JP3390234B2 - Steel with excellent heat input welding characteristics - Google Patents

Steel with excellent heat input welding characteristics

Info

Publication number
JP3390234B2
JP3390234B2 JP32946993A JP32946993A JP3390234B2 JP 3390234 B2 JP3390234 B2 JP 3390234B2 JP 32946993 A JP32946993 A JP 32946993A JP 32946993 A JP32946993 A JP 32946993A JP 3390234 B2 JP3390234 B2 JP 3390234B2
Authority
JP
Japan
Prior art keywords
heat input
toughness
steel
welding
affected zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32946993A
Other languages
Japanese (ja)
Other versions
JPH07188836A (en
Inventor
正徳 西森
清 内田
明博 松崎
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP32946993A priority Critical patent/JP3390234B2/en
Publication of JPH07188836A publication Critical patent/JPH07188836A/en
Application granted granted Critical
Publication of JP3390234B2 publication Critical patent/JP3390234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建築、橋梁、造船、圧
力容器などに用いられる溶接構造用鋼材に関し、とくに
800kJ/cm以上の大入熱溶接を行ったとき、熱影響部の低
温靱性を確保できる溶接構造用鋼材に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welded structural steel material used for construction, bridges, shipbuilding, pressure vessels, etc.
80 when performing 0kJ / cm or more high heat input welding, to a soluble Se' granulated steel material which can ensure low-temperature toughness of the heat affected zone.

【0002】[0002]

【従来の技術】一般に溶接部の靱性は、主として母材の
熱影響部とくに溶接ボンドの靱性によって定まる。すな
わちボンド部は溶融点直下の高温に加熱されるために結
晶粒は非常に粗大化して焼入性が増し、引き続いての冷
却により、フェライト変態がしにくくなるため、脆弱な
上部ベイナイト組織が生成したり、島状マルテンサイト
が生成され、切欠靱性が低下するからであり、とくにエ
レクトロスラグ溶接や多電極サブマージアーク溶接など
のいわゆる大入熱溶接による溶接熱影響部ではこの傾向
が顕著である。
2. Description of the Related Art Generally, the toughness of a welded part is mainly determined by the toughness of a heat-affected zone of a base metal, particularly a weld bond. That is, since the bond part is heated to a high temperature just below the melting point, the crystal grains become extremely coarse and hardenability increases, and subsequent cooling makes it difficult for ferrite transformation to occur, so that a fragile upper bainite structure is formed. This is because the island-like martensite is generated and the notch toughness is reduced, and this tendency is particularly remarkable in the welding heat affected zone by so-called large heat input welding such as electroslag welding and multi-electrode submerged arc welding.

【0003】このような溶接ボンド部の靱性向上対策と
して、低C 当量化やP 、S といった不純物元素の低減と
ともに、TiN 、 AlN といった窒化物の微細析出物を析
出させて固溶N の固定をはかるとともにオーステナイト
粒の粗大化を防止する方法が取られている。たとえば、
特公昭52-8246 号公報では、微細Ti化合物を鋼材中に分
散させることにより大入熱溶接ボンド部の靱性の改善を
図る技術が開示されている。また、同様のTi化合物の利
用においても最近の技術傾向としては、特開昭60-18466
3 号公報に示されているように、N が過剰に存在するこ
とははかえって靱性に悪影響を及ぼすという考えから、
N 量は必要以上に多くせず低く抑えるとともに、これに
応じてTi量も調整している。上記公報にはさらに、REM
化合物の利用や低Si化によるREM の化合物の微細化技術
も開示されている。
As measures for improving the toughness of such welded joints, in addition to lowering the C equivalent and reducing the impurity elements such as P and S, the fine precipitates of nitrides such as TiN and AlN are precipitated to fix the solid solution N 2. Along with the measurement, a method of preventing coarsening of austenite grains has been adopted. For example,
Japanese Patent Publication No. 52-8246 discloses a technique for improving the toughness of a high heat input welded bond by dispersing a fine Ti compound in a steel material. Further, as a recent technical tendency in the use of the same Ti compound, Japanese Patent Laid-Open No.
As shown in Japanese Patent Publication No. 3, the excessive presence of N adversely affects toughness,
The amount of N is kept low without increasing it more than necessary, and the amount of Ti is adjusted accordingly. Further, the above publication further includes REM
Also disclosed is a technology for making REM compounds finer by utilizing the compounds and reducing the Si content.

