JPH0788554B2 - Fireproof steel for construction - Google Patents

Fireproof steel for construction

Info

Publication number
JPH0788554B2
JPH0788554B2 JP63324918A JP32491888A JPH0788554B2 JP H0788554 B2 JPH0788554 B2 JP H0788554B2 JP 63324918 A JP63324918 A JP 63324918A JP 32491888 A JP32491888 A JP 32491888A JP H0788554 B2 JPH0788554 B2 JP H0788554B2
Authority
JP
Japan
Prior art keywords
less
kinds
strength
steel
yield strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63324918A
Other languages
Japanese (ja)
Other versions
JPH02170943A (en
Inventor
伸夫 鹿内
正好 栗原
哲也 三瓶
達也 下田
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP63324918A priority Critical patent/JPH0788554B2/en
Publication of JPH02170943A publication Critical patent/JPH02170943A/en
Publication of JPH0788554B2 publication Critical patent/JPH0788554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば火災等で数時間程度の短時間、高温状
態になることが懸念される建築物、橋梁等の鉄骨構造物
に使用する鋼材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention is used for a building, a steel structure such as a bridge, which is likely to be in a high temperature state for a short time such as several hours due to fire or the like. It concerns steel materials.

[従来の技術] 通常、構造用鋼材は常温で十分な強度を有するように製
造されているが、一般に温度の上昇に伴い強度は低下す
る。特に、従来の構造用鋼は500℃程度以上での高温状
態では、顕著な強度低下を示すことが、既に知られてい
る。そのため、火災等で高温状態になるとことが懸念さ
れる構造物特に、人間が居住する建築物では、高温状態
でも構造物が倒壊したり、著しく変形することがないよ
うにし、安全性を確保するために、鋼材の温度が著しく
高くならないように、耐火被覆が施されている。
[Prior Art] Usually, structural steel materials are manufactured to have sufficient strength at room temperature, but generally strength decreases as temperature rises. In particular, it is already known that the conventional structural steel shows a remarkable decrease in strength at a high temperature of about 500 ° C. or higher. Therefore, there is a concern that the temperature may rise to a high temperature due to a fire, etc., especially in a building where humans live, to prevent the structure from collapsing or deforming significantly even in a high temperature state to ensure safety. Therefore, a fireproof coating is applied so that the temperature of the steel material does not become extremely high.

このような現状を耐火対策において、高温状態でも鋼材
の強度の低下を小さく抑えることで、耐火被覆の厚さを
低減、あるいは、耐火に対してのその他の対策も軽減す
ることが可能になる。
In such a current situation, as a fire resistance measure, it is possible to reduce the thickness of the fire resistant coating or to reduce other measures against the fire resistance by suppressing the decrease in the strength of the steel material even in a high temperature state.

高温での強度を保証した鋼材は、圧力容器用鋼材の分野
で研究が行なわれてきており、JIS G 3124中・常温圧力
容器用高強度鋼鋼板等で既に規格化されている例もあ
る。また、具体的に規定はしていないが、常温を越える
中・高温での強度が高いことを前提とした圧力容器用鋼
として、例えばJIS G 3118;中・常温圧力容器用炭素鋼
鋼板、JIS G 3119;ボイラ及び圧力容器用マンガンモリ
ブデン鋼及びマンガンモリブデンニッケル鋼鋼板、JIS
G 3120;圧力容器用調質型マンガンモリブデン鋼及びマ
ンガンモリブデンニッケル鋼鋼板、JIS G 4109;ボイラ
及び圧力容器用クロムモリブデン鋼鋼板等がある。ま
た、特公昭60−35985では圧力容器用高強度強靭鋼に関
する内容が規格されているが、特に高温での特性を規定
するまでもなく、圧力容器用鋼であることで既にある程
度高温強度を前提としている。また、このような場合に
は、通常、Cr、Mo等の合金元素を大量に添加するのが当
然になっている。
Steel materials that guarantee strength at high temperature have been studied in the field of steel materials for pressure vessels, and there are some examples that have already been standardized in JIS G 3124 high-strength steel sheets for medium / normal temperature pressure vessels. In addition, although not specifically defined, as a pressure vessel steel that is assumed to have high strength at medium and high temperatures exceeding normal temperature, for example, JIS G 3118; carbon steel sheet for medium and normal temperature pressure vessels, JIS G 3119; Manganese molybdenum steel and manganese molybdenum nickel steel plates for boilers and pressure vessels, JIS
G 3120; tempered manganese molybdenum steel and manganese molybdenum nickel steel sheet for pressure vessels, JIS G 4109; chrome molybdenum steel sheet for boilers and pressure vessels. In addition, Japanese Examined Patent Publication No. Sho 60-35985 stipulates the content of high-strength and high-strength steel for pressure vessels, but there is no need to specify the characteristics at high temperatures. I am trying. Further, in such a case, it is usually natural to add a large amount of alloying elements such as Cr and Mo.

