0.020%
And P CTOD represented by the following formula (5) is 0.065 or less, and C eqH represented by the following formula (6) is 0.235 or less. A steel excellent in CTOD characteristics of the weld heat-affected zone as described in 1 or 2.
here,
P CTOD = C + V / 3 + Cu / 22 + Ni / 67 (5)
C eqH = C + Si / 4.16 + Mn / 14.9 + Cu / 12.9
+ 1.12Nb + V / 1.82 (6)
質量%で、
C:0.015〜0.045%、
Si:0.05〜0.20%、
Mn:2.0〜3.0%、
P:0.008%以下、
S:0.005%以下、
Al:0.004%以下、
Ti:0.005〜0.015%、
Nb:0.005%以下、
O:0.0015〜0.0035%、
N:0.002〜0.006%
を含有し、残部が鉄及び不可避不純物からなる化学成分の鋼であって、かつ下記(1)式で示すPCTODが0.045以下および下記(2)式で示すCeqHが0.235以下である鋼を連続鋳造法によってスラブとし、その後950〜1100℃の温度に再加熱後、加工熱処理をすることを特徴とする溶接熱影響部のCTOD特性が優れた鋼の製造法。
ここで、
CTOD=C ・・・・ (1)
eqH=C+Si/4.16+Mn/14.9+1.12Nb ・・・・ (2)
% By mass
C: 0.015-0.045%,
Si: 0.05-0.20%,
Mn: 2.0 to 3.0%,
P: 0.008% or less,
S: 0.005% or less,
Al: 0.004% or less,
Ti: 0.005 to 0.015%,
Nb: 0.005% or less,
O: 0.0015 to 0.0035%,
N: 0.002 to 0.006%
And the balance is steel of chemical composition consisting of iron and inevitable impurities, and P CTOD represented by the following formula (1) is 0.045 or less and C eqH represented by the following formula (2) is 0.235 or less. A method for producing a steel having excellent CTOD characteristics of the heat affected zone of welding, characterized in that the steel is a slab by a continuous casting method, and thereafter reheated to a temperature of 950 to 1100 ° C. and then subjected to a heat treatment.
here,
P CTOD = C (1)
C eqH = C + Si / 4.16 + Mn / 14.9 + 1.12Nb (2)
前記鋼が、さらに、質量%で、
Cu:0.35%未満、
Ni:0.70%未満
の1種または2種を含有する化学成分の鋼であって、かつ下記(3)式で示すPCTODが0.065以下および下記(4)式で示すCeqHが0.235以下の鋼であることを特徴とする請求項4に記載の溶接熱影響部のCTOD特性が優れた鋼の製造法。
ここで、
CTOD=C+Cu/22+Ni/67 ・・・・ (3)
eqH=C+Si/4.16+Mn/14.9+Cu/12.9
+1.12Nb ・・・・ (4)
The steel is further mass%,
Cu: less than 0.35%,
Ni: Steel having a chemical composition containing one or two of less than 0.70%, and P CTOD represented by the following formula (3) is 0.065 or less and C eqH represented by the following formula (4) is The method for producing a steel excellent in CTOD characteristics of the weld heat affected zone according to claim 4, wherein the steel is 0.235 or less.
here,
P CTOD = C + Cu / 22 + Ni / 67 (3)
C eqH = C + Si / 4.16 + Mn / 14.9 + Cu / 12.9
+ 1.12Nb (4)
前記鋼が、さらに、質量%で、
V:0.005〜0.020%
を含有する化学成分の鋼であって、かつ下記(5)式で示すPCTODが0.065以下および下記(6)式で示すCeqHが0.235以下の鋼であることを特徴とする請求項4または5に記載の溶接熱影響部のCTOD特性が優れた鋼の製造法。
ここで、
CTOD=C+V/3+Cu/22+Ni/67 ・・・・ (5)
eqH=C+Si/4.16+Mn/14.9+Cu/12.9
+1.12Nb+V/1.82 ・・・・ (6)
The steel is further mass%,
V: 0.005-0.020%
Characterized in that it is a steel having a chemical composition containing PCTOD of 0.065 or less represented by the following formula (5) and C eqH represented by the following formula (6) of 0.235 or less. A method for producing a steel excellent in CTOD characteristics of the weld heat-affected zone according to claim 4 or 5.
here,
P CTOD = C + V / 3 + Cu / 22 + Ni / 67 (5)
C eqH = C + Si / 4.16 + Mn / 14.9 + Cu / 12.9
+ 1.12Nb + V / 1.82 (6)
JP2009101227A 2009-04-17 2009-04-17 Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same Active JP5293370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101227A JP5293370B2 (en) 2009-04-17 2009-04-17 Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101227A JP5293370B2 (en) 2009-04-17 2009-04-17 Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010248590A JP2010248590A (en) 2010-11-04
JP5293370B2 true JP5293370B2 (en) 2013-09-18

Family

ID=43311240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101227A Active JP5293370B2 (en) 2009-04-17 2009-04-17 Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same

Country Status (1)

Country Link
JP (1) JP5293370B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246804A (en) * 2010-04-30 2011-12-08 Nippon Steel Corp Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor
US9403242B2 (en) 2011-03-24 2016-08-02 Nippon Steel & Sumitomo Metal Corporation Steel for welding
CA2854064C (en) 2011-11-25 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Steel for welding
CN103320693B (en) * 2013-06-19 2015-11-18 宝山钢铁股份有限公司 Anti-zinc fracturing line steel plate and manufacture method thereof
CN113579413A (en) * 2021-08-23 2021-11-02 天津大学 Pipeline steel welding parameter determining method and welding method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3697202B2 (en) * 2001-11-12 2005-09-21 新日本製鐵株式会社 Steel with excellent toughness of weld heat affected zone and method for producing the same
JP4751341B2 (en) * 2007-01-11 2011-08-17 新日本製鐵株式会社 Steel excellent in CTOD of weld heat affected zone and method for producing the same

Also Published As

Publication number Publication date
JP2010248590A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4547037B2 (en) Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
EP2385149B1 (en) Steel material for welding and method for producing same
JP4705696B2 (en) Steel for welding and method for manufacturing the same
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP5445723B1 (en) Ultra high strength steel plate for welding
JP5293370B2 (en) Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same
KR101618482B1 (en) Steel material for welding
JP4303703B2 (en) Steel excellent in fracture toughness of weld heat affected zone and method for producing the same
JP4751341B2 (en) Steel excellent in CTOD of weld heat affected zone and method for producing the same
WO2008075443A1 (en) Steel excelling in toughness at region affected by welding heat
JP2003147484A (en) Steel having excellent toughness in welding heat affected zone, and production method therefor
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4828284B2 (en) 60 kg steel excellent in weldability and weld heat-affected zone toughness and method for producing the same
JP5445061B2 (en) Manufacturing method of steel with excellent CTOD characteristics of weld heat affected zone
JP5811044B2 (en) Thick high-strength steel sheet excellent in weldability and weld heat-affected zone toughness and method for producing the same
KR20120110548A (en) High strength steel and method of manufacturing the steel
JP2014189803A (en) Thick high strength steel plate for large heat- input welding
JP2006249469A (en) Method for producing non-heat treated high tensile strength steel having excellent surface property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R151 Written notification of patent or utility model registration

Ref document number: 5293370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350