【0004】[0004]

【発明が解決しようとする課題】近年、溶接施工の高能
率化とそのコストダウンへの要望はますます高く、従来
にはあまり適用されなかった300kJ/cm以上というさらに
大入熱の溶接の適用を増加しようという気運がある。し
かし、この場合には溶接ボンド部が高温にさらされる時
間は長くなり、オーステナイト結晶粒はますます粗大化
し、その後の冷却もはなはだ遅くなるために、脆弱な上
部ベイナイト組織や島状マルテンサイトの生成もさらに
容易となる。このため、300kJ/cm程度までの入熱を対象
としている上記の従来法によっては、溶接熱影響部の靱
性改善効果は十分とはいえない。
[Problems to be Solved by the Invention] In recent years, there is an increasing demand for higher efficiency in welding work and cost reduction, and welding with an even higher heat input of 300 kJ / cm or more, which has not been applied so far, has been applied. I have a desire to increase. However, in this case, the weld bond is exposed to high temperature for a long time, the austenite grains become coarser, and the subsequent cooling becomes slower, resulting in the formation of a fragile upper bainite structure and island martensite. Will be even easier. Therefore, the effect of improving the toughness of the heat-affected zone of the weld is not sufficient by the above-mentioned conventional method that targets heat input up to about 300 kJ / cm.

【0005】本発明は、このような問題を解決し、従来
の大入熱溶接よりもさらに入熱の大きな800kJ/cm以上の
大入熱溶接においても、その溶接熱影響部の靱性が良好
な溶接構造用熱間圧延鋼材を提供するものである。
The present invention solves such a problem, and even in the large heat input welding of 800 kJ / cm or more, which has a larger heat input than the conventional large heat input welding, the toughness of the heat affected zone is excellent. The present invention provides a hot rolled steel material for a welded structure.

【0006】[0006]

【課題を解決するための手段】発明者らは、800kJ/cm以
上の大入熱溶接熱影響部で良好な靱性を有する鋼材を種
々検討した結果、このように入熱が著しく大きな大入熱
溶接に適用する鋼材は、高々100kJ/cm程度までの入熱を
対象としている従来鋼とは、REM とB 含有量の適正範囲
が異なることを見出した。またこれらREM 、B の2 元素
の含有量の適正化のみでは溶接熱影響部の靱性を改善す
ることはできず、さらにSi量を0.10wt%以下に低減する
ことが必要で、これら3元素の含有量の適正化のどれ一
つ欠けることがあっても、その十分な効果は期待できな
いことを見出し、本発明をなすに至った。
[Means for Solving the Problems] As a result of various studies of steel materials having a high toughness in the heat-affected zone of the welding with a high heat input of 800 kJ / cm or more, the inventors have found that the heat input with such a large heat input is very large. It was found that the appropriate range of REM and B content for the steel material used for heat welding is different from that of conventional steel, which targets heat input up to about 100 kJ / cm. In addition, it is not possible to improve the toughness of the weld heat affected zone only by optimizing the contents of these two elements, REM and B, and it is necessary to further reduce the Si content to 0.10 wt% or less. The inventors have found that even if any one of the optimization of the content is lacking, the sufficient effect cannot be expected, and the present invention has been completed.