しかしながら、高温での強度を十分に確保し、さらに、
これを保証できるような構造用鋼材は殆んどないのが現
状である。圧力容器用鋼材と構造用鋼材は、目的、用途
が全く異なっているために、要求特性も全く異なるもの
である。例えば、使用量、適用状況に関しても、圧力容
器用鋼材は特殊な目的の下で製造される圧力容器に使用
され、その量も限定されているのに対して、構造用鋼材
は非常に広範囲の構造物に使用されており、使用量も圧
力容器用鋼材に比較して圧倒的に多い。さらに、構造用
鋼材は、使用者も多岐に渡るため溶接施工管理等の使用
方法も容易である必要がある。さらに、本発明で規定し
ているような400℃を越える高温での強度を確保するた
めには、圧力容器用鋼では0.5%程度以上のCr、Moを添
加するのが通例であり、構造用鋼としては、コスト、溶
接性の観点から不適切なものとなっている。
However, the strength at high temperature is sufficiently secured, and further,
At present, there are almost no structural steel materials that can guarantee this. The pressure vessel steel and the structural steel have completely different purposes and uses, and therefore have completely different required characteristics. For example, in terms of usage and application conditions, steel for pressure vessels is used for pressure vessels manufactured under a special purpose, and its amount is also limited, whereas structural steel has a very wide range. It is used in structures and the amount used is much larger than that of steel for pressure vessels. Further, since the structural steel material has a wide variety of users, it is necessary that the usage method such as welding construction management is easy. Further, in order to secure the strength at a high temperature exceeding 400 ° C as specified in the present invention, it is customary to add about 0.5% or more of Cr and Mo in the steel for pressure vessels. As steel, it is unsuitable from the viewpoint of cost and weldability.

このように、構造用鋼材としての特性を十分に満足し、
さらに中・高温強度を高く保持し、保証する鋼材は、こ
れまで殆んど無かったと言える。
In this way, the characteristics as a structural steel material are fully satisfied,
Furthermore, it can be said that there has been almost no steel material that maintains and guarantees high medium / high temperature strength.

[解決しようとする課題] 上記のように、従来、高温強度を高く保持し、あるい
は、規定している構造用鋼材は殆んど無いと言える。ま
た、圧力容器用鋼材では、高温強度を高くするために、
一般には0.5%以上のCr、Mo等の高価な合金元素を大量
に添加している。またJIS G 3124;中・常温圧力容器用
高強度鋼鋼板では、比較的合金元素の添加は量は少ない
が、高温での強度の規定は、高々400℃までである。つ
まり、400℃を越えるかなり高い温度では、十分な強度
は得られない。また、これら鋼材は、圧力容器用鋼材を
前提としたものであり、構造用鋼材としては十分な特性
を有しているとは言えない。
[Problems to be Solved] As described above, it can be said that there are almost no structural steel materials that have high strength at high temperature or regulated conventionally. In addition, in steel materials for pressure vessels, in order to increase high temperature strength,
Generally, a large amount of 0.5% or more of expensive alloy elements such as Cr and Mo is added. JIS G 3124; high-strength steel sheets for medium- and normal-temperature pressure vessels have relatively small additions of alloying elements, but the maximum strength at high temperature is 400 ° C. That is, sufficient strength cannot be obtained at a considerably high temperature exceeding 400 ° C. Further, these steel materials are premised on steel materials for pressure vessels, and cannot be said to have sufficient characteristics as structural steel materials.

即ち、構造用鋼材として十分な特性(高溶接性、高延靭
性等)を満足しつつ、400℃程度以上での高い高温強度
を保持した鋼材は無かったと言える。また、高温強度を
高くするために、高温な合金元素を大量に添加するた
め、鋼材のコストが非常に高い。
That is, it can be said that there was no steel material satisfying sufficient properties (high weldability, high ductility, etc.) as a structural steel material while maintaining high high-temperature strength at about 400 ° C or higher. Further, in order to increase the high temperature strength, a large amount of high temperature alloying elements are added, so that the cost of the steel material is very high.

本発明は、上記のような問題を解決し、高温での高い強
度を保持し、さらに、従来の構造用鋼材の利点である高
い溶接性、高い延靭性を有した、しかも低コストである
構造用耐火鋼材を提供することを課題とするものであ
る。
The present invention solves the above problems, retains high strength at high temperature, and further has high weldability and high ductility, which are advantages of conventional structural steel materials, and has a low cost structure. It is an object of the present invention to provide a refractory steel material for use.

[課題を解決するための手段] この発明の構造用耐火鋼材は、重量%で、C=0.05%以
上0.20%未満、Si=0.10%以上2.0%未満、Mn=0.30%
以上2.0%未満、P=0.03%以下、S=0.03%以下、Mo
=0.10%以上0.50%未満、sol.Al=0.002%以上0.20%
未満、N=0.0010%以上0.020%未満を含み、残部が不
可避不純物とFeからなり、さらにNb=0.005%以上0.20
%未満、V=0.01%以上0.1%未満及びTi=0.003%以上
0.03%未満で、且つ 0.005%≦Nb+2V+1.5Ti≦0.30%の範囲で含有し、 更に、次式で示す高温降伏強度を満足する溶接性および
延長延靭性に優れた構造用耐火鋼材である。
[Means for Solving the Problems] The structural refractory steel material of the present invention is, by weight%, C = 0.05% or more and less than 0.20%, Si = 0.10% or more and less than 2.0%, and Mn = 0.30%.
Above 2.0%, P = 0.03% or less, S = 0.03% or less, Mo
= 0.10% to less than 0.50%, sol.Al = 0.002% to 0.20%
, N = 0.0010% or more and less than 0.020%, the balance consisting of unavoidable impurities and Fe, and Nb = 0.005% or more 0.20
%, V = 0.01% or more and less than 0.1% and Ti = 0.003% or more
It is a structural refractory steel containing less than 0.03% and 0.005% ≤ Nb + 2V + 1.5Ti ≤ 0.30%, and further excellent in weldability and elongation ductility satisfying the high temperature yield strength shown by the following formula.