【0007】すなわち、本発明は、 C:0.05 〜0.20wt%
、Si:0.10 wt% 以下、Mn:0.4〜2.0wt% 、Al:0.005
0.05wt% 、Ti:0.003〜0.030 wt% 、B:0.002 〜0.005 wt
% 、REM:0.010 〜0.030 wt% 、N:0.002 〜0.005 wt% を
含有し、残部はFeと不可避的不純物の組成になることを
特徴とする、入熱800kJ/cm以上の大入熱溶接特性に優れ
溶接構造用熱間圧延鋼材であり、また第二発明は、C:
0.05〜0.20wt% 、Si:0.10 wt% 以下、Mn:0.4〜2.0 wt%
、Al:0.005〜0.05wt% 、Ti:0.003〜0.030 wt% 、B:
0.002 〜0.005 wt% 、REM:0.010 〜0.030 wt% 、N:0.00
2 〜0.005 wt% を含有し、さらに、Cu:0.05 〜0.5 wt%
、Ni:0.05 〜1.0 wt% 、Cr:0.05 〜0.5wt%、Mo:0.05
〜0.5 wt% 、Nb:0.005〜0.10wt% 、V:0.005 〜0.15wt%
、Ca:0.0005〜0.005 wt% の1種または2種以上を含有
し、残部はFeと不可避的不純物の組成になることを特徴
とする、入熱800kJ/cm以上の大入熱溶接特性に優れた
接構造用熱間圧延鋼材である。
That is, according to the present invention, C: 0.05 to 0.20 wt%
, Si: 0.10 wt% or less, Mn: 0.4 to 2.0 wt%, Al: more than 0.005 to
0.05wt%, Ti: 0.003-0.030wt%, B: 0.002-0.005wt
%, REM: 0.010 to 0.030 wt%, N: 0.002 to 0.005 wt%, the balance being Fe and unavoidable impurities composition, large heat input welding with heat input of 80 kJ / cm or more It is a hot-rolled steel material for welded structure with excellent characteristics, and the second invention is C:
0.05 to 0.20 wt%, Si: 0.10 wt% or less, Mn: 0.4 to 2.0 wt%
, Al: 0.005 ultra ~0.05wt%, Ti: 0.003~0.030 wt% , B:
0.002-0.005 wt%, REM: 0.010-0.030 wt%, N: 0.00
2 to 0.005 wt%, and further Cu: 0.05 to 0.5 wt%
, Ni: 0.05 to 1.0 wt%, Cr: 0.05 to 0.5 wt%, Mo: 0.05
~ 0.5 wt%, Nb: 0.005-0.10 wt%, V: 0.005-0.15 wt%
, Ca: 0.0005 to 0.005 wt% of 1 type or 2 types or more, with the balance being composition of Fe and unavoidable impurities, for large heat input welding characteristics of heat input of 800 kJ / cm or more. Excellent melting
It is a hot rolled steel material for contact structures .

【0008】[0008]

【作用】まず、C は0.05wt% 未満では所期の母材強度を
確保するのが難しく、また、0.20wt% を超えると、溶接
後の冷却でフェライト変態が困難となり、溶接熱影響部
の組織微細化が難しくなるとともに、島状マルテンサイ
トを生成させ、溶接部の靱性の確保ができない。
[Function] First, if C is less than 0.05 wt%, it is difficult to secure the desired base metal strength, and if it exceeds 0.20 wt%, ferrite transformation becomes difficult due to cooling after welding, and the weld heat affected zone It becomes difficult to refine the structure, and island martensite is generated, so that the toughness of the welded portion cannot be secured.

【0009】Mnは、C と同様に強度向上に寄与する元素
であり、溶接構造用鋼として必要な強度を確保するため
には0.4 wt% 以上必要とするが、2.0 wt% を超えて添加
すると溶接時の割れ感受性を高めるとともに、溶接部の
靱性への悪影響が大きくなるので、0.4 〜2.0 wt% の範
囲とした。Alは通常の製鋼過程において脱酸のために少
なくとも0.005 wt% の添加含有が必要であるが、一方
0.05wt% を超える含有はかえって溶接熱影響部のみなら
ず溶接金属の靱性も劣化させるので、0.005 〜0.04wt
% の範囲とした。
Mn, like C, is an element that contributes to the improvement of strength. To secure the strength required for welded structural steel, Mn is required to be 0.4 wt% or more, but if added in excess of 2.0 wt%. The crack susceptibility at the time of welding is increased and the toughness of the welded part is adversely affected, so the range was set to 0.4 to 2.0 wt%. Al needs to contain at least 0.005 wt% or more for deoxidation in the ordinary steelmaking process.
Since content causes also degrade toughness of the weld metal not adversely HAZ only more than 0.05 wt%, 0.005 super ~0.04wt
The range is%.