YS(RT)=常温における降伏強度(kg f/mm2) YS(450)=温度400℃超500℃以下における降伏強度(k
g f/mm2) YS(550)=温度500℃超600℃以下における降伏強度(k
g f/mm2) YS(650)=温度600℃超650℃以下における降伏強度(k
g f/mm2) また、上記構造用耐火鋼材が、重量%で、Cu=0.01%以
上1.5%未満、Ni=0.02%以上1.5%未満、Cr=0.05%以
上1.0%未満、B=0.0005%以上0.005%未満のうち1種
ないし2種以上を含有するものである。
YS (RT) = Yield strength at room temperature (kg f / mm 2 ) YS (450) = Yield strength at temperatures above 400 ° C and below 500 ° C (k
gf / mm 2 ) YS (550) = yield strength (k above 500 ℃ and below 600 ℃)
gf / mm 2 ) YS (650) = Yield strength (k above 600 ℃ and below 650 ℃)
gf / mm 2 ) In addition, the structural refractory steel material, in% by weight, is Cu = 0.01% or more and less than 1.5%, Ni = 0.02% or more but less than 1.5%, Cr = 0.05% or more but less than 1.0%, B = 0.0005% or more. It contains one or more than 0.005% of less than 0.005%.

[作用] 本発明で、最も重要な点は、Nb、V、及びTiの元素のそ
れぞれの成分を上記の範囲内にすると共に、Nb+2V+1.
5Tiを0.005%以上0.30%以下の範囲で含有することであ
る。
[Operation] In the present invention, the most important point is that each component of the elements of Nb, V, and Ti is within the above range, and Nb + 2V + 1.
5Ti is contained in the range of 0.005% or more and 0.30% or less.

発明者らの詳細な実験結果から、第1図に示すように、
高温強度(YS)は、Nb、V、Tiの添加量で表現される式
Nb+2V+1.5Tiにより精度良く整理できることが明らか
になった。
From the detailed experimental results of the inventors, as shown in FIG.
High temperature strength (YS) is an expression expressed by the amount of Nb, V and Ti added.
It has become clear that Nb + 2V + 1.5Ti can be used for accurate sorting.

即ち、この式の範囲外である0.005%未満では、十分な
高温での強度が得られない。一方、0.30%超では、添加
元素量が多くなり、コストが高くなること共に、靭性
や、溶接性が低下する。
That is, if it is less than 0.005%, which is out of the range of this formula, sufficient strength at high temperature cannot be obtained. On the other hand, if it exceeds 0.30%, the amount of additional elements increases, the cost increases, and the toughness and weldability deteriorate.

そこで、Nb+2V+1.5Tiを上記範囲に限定したものであ
る。
Therefore, Nb + 2V + 1.5Ti is limited to the above range.

なお、一般に構造物の設計は降伏強度を基準として行っ
ており、引張り強度よりも降伏強度の方が設計上重要な
因子であるため、高温における降伏強度を常温における
降伏強度に対する比率で示してある。
Generally, the structure is designed based on the yield strength, and the yield strength is more important than the tensile strength in the design. Therefore, the yield strength at high temperature is shown as a ratio to the yield strength at room temperature. .

次に、各添加元素の添加量の限定理由を説明する。Next, the reasons for limiting the addition amount of each additive element will be described.

C;0.05%以上0.20%未満 Cは鋼の常温強度、高温強度を安定して確保するための
有効な元素であり、0.05%未満では、所定の十分な強度
を得ることが困難であり、また、0.02%以上では溶接性
が劣化するため、C量は0.05%以上0.20%未満とした。
C: 0.05% or more and less than 0.20% C is an effective element for stably securing the room temperature strength and high temperature strength of steel, and if less than 0.05%, it is difficult to obtain a predetermined sufficient strength. , 0.02% or more deteriorates the weldability, so the C content was made 0.05% or more and less than 0.20%.

Si;0.1%以上2.0%未満 Siは脱酸元素として有効な元素であり、少なくとも0.1
%以上の添加が必要である。また、Siは固溶強化に対し
ても有効な元素であるが、2.0%以上の添加量では延靭
性が低下したり、介在物が増加する等の問題があるの
で、0.1%以上2.0%未満とした。
Si; 0.1% or more and less than 2.0% Si is an element effective as a deoxidizing element, and at least 0.1
% Or more must be added. Si is also an effective element for solid solution strengthening, but if added in an amount of 2.0% or more, there are problems such as reduced ductility and increased inclusions, so 0.1% or more and less than 2.0% And

Mn;0.3%以上2.0%未満 Mnは強度確保の上で有効な元素であり、0.3%以上の添
加が必要である。また、2.0%以上では溶接性が劣化す
るため、0.3%以上2.0%未満とした。
Mn: 0.3% or more and less than 2.0% Mn is an element effective in securing strength, and 0.3% or more must be added. Moreover, since weldability deteriorates at 2.0% or more, it was set to 0.3% or more and less than 2.0%.

P;0.03%以下、S;0.03%以下 P、Sは不純物元素であり、延靭性の低下、加工性、溶
接性の低下等の問題の原因となる元素であり、できるだ
け低減することが望ましい。しかしながら、著しく低減
するのはコストの上昇を招くため、顕著な材質劣化しな
い量の上限として0.03%以下とした。
P; 0.03% or less, S; 0.03% or less P and S are impurity elements that cause problems such as deterioration of ductility, workability and weldability, and it is desirable to reduce them as much as possible. However, a significant reduction causes an increase in cost, so the upper limit of the amount that does not significantly deteriorate the material is set to 0.03% or less.

Mo;0.1%以上0.5%未満 Moは焼入性の向上、析出強化等により鋼の強度を上昇さ
せる有効な元素であり、特に、中・高温強度に対して有
効である。一方、大量添加は、コスト上昇になる上に溶
接性も劣化させるため、0.1%以上0.5%未満とした。
Mo; 0.1% or more and less than 0.5% Mo is an effective element that increases the strength of steel by improving hardenability and precipitation strengthening, and is particularly effective for medium-high temperature strength. On the other hand, addition of a large amount increases the cost and also deteriorates weldability, so the content was made 0.1% or more and less than 0.5%.

sol.Al;0.002%以上0.2%未満 sol.AlはAlNとして鋼中に析出し、結晶粒の微細化に有
効であり、0.002%以上の添加が必要である。また、0.0
4%以上の添加では介在物が多くなり、延靭性が劣化す
るため0.2%未満とした。
sol.Al; 0.002% or more and less than 0.2% sol.Al precipitates as AlN in the steel and is effective in refining crystal grains, and 0.002% or more is required to be added. Also, 0.0
If it is added in an amount of 4% or more, inclusions increase and ductility deteriorates, so the content was made less than 0.2%.

N;0.0010%以上0.020%未満 NはAlNとして析出し結晶粒の微細化に有効であるが、
大量添加では溶接部の靭性が劣化するため、0.0010%以
上0.020%未満とした。
N; 0.0010% or more and less than 0.020% N precipitates as AlN and is effective for refining crystal grains.
Since addition of a large amount deteriorates the toughness of the weld, the content was made 0.0010% or more and less than 0.020%.

Nb;0.005%以上0.05%未満 V;0.01%以上0.1%未満 Ti;0.003%以上0.03%未満 Nb、V、Tiは、本発明において重要な元素であり、常温
強度に有効な上に中・高温強度の上昇に対しても有効な
元素である。個々の元素については、Nb;0.005%未満、
V;0.01%未満、Ti;0.003%未満では、常温、中・高温強
度上昇に対しては殆んど効果なく、またNb;0.05%以
上、V;0.1%以上、Ti;0.03%以上では、溶接性が劣化す
るため上記の所定の範囲とした。
Nb; 0.005% or more and less than 0.05% V; 0.01% or more and less than 0.1% Ti; 0.003% or more and less than 0.03% Nb, V, and Ti are important elements in the present invention, and are effective for room temperature strength, and also at medium / high temperature. It is also an effective element for increasing strength. For individual elements, Nb; less than 0.005%,
When V is less than 0.01% and Ti is less than 0.003%, there is almost no effect on the increase in strength at room temperature, medium and high temperatures, and when Nb is 0.05% or more, V is 0.1% or more, and Ti is 0.03% or more, Since the weldability deteriorates, the above range is set.

また、 Cu;0.01%以上1.5%未満 Cuは固溶強化に対し有効な元素であり、また1%程度以
上では析出強化も期待できる元素である。また、耐腐蝕
性に対しても有効である。しかし、1.5%以上の添加は
コスト上昇に加えて、鋼板の表面疵の問題があるため、
0.01%以上1.5%未満とした。
Cu: 0.01% or more and less than 1.5% Cu is an element effective for solid solution strengthening, and if it is about 1% or more, precipitation strengthening can be expected. It is also effective for corrosion resistance. However, addition of 1.5% or more causes a problem of surface flaws of the steel plate in addition to cost increase,
0.01% or more and less than 1.5%.

Ni;0.02%以上1.5%未満 Niは低温靭性の向上に有効な元素であり、0.02%未満で
は、その効果が少なく、また、Niは高価であるため1.5
%以上では顕著なコスト上昇となるので、0.02%以上1.
5%未満とした。
Ni: 0.02% or more and less than 1.5% Ni is an element effective in improving low temperature toughness, and if less than 0.02%, its effect is small, and since Ni is expensive, it is 1.5
% Is more than 0.02% 1.
Less than 5%.

Cr;0.05%以上1.0%未満 Crは固溶強化元素として有効であり、また、高温強度の
上昇及び耐食性に対しても有効であり、その効果は0.05
%以上の添加が必要であるが、1.0%以上ではコスト上
昇と共に、溶接性を劣化させるので、0.05%以上1.0%
未満とした。
Cr: 0.05% or more and less than 1.0% Cr is effective as a solid solution strengthening element, and is also effective for increasing high temperature strength and corrosion resistance.
% Or more is required, but if 1.0% or more, the cost rises and the weldability deteriorates, so 0.05% or more 1.0%
Less than

[実施例] 表1に供試鋼の化学成分を示す。[Example] Table 1 shows the chemical composition of the test steel.

本発明鋼は、符号A〜Dの6種類であり、比較鋼として
符号E、Fの2種類を用いた。
The steels of the present invention are six types of symbols A to D, and two types of symbols E and F are used as comparative steels.

鋼A〜Dは、本発明で規定するMo;0.10%以上0.50%未
満及びNb+2V+1.5Tiが0.005%以上0.30%以下の条件を
充足しているが、鋼E、Fはこの範囲外である。供試鋼
は、強度水準も変化させる目的で成分系を決めた。ま
た、Nb、V、Tiの添加元素の他に、Cu、Ni、Cr、Al、N
等を添加している。
Steels A to D satisfy the conditions of Mo: 0.10% or more and less than 0.50% and Nb + 2V + 1.5Ti of 0.005% or more and 0.30% or less specified in the present invention, but Steels E and F are out of this range. The composition of the test steel was determined with the purpose of changing the strength level. In addition to Nb, V, and Ti additive elements, Cu, Ni, Cr, Al, N
Etc. are added.