【0010】TiとN は、TiN を生成し、溶接による加熱
時にオーステナイト結晶粒の粗大化を防ぐとともに、フ
ェライト変態核として作用して溶接熱影響部組織を分断
微細化する。ここで、靱性改善効果を発揮するために
は、TiとN はそれぞれ0.003 wt% 以上、0.002 wt% 以上
必要である。ただし、0.005 wt% 以上のN を含有すると
固溶N によりかえって鋼の靱性を害すると考えられるの
で、N 含有量の上限は0.005 wt% とし、さらにこの場
合、0.0030wt% を超えるTiを含有しても、その効果はな
いばかりでなく、むしろN 量に対してバランスを欠いた
過剰なTiは靱性を害するので、Ti含有量の上限を0.003
wt% とした。
Ti and N form TiN, prevent coarsening of austenite crystal grains during heating by welding, and act as ferrite transformation nuclei to divide and miniaturize the weld heat-affected zone structure. Here, in order to exert the toughness improving effect, Ti and N must be 0.003 wt% or more and 0.002 wt% or more, respectively. However, if 0.005 wt% or more of N is contained, it is considered that the solid solution N adversely affects the toughness of the steel, so the upper limit of N content is 0.005 wt%, and in this case, Ti containing more than 0.0030 wt% is contained. However, not only does it have no effect, but rather an unbalanced excess of Ti with respect to the N content impairs toughness, so the upper limit of Ti content is 0.003.
wt%

【0011】B は、溶接による加熱時にオーステナイト
粒界に偏析し、靱性に悪影響を及ぼす粗大な粒界初析フ
ェライトの析出を抑制し、組織を分断微細化する粒内フ
ェライトの析出を促進し、TiとN の効果をより大きなも
のとする。また、溶接後の冷却中にBNとして析出し、固
溶N を固定して靱性を改善する効果もある。とくに本発
明が対象としているような、従来の大入熱溶接の範疇を
超えてさらに大きな入熱の溶接における溶接熱影響部の
靱性改善のためには0.002 wt% 以上、しかも後述するRE
M と併せての添加が必要である。しかし、0.005 wt% を
超えて添加しても効果が飽和し、かえって靱性を害する
ため、0.002 〜0.005 wt% の範囲とした。
B suppresses the precipitation of coarse grain boundary pro-eutectoid ferrite which segregates at the austenite grain boundaries during heating by welding and adversely affects toughness, and promotes the precipitation of intragranular ferrite that divides and refines the structure, Increase the effect of Ti and N. It also has the effect of precipitating as BN during cooling after welding and fixing the solid solution N 2 to improve toughness. In particular, in order to improve the toughness of the weld heat affected zone in welding with a larger heat input than the range of conventional large heat input welding, which is the subject of the present invention, 0.002 wt% or more, which will be described later
It is necessary to add it together with M. However, even if added in excess of 0.005 wt%, the effect saturates and adversely affects toughness, so the range was made 0.002 to 0.005 wt%.

【0012】REM は硫・酸化物として析出し、それ自体
にもオーステナイト結晶粒の粗大化防止効果があるとと
もに、TiN やBNの析出核としてTi、B 、N の効果を促進
する。従来の大入熱溶接よりもさらに入熱の大きい800k
J/cm以上の大入熱溶接熱影響部の靱性改善のためには0.
010 wt% 以上を前記B と併せて添加することが必要であ
る。しかしながら0.030 wt% を超える添加は鋼の清浄性
を害するために0.010〜0.030 wt% の範囲とした。
[0012] REM precipitates as sulfur oxide and has an effect of preventing coarsening of austenite crystal grains by itself, and promotes the effects of Ti, B and N as precipitation nuclei of TiN and BN. 80 Big further heat input than conventional high heat input welding 0k
Large heat input of J / cm or more is 0 for improving the toughness of the heat affected zone.
It is necessary to add 010 wt% or more together with B. However, the addition of more than 0.030 wt% impairs the cleanliness of the steel, so the range was 0.010 to 0.030 wt%.

【0013】Siは、強度を上昇させることから通常添加
されるが、本発明が対象とする800kJ/cm以上の大入熱溶
接熱影響部の靱性を改善するためには0.10 wt%以下に低
減することが必要である。上記REM やB を適正量含有さ
せることにより、溶接熱影響部組織を調整した場合にお
いても、0.10wt% を超えるSiを含有していれば、入熱80
0kJ/cm以上の大入熱溶接熱影響部の靱性改善は困難であ
る。図1に、REM やBを適正量を含有させることにより
溶接熱影響部組織を調整した場合における、入熱800kJ/
cm相当の大入熱溶接ボンド部を模擬した再現溶接熱影響
部のvE0 と鋼中Si量の関係を示す。
Si is usually added because it increases the strength, but in order to improve the toughness of the large heat input welding heat affected zone of 800 kJ / cm or more targeted by the present invention, Si is 0.10 wt% or less. It is necessary to reduce. Even if the structure of the weld heat affected zone is adjusted by adding the appropriate amount of REM and B, if the Si content exceeds 0.10 wt%, the heat input will be 80
High heat input of 0 kJ / cm or more It is difficult to improve the toughness of the heat affected zone. Fig. 1 shows the heat input of 800 kJ / when the structure of the heat affected zone of welding is adjusted by containing an appropriate amount of REM and B.
The relationship between vE 0 of the simulated weld heat affected zone simulating a large heat input welded bond area equivalent to cm and the Si content in steel is shown.