表2に表1の鋼を用いて、種々のプロセスにより製造し
た鋼板の機械的性質を示す。
Table 2 shows the mechanical properties of steel sheets produced by various processes using the steels of Table 1.

製造プロセスは、圧延のまま、制御圧延、制御冷却、直
接焼入−焼戻、再加熱焼入−焼戻等である。これらのプ
ロセスの選択により常温での強度や靭性水準を変化させ
ることが可能であり同一化学成分でも異なる機械的性質
を示す。また、高温での強度も変化する。
The manufacturing process includes, as-rolled, controlled rolling, controlled cooling, direct quenching-tempering, reheating quenching-tempering and the like. It is possible to change the strength and toughness level at room temperature by selecting these processes, and different mechanical properties are exhibited even with the same chemical composition. Also, the strength at high temperature changes.

高温でのYSは、請求範囲に示した400℃超500℃以下、50
0℃超600とし℃以下、600℃超650℃以下のそれぞれの範
囲から、試験温度を選択して引張試験を実施して、常温
YSとの比率も含めて表示した。本発明鋼では、それぞれ
の温度においても十分に高い降伏強度が得られており、
その常温YSとの比率も十分に高い値である。また、靭性
水準に関しても十分に高い。
YS at high temperature is more than 400 ℃ and 500 ℃ or less, 50
From 0 ° C to 600 ° C and below, and 600 ° C to 650 ° C and below, select the test temperature and perform the tensile test.
It is shown including the ratio with YS. In the steel of the present invention, a sufficiently high yield strength is obtained at each temperature,
The ratio with the room temperature YS is also a sufficiently high value. Also, the toughness level is sufficiently high.

比較鋼であるE−1、E−2は、成分系が本発明の範囲
外であり、高温でのYSは低く、本発明で規定している強
度水準以下である。比較鋼F−1は、十分に高い高温YS
が得られているが、靭性が低く、構造用鋼としては不適
切であると共に、同一強度水準の本発明鋼(例えばA−
2等)に比較しても、かなり低い靭性であることが明ら
かである。
The comparative steels E-1 and E-2 have a component system outside the scope of the present invention, have a low YS at high temperatures, and are below the strength level specified in the present invention. Comparative steel F-1 has a sufficiently high high temperature YS
However, the toughness is low, it is not suitable as a structural steel, and the steel of the present invention having the same strength level (for example, A-
(2 etc.), it is clear that the toughness is considerably low.

なお、本発明では、熱間圧延に関しては特に規定してい
ないが、所定の熱間圧延、あるいは、それに相当する熱
間圧延を行うことで十分な特性が得られる。正し、一般
には、上記実施例に示すように、加熱コスト等の観点か
ら、スラブ加熱温度は1300℃以下とし、目的とする鋼材
の靭性、強度水準に応じて、圧延温度域、圧下率、圧延
終了温度を制御する制御圧延を実施する。また、圧延終
了後の冷却方法に関しても、目的とする鋼材の靭性、強
度水準に応じて空冷、あるいは強制冷却を実施する。さ
らに、同様に、Ac1以下の温度で再加熱処理を実施する
こと、または、焼入−焼戻処理を行うことも差し支えな
い。
In the present invention, although hot rolling is not particularly specified, sufficient characteristics can be obtained by performing predetermined hot rolling or hot rolling corresponding thereto. Correctly, generally, as shown in the above examples, from the viewpoint of heating cost, the slab heating temperature is 1300 ° C. or less, the toughness of the target steel material, depending on the strength level, the rolling temperature range, the rolling reduction, Control rolling is performed to control the rolling end temperature. As for the cooling method after the completion of rolling, air cooling or forced cooling is performed depending on the toughness and strength level of the target steel material. Further, similarly, the reheating treatment may be performed at a temperature of Ac 1 or lower, or the quenching-tempering treatment may be performed.