【0014】なお、Si低減による強度低下は、他の強度
改善元素の添加、または制御圧延や加速冷却などの製造
方法により補うことができる。これら基本成分に加え
て、Cu:0.05 〜0.5 wt% 、Ni:0.05 〜1.0 wt% 、Cr:0.0
5 〜0.5 wt% 、Mo:0.05 〜0.5 wt% 、Nb:0.005〜0.10wt
% 、V:0.005 〜0.15wt%の強度を上昇させる元素群およ
びCa:0.0005 〜0.005 wt% の中から1種または2種以上
を含有することができるが、Cuは、過剰に添加すると熱
間加工性を害するとともに、溶接割れ感受性が増大する
ために、Niは、高価な元素であり、過剰の添加は経済性
を損なうために、またCrの過剰の添加は、溶接割れ感受
性を増大させるために、それぞれ上限を0.5wt% 、1.0 w
t% および0.5 wt% とした。さらにMoは、高価な元素で
ある上に、過剰に添加すると溶接熱影響部の硬化性を高
め、溶接割れ感受性を高めるために、上限を0.5 wt% と
した。NbとV は、過剰に添加すると母材や溶接熱影響部
に多量の析出物を生成して析出脆化を引き起こすため
に、それぞれ上限を0.10wt% 、0.15wt% とした。
The decrease in strength due to the reduction of Si can be compensated by adding another strength improving element or by a manufacturing method such as controlled rolling or accelerated cooling. In addition to these basic components, Cu: 0.05-0.5 wt%, Ni: 0.05-1.0 wt%, Cr: 0.0
5 to 0.5 wt%, Mo: 0.05 to 0.5 wt%, Nb: 0.005 to 0.10 wt
%, V: 0.005 to 0.15 wt% of the elements that increase the strength and Ca: 0.0005 to 0.005 wt%, and one or more of them can be contained, but if Cu is added excessively, Ni is an expensive element because it impairs workability and increases the weld cracking susceptibility, excessive addition impairs economic efficiency, and excessive addition of Cr increases weld cracking sensitivity. The upper limits are 0.5 wt% and 1.0 w, respectively.
t% and 0.5 wt%. Further, Mo is an expensive element and, if added in excess, it enhances the hardenability of the weld heat affected zone and increases the susceptibility to weld cracking, so the upper limit was made 0.5 wt%. The upper limits of Nb and V were set to 0.10 wt% and 0.15 wt%, respectively, because when added excessively, a large amount of precipitates are generated in the base metal and the weld heat affected zone, causing precipitation embrittlement.

【0015】Caは、MnS の形態を制御し、母材および溶
接熱影響部の低温靱性を向上するのに効果がある。しか
し、0.0005wt% 未満では実用上の効果は期待できず、ま
た0.005 wt% を超えて添加すると鋼の清浄度を害するた
めに、添加範囲を0.0005〜0.005 wt% とした。
Ca is effective in controlling the morphology of MnS and improving the low temperature toughness of the base material and the weld heat affected zone. However, if less than 0.0005 wt%, practical effects cannot be expected, and if more than 0.005 wt% is added, the cleanliness of the steel is impaired, so the addition range was made 0.0005 to 0.005 wt%.

【0016】[0016]

【実施例】表1は試作鋼の化学組成を示す。試作鋼の強
度レベルは400 〜490MPa級鋼である。これらの鋼を常法
の製造工程に従って鋳造後、板厚80mmに熱間圧延した。
EXAMPLES Table 1 shows the chemical composition of trial steels. The strength level of the prototype steel is 400 to 490 MPa class steel. These steels were cast according to a conventional manufacturing process and then hot rolled to a plate thickness of 80 mm.