[発明の効果] この発明の構造用耐火鋼材は上記のようなもので、構造
用鋼材として十分な特性を満足しつつ、高温での高い強
度を保持しているので、従来耐火特性を要求されていた
構造物で使用されていた耐火被覆の厚さを低減、あるい
は設計、施工法の簡便化が期待できると共に、その他の
耐火に対する対策も軽減できる等の効果がある。
[Advantages of the Invention] The structural fire-resistant steel material of the present invention is as described above, and since it retains high strength at high temperatures while satisfying sufficient characteristics as a structural steel material, it has conventionally been required to have fire-resistant characteristics. It is expected that the thickness of the fireproof coating used in the conventional structure can be reduced, the design and construction method can be simplified, and other measures against fireproof can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は、(Nb+2V+1.5Ti)量に対する、高温YSの常
温YSに対する比率及び靭性との関係を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing the relationship between the ratio of high temperature YS to room temperature YS and toughness with respect to the amount of (Nb + 2V + 1.5Ti).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下田 達也 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (56)参考文献 特開 昭56−252(JP,A) 特開 昭59−43845(JP,A) 特開 昭61−186453(JP,A) 特開 昭61−194153(JP,A) 特公 昭46−27951(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuya Shimoda 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (56) References JP-A-56-252 (JP, A) JP-A-SHO 59-43845 (JP, A) JP-A-61-186453 (JP, A) JP-A-61-194153 (JP, A) JP-B-46-27951 (JP, B1)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】重量%で、 C=0.05%以上0.20%未満、 Si=0.1%以上2.0%未満、 Mn=0.30%以上2.0%未満、 P=0.03%以下、 S=0.03%以下、 Mo=0.10%以上0.50%未満、 sol.Al=0.002%以上0.04%未満、 N=0.0010%以上0.020%未満、 を含み、残部が不可避不純物とFeからなり、さらに Nb=0.005%以上0.20%未満、 V=0.01%以上0.1%未満、及び Ti=0.003%以上0.03%未満の群から選択された一種又
は二種以上を含み、 Nbの一種を添加する場合は、Mo=0.20%を越え0.40%未
満とし、NbとTiの二種を添加する場合は、Mo=0.15%を
越え0.40%未満とし、NbとVの二種を添加する場合は、
Mo=0.10%以上0.40%未満、V=0.01%以上0.042%未
満とし、Nb,V及びTiの3種を添加する場合は、Mo=0.10
%以上0.40%未満とし、かつ 0.005%≦Nb+2V+1.5Ti≦0.30%の範囲で含有する熱間
圧延鋼材であって、次式で示す高温降伏強度を満足する
溶接性および延靭性に優れた建築用耐火鋼材。 YS(RT)=常温における降伏強度(kgf/mm2) YS(450)=温度400℃超500℃以下における降伏強度(k
gf/mm2) YS(550)=温度500℃超600℃以下における降伏強度(k
gf/mm2) YS(650)=温度600℃超650℃以下における降伏強度(k
gf/mm2
1. By weight%, C = 0.05% or more and less than 0.20%, Si = 0.1% or more and less than 2.0%, Mn = 0.30% or more and less than 2.0%, P = 0.03% or less, S = 0.03% or less, Mo = 0.10% or more and less than 0.50%, sol.Al = 0.002% or more and less than 0.04%, N = 0.0010% or more and less than 0.020%, the balance consisting of inevitable impurities and Fe, and Nb = 0.005% or more and less than 0.20%, V = 0.01% or more and less than 0.1%, and Ti = 0.003% or more and less than 0.03%, including one or more selected from the group. When adding one kind of Nb, Mo = more than 0.20% and less than 0.40% , When adding two kinds of Nb and Ti, Mo = more than 0.15% and less than 0.40%, and when adding two kinds of Nb and V,
Mo = 0.10% or more and less than 0.40%, V = 0.01% or more and less than 0.042%, and Mo = 0.10 when three kinds of Nb, V and Ti are added.
% To less than 0.40% and 0.005% ≦ Nb + 2V + 1.5Ti ≦ 0.30% contained hot-rolled steel, which is excellent in weldability and ductility satisfying the high temperature yield strength shown by the following formula. Fire resistant steel. YS (RT) = Yield strength at room temperature (kgf / mm 2 ) YS (450) = Yield strength at temperature above 400 ℃ and below 500 ℃ (k
gf / mm 2 ) YS (550) = yield strength (k above 500 ℃ and below 600 ℃)
gf / mm 2 ) YS (650) = Yield strength (k above 600 ℃ and below 650 ℃)
gf / mm 2 )
【請求項2】重量%で、 Cu=0.01%以上1.5%未満、 Ni=0.02%以上1.5%未満、及び Cr=0.05%以上1.0%未満、 の群から選択された一種又は二種以上を含有する請求項
1に記載の建築用耐火鋼材。
2. One or more kinds selected from the group of Cu = 0.01% or more and less than 1.5%, Ni = 0.02% or more and less than 1.5%, and Cr = 0.05% or more and less than 1.0% by weight%. The fireproof steel material for construction according to claim 1.
【請求項3】重量%で、 C=0.05%以上0.20%未満、 Si=0.1%以上2.0%未満、 Mn=0.30%以上2.0%未満、 P=0.03%以下、 S=0.03%以下、 Mo=0.10%以上0.50%未満、 sol.Al=0.002%以上0.04%未満、 N=0.0010%以上0.020%未満、 を含み、残部が不可避不純物とFeからなり、さらに Nb=0.005%以上0.20%未満、 V=0.01%以上0.1%未満、及び Ti=0.003%以上0.03%未満の群から選択された一種又
は二種以上を含み、 Nbの一種を添加する場合は、Mo=0.20%を越え0.40%未
満とし、NbとTiの二種を添加する場合は、Mo=0.15%を
越え0.40%未満とし、NbとVの二種を添加する場合は、
Mo=0.10%以上0.40%未満、V=0.01%以上0.042%未
満とし、Nb,V及びTiの3種を添加する場合は、Mo=0.10
%以上0.40%未満とし、かつ 0.005%≦Nb+2V+1.5Ti≦0.30%の範囲で含有する熱間
圧延鋼材であって、溶接性および延靭性に優れた建築用
耐火鋼材。
3. In% by weight, C = 0.05% or more and less than 0.20%, Si = 0.1% or more and less than 2.0%, Mn = 0.30% or more and less than 2.0%, P = 0.03% or less, S = 0.03% or less, Mo = 0.10% or more and less than 0.50%, sol.Al = 0.002% or more and less than 0.04%, N = 0.0010% or more and less than 0.020%, the balance consisting of inevitable impurities and Fe, and Nb = 0.005% or more and less than 0.20%, V = 0.01% or more and less than 0.1%, and Ti = 0.003% or more and less than 0.03%, including one or more selected from the group. When adding one kind of Nb, Mo = more than 0.20% and less than 0.40% , When adding two kinds of Nb and Ti, Mo = more than 0.15% and less than 0.40%, and when adding two kinds of Nb and V,
Mo = 0.10% or more and less than 0.40%, V = 0.01% or more and less than 0.042%, and Mo = 0.10 when three kinds of Nb, V and Ti are added.