【0017】[0017]

【表1】 [Table 1]

【0018】同じく表1に鋼の引張強さ(T.S.)と、入熱
800kJ/cm相当の溶接再現熱サイクルによる溶接ポンド部
の0 ℃におけるシャルピー吸収エネルギー(vE0 )値を示
す。なお、vE0 は3 本試験を実施して得られた値の平均
値である。鋼A 〜H は実施例であり、低Si-Ti-低N-高RE
M-高B 処理により溶接熱影響部の組織はフェライトが析
出し、組織が微細化された上に島状マルテンサイトの生
成も抑制されており、良好な靱性を示している。
Similarly, Table 1 shows the tensile strength (TS) of steel and heat input.
The Charpy absorbed energy (vE 0 ) value at 0 ° C of the weld pond by a simulated welding heat cycle equivalent to 800 kJ / cm is shown. Note that vE 0 is the average of the values obtained by carrying out the 3 main tests. Steels A to H are examples, low Si-Ti-low N-high RE
Ferrite precipitates in the microstructure of the heat-affected zone due to M-high B treatment, the microstructure is refined, and the formation of island martensite is also suppressed, indicating good toughness.

【0019】鋼I 〜K は比較鋼である。鋼 IはREM およ
びB の含有量が不十分であるため、鋼J はREM の含有量
が不十分であるために溶接熱影響部においてフェライト
の析出が不十分で組織が十分に微細化されず、その靱性
が実施例に比較して低いものとなっている。鋼K はSi含
有量が多すぎるために、やはり溶接熱影響部の靱性が、
実施例に比較して低いものとなっている。これは、溶接
熱影響部において生成した島状マルテンサイトが靱性に
悪影響を及ぼしているためと考えられる。
Steels I to K are comparative steels. Steel I does not have sufficient REM and B contents, and Steel J has insufficient REM contents.Therefore, precipitation of ferrite was insufficient in the heat-affected zone and the microstructure was not sufficiently refined. , Its toughness is lower than that of the example. Since steel K has too much Si content, the toughness of the weld heat affected zone is
It is lower than that of the example. It is considered that this is because the island martensite generated in the weld heat affected zone adversely affects the toughness.

【0020】[0020]