% To less than 0.40% and 0.005% ≤ Nb + 2V + 1.5Ti ≤ 0.30% contained in the range of hot-rolled steel, which is a fire resistant steel for construction with excellent weldability and ductility.
【請求項4】重量%で、 Cu=0.01%以上1.5%未満、 Ni=0.02%以上1.5%未満、及び Cr=0.05%以上1.0%未満、 の群から選択された一種又は二種以上を含有する請求項
3に記載の建築用耐火鋼材。
4. One or more selected from the group of Cu = 0.01% or more and less than 1.5%, Ni = 0.02% or more and less than 1.5%, and Cr = 0.05% or more and less than 1.0% by weight%. The fireproof steel material for construction according to claim 3.
【請求項5】重量%で、 C=0.05%以上0.20%未満、 Si=0.1%以上2.0%未満、 Mn=0.30%以上2.0%未満、 P=0.03%以下、 S=0.03%以下、 Mo=0.10%以上0.50%未満、 sol.Al=0.002%以上0.04%未満、 N=0.0010%以上0.020%未満、 を含み、残部が不可避不純物とFeからなり、さらに Nb=0.005%以上0.20%未満、 V=0.01%以上0.1%未満、及び Ti=0.003%以上0.03%未満の群から選択された一種又
は二種以上を含み、 Nbの一種を添加する場合は、Mo=0.20%を越え0.40%未
満とし、NbとTiの二種を添加する場合は、Mo=0.15%を
越え0.40%未満とし、NbとVの二種を添加する場合は、
Mo=0.10%以上0.40%未満、V=0.042%を越え、0.1%
以下とし、Nb,V及びTiの3種を添加する場合は、Mo=0.
10%以上0.40%未満とし、かつ 0.005%≦Nb+2V+1.5Ti≦0.30%の範囲で含有する熱間
圧延鋼材であって、次式で示す高温降伏強度を満足する
溶接性および延靭性に優れた建築用耐火鋼材。 YS(RT)=常温における降伏強度(kgf/mm2) YS(450)=温度400℃超500℃以下における降伏強度(k
gf/mm2) YS(550)=温度500℃超600℃以下における降伏強度(k
gf/mm2) YS(650)=温度600℃超650℃以下における降伏強度(k
gf/mm2
5. By weight%, C = 0.05% or more and less than 0.20%, Si = 0.1% or more and less than 2.0%, Mn = 0.30% or more and less than 2.0%, P = 0.03% or less, S = 0.03% or less, Mo = 0.10% or more and less than 0.50%, sol.Al = 0.002% or more and less than 0.04%, N = 0.0010% or more and less than 0.020%, the balance consisting of inevitable impurities and Fe, and Nb = 0.005% or more and less than 0.20%, V = 0.01% or more and less than 0.1%, and Ti = 0.003% or more and less than 0.03%, including one or more selected from the group. When adding one kind of Nb, Mo = more than 0.20% and less than 0.40% , When adding two kinds of Nb and Ti, Mo = more than 0.15% and less than 0.40%, and when adding two kinds of Nb and V,
Mo = 0.10% or more and less than 0.40%, V = 0.042% or more, 0.1%
Below, when adding three kinds of Nb, V and Ti, Mo = 0.
A hot-rolled steel material containing 10% or more and less than 0.40% and 0.005% ≤ Nb + 2V + 1.5Ti ≤ 0.30%, which is excellent in weldability and ductility satisfying the high temperature yield strength shown by the following formula. Fire resistant steel material. YS (RT) = Yield strength at room temperature (kgf / mm 2 ) YS (450) = Yield strength at temperature above 400 ℃ and below 500 ℃ (k
gf / mm 2 ) YS (550) = yield strength (k above 500 ℃ and below 600 ℃)
gf / mm 2 ) YS (650) = Yield strength (k above 600 ℃ and below 650 ℃)
gf / mm 2 )
【請求項6】重量%で、 Cu=0.01%以上1.5%未満、 Ni=0.02%以上1.5%未満、及び Cr=0.05%以上1.0%未満、 の群から選択された一種又は二種以上を含有する請求項
5に記載の建築用耐火鋼材。
6. Containing one or two or more selected from the group of Cu = 0.01% or more and less than 1.5%, Ni = 0.02% or more and less than 1.5%, and Cr = 0.05% or more and less than 1.0% in weight%. The fireproof steel material for construction according to claim 5.
【請求項7】重量%で、 C=0.05%以上0.20%未満、 Si=0.1%以上2.0%未満、 Mn=0.30%以上2.0%未満、 P=0.03%以下、 S=0.03%以下、 Mo=0.10%以上0.50%未満、 sol.Al=0.002%以上0.04%未満、 N=0.0010%以上0.020%未満、 を含み、残部が不可避不純物とFeからなり、さらに Nb=0.005%以上0.20%未満、 V=0.01%以上0.1%未満、及び Ti=0.003%以上0.03%未満の群から選択された一種又
は二種以上を含み、 Nbの一種を添加する場合は、Mo=0.20%を越え0.40%未
満とし、NbとTiの二種を添加する場合は、Mo=0.15%を
越え0.40%未満とし、NbとVの二種を添加する場合は、
Mo=0.10%以上0.40%未満、V=0.042%を越え、0.1%
以下とし、Nb,V及びTiの3種を添加する場合は、Mo=0.
10%以上0.40%未満とし、かつ 0.005%≦Nb+2V+1.5Ti≦0.30%の範囲で含有する熱間
圧延鋼材であって、溶接性および延靭性に優れた建築用
耐火鋼材。
7. In% by weight, C = 0.05% or more and less than 0.20%, Si = 0.1% or more and less than 2.0%, Mn = 0.30% or more and less than 2.0%, P = 0.03% or less, S = 0.03% or less, Mo = 0.10% or more and less than 0.50%, sol.Al = 0.002% or more and less than 0.04%, N = 0.0010% or more and less than 0.020%, the balance consisting of inevitable impurities and Fe, and Nb = 0.005% or more and less than 0.20%, V = 0.01% or more and less than 0.1%, and Ti = 0.003% or more and less than 0.03%, including one or more selected from the group. When adding one kind of Nb, Mo = more than 0.20% and less than 0.40% , When adding two kinds of Nb and Ti, Mo = more than 0.15% and less than 0.40%, and when adding two kinds of Nb and V,
Mo = 0.10% or more and less than 0.40%, V = 0.042% or more, 0.1%
Below, when adding three kinds of Nb, V and Ti, Mo = 0.
A hot-rolled steel material containing 10% or more and less than 0.40% and 0.005% ≤ Nb + 2V + 1.5Ti ≤ 0.30%, which is a fire-resistant structural steel material with excellent weldability and ductility.
【請求項8】重量%で、 Cu=0.01%以上1.5%未満、 Ni=0.02%以上1.5%未満、及び Cr=0.05%以上1.0%未満、 の群から選択された一種又は二種以上を含有する請求項
7に記載の建築用耐火鋼材。
8. Contains one or more selected from the group of Cu = 0.01% or more and less than 1.5%, Ni = 0.02% or more and less than 1.5%, and Cr = 0.05% or more and less than 1.0% by weight. The fireproof steel material for construction according to claim 7.
JP63324918A 1988-12-23 1988-12-23 Fireproof steel for construction Expired - Lifetime JPH0788554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63324918A JPH0788554B2 (en) 1988-12-23 1988-12-23 Fireproof steel for construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63324918A JPH0788554B2 (en) 1988-12-23 1988-12-23 Fireproof steel for construction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21558996A Division JP2828054B2 (en) 1996-08-15 1996-08-15 Fire resistant steel for construction

Publications (2)

Publication Number Publication Date
JPH02170943A JPH02170943A (en) 1990-07-02
JPH0788554B2 true JPH0788554B2 (en) 1995-09-27

Family

ID=18171068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63324918A Expired - Lifetime JPH0788554B2 (en) 1988-12-23 1988-12-23 Fireproof steel for construction

Country Status (1)

Country Link
JP (1) JPH0788554B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768578B2 (en) * 1989-01-12 1995-07-26 新日本製鐵株式会社 Method of manufacturing low yield specific hot-rolled steel sheet with excellent fire resistance for construction and steel material for construction using the steel sheet
JPH0739608B2 (en) * 1989-03-28 1995-05-01 住友金属工業株式会社 Manufacturing method of steel for steel construction with low elastic modulus decrease at high temperature
JPH072968B2 (en) * 1989-09-22 1995-01-18 新日本製鐵株式会社 Method for manufacturing structural steel with excellent fire resistance
JPH0737647B2 (en) * 1990-08-27 1995-04-26 新日本製鐵株式会社 Method for producing low yield ratio H-section steel excellent in fire resistance and toughness
JP2551250B2 (en) * 1991-03-20 1996-11-06 日本鋼管株式会社 Method for manufacturing structural refractory steel with excellent high-temperature strength properties after reheating
JP2551254B2 (en) * 1991-04-04 1996-11-06 日本鋼管株式会社 Method for manufacturing structural refractory steel with excellent high-temperature strength properties after reheating
CN103060690A (en) 2013-01-22 2013-04-24 宝山钢铁股份有限公司 High-strength steel plate and manufacturing method thereof
JP6083514B2 (en) * 2013-03-25 2017-02-22 国立研究開発法人日本原子力研究開発機構 Heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942744B2 (en) * 1979-06-11 1984-10-17 住友金属工業株式会社 Non-thermal heat working Cr-Mo steel with excellent strength and toughness
JPS5943845A (en) * 1982-09-07 1984-03-12 Nippon Steel Corp Low-alloy heat-resistant steel with improved hot workability and strength
JPS61186453A (en) * 1985-02-13 1986-08-20 Kobe Steel Ltd High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JPS61194153A (en) * 1985-02-21 1986-08-28 Nippon Steel Corp Steel sheet for pressure vessel having high strength and high toughness

Also Published As

Publication number Publication date
JPH02170943A (en) 1990-07-02

Similar Documents

Publication Publication Date Title
JPH02200756A (en) High strength heat resisting steel excellent in workability
US5591391A (en) High chromium ferritic heat-resistant steel
JPH01275739A (en) Low si high strength and heat-resistant steel tube having excellent ductility and toughness
JP3546421B2 (en) High-strength, high corrosion-resistant nitrogen-containing austenitic stainless steel
JPH0788554B2 (en) Fireproof steel for construction
JPS6119767A (en) Austenite stainless steel for low temperature
JPS61179835A (en) High-strength and highly corrosion resistant austenitic stainless steel
US5792285A (en) Hot-rolled ferritic steel for motor vehicle exhaust members
JPH0152465B2 (en)
US4141724A (en) Low-cost, high temperature oxidation-resistant steel
JPS6199660A (en) High strength welded steel pipe for line pipe
USRE28772E (en) High strength corrosion-resistant stainless steel
JP3319222B2 (en) Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint
JP2828054B2 (en) Fire resistant steel for construction
JPS61177352A (en) Heat resistant cast steel having superior elongation characteristic at room temperature
JPS58391A (en) Submerged arc welding method for high temperature steel
JPH04193907A (en) Production of 50kgf/mm2 class refractory steel plate for construction use
JP3355711B2 (en) High