【発明の効果】この発明により、建築、橋梁、造船およ
び圧力容器などの構造物の製作に、入熱800kJ/cm以上の
大入熱溶接を用いることができ、溶接施工の大幅な能率
向上とその大幅なコストダウンが図られる。
EFFECTS OF THE INVENTION According to the present invention, large heat input welding with a heat input of 800 kJ / cm or more can be used in the production of structures such as buildings, bridges, shipbuilding and pressure vessels, thus greatly improving welding efficiency. And the cost reduction is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】0.14C-1.3Mn-0.025Al-0.015REM-0.01Ti-0.0025
B-0.004N鋼のSi含有量と、入熱800kJ/cm相当の大入熱溶
接ボンド部を模擬した再現HAZ のvE0 との関係を示すグ
ラフである。
[Fig.1] 0.14C-1.3Mn-0.025Al-0.015REM-0.01Ti-0.0025
3 is a graph showing the relationship between the Si content of B-0.004N steel and vE 0 of a reproduced HAZ simulating a large heat input welded bond portion having a heat input of 800 kJ / cm.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 昭58−58253(JP,A) 特開 昭61−253344(JP,A) 特開 平1−150453(JP,A) 特開 昭63−5805(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Works Ltd. Technical Research Division (56) Reference JP-A-58-58253 (JP, A) Kai 61-253344 (JP, A) JP-A-1-150453 (JP, A) JP-A 63-5805 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38 / 00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.05〜0.20wt% 、Si:0.10 wt% 以下、
Mn:0.4〜2.0 wt% 、Al:0.005〜0.05wt% 、Ti:0.003〜
0.030 wt% 、B:0.002 〜0.005 wt% 、REM:0.010 〜0.03
0 wt% 、N:0.002 〜0.005 wt% を含有し、残部はFeと不
可避的不純物の組成になることを特徴とする、入熱800k
J/cm以上の大入熱溶接特性に優れた溶接構造用熱間圧延
鋼材。
1. C: 0.05 to 0.20 wt%, Si: 0.10 wt% or less,
Mn: 0.4~2.0 wt%, Al: 0.005 ultra-~0.05wt%, Ti: 0.003~
0.030 wt%, B: 0.002-0.005 wt%, REM: 0.010-0.03
Heat input 80 0k, characterized by containing 0 wt% and N: 0.002 to 0.005 wt% with the balance being Fe and inevitable impurities.
Hot-rolled steel for welded structure with excellent heat input welding characteristics of J / cm or more. <br/>
【請求項2】 C:0.05〜0.20wt% 、Si:0.10 wt% 以下、
Mn:0.4〜2.0 wt% 、Al:0.005〜0.05wt% 、Ti:0.003〜
0.030 wt% 、B:0.002 〜0.005 wt% 、REM:0.010 〜0.03
0 wt% 、N:0.002 〜0.005 wt% を含有し、さらにCu:0.0
5 〜0.5 wt%、Ni:0.05 〜1.0 wt% 、Cr:0.05 〜0.5wt
%、Mo:0.05 〜0.5 wt% 、Nb:0.005〜0.10wt% 、V:0.005
〜0.15wt% 、Ca:0.0005 〜0.005 wt% の1種または2
種以上を含有し、残部はFeと不可避的不純物の組成にな
ることを特徴とする、入熱800kJ/cm以上の大入熱溶接特
性に優れた溶接構造用熱間圧延鋼材。
2. C: 0.05 to 0.20 wt%, Si: 0.10 wt% or less,
Mn: 0.4~2.0 wt%, Al: 0.005 ultra-~0.05wt%, Ti: 0.003~
0.030 wt%, B: 0.002-0.005 wt%, REM: 0.010-0.03
0 wt%, N: 0.002-0.005 wt%, and Cu: 0.0
5 to 0.5 wt%, Ni: 0.05 to 1.0 wt%, Cr: 0.05 to 0.5 wt%
%, Mo: 0.05-0.5 wt%, Nb: 0.005-0.10 wt%, V: 0.005
~ 0.15wt%, Ca: 0.0005 ~ 0.005wt% 1 or 2
A hot-rolled steel material for welded structures having a large heat input of 800 kJ / cm or more and excellent heat input welding characteristics, characterized in that it contains Fe or more and the balance is Fe and inevitable impurities.
JP32946993A 1993-12-27 1993-12-27 Steel with excellent heat input welding characteristics Expired - Fee Related JP3390234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32946993A JP3390234B2 (en) 1993-12-27 1993-12-27 Steel with excellent heat input welding characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32946993A JP3390234B2 (en) 1993-12-27 1993-12-27 Steel with excellent heat input welding characteristics

Publications (2)

Publication Number Publication Date
JPH07188836A JPH07188836A (en) 1995-07-25
JP3390234B2 true JP3390234B2 (en) 2003-03-24

Family

ID=18221733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32946993A Expired - Fee Related JP3390234B2 (en) 1993-12-27 1993-12-27 Steel with excellent heat input welding characteristics

Country Status (1)

Country Link
JP (1) JP3390234B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709521B1 (en) * 2001-11-13 2007-04-20 제이에프이 스틸 가부시키가이샤 Welding joint of large heat input welding and welding method thereof

Also Published As

Publication number Publication date
JPH07188836A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
KR101846759B1 (en) Steel plate and method for manufacturing same
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP3256401B2 (en) High heat input welding steel having heat input of 500 kJ / cm or more and method for producing the same
JP5509685B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP2007231312A (en) High-tensile-strength steel and manufacturing method therefor
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JP2010229453A (en) High strength thick steel plate having excellent toughness to one layer large heat input welding affected zone and method of manufacturing the same
WO2013088715A1 (en) Steel material for high-heat-input welding
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP3981615B2 (en) Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JPH0873983A (en) Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
JP7410438B2 (en) steel plate
JP4539100B2 (en) Super high heat input welded heat affected zone
JP3390234B2 (en) Steel with excellent heat input welding characteristics
JP3622246B2 (en) Method for producing extremely thick H-section steel with excellent strength, toughness and weldability
JP3444244B2 (en) High tensile strength steel excellent in toughness and method of manufacturing the same
JP2005272854A (en) Method for producing high-tensile steel excellent in refractoriness and toughness in welded heat affected part
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JP2585321B2 (en) Manufacturing method of high strength and high toughness steel sheet with excellent weldability
JP3371712B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
JPH0579728B2 (en)
JP2005002476A (en) Weld joint

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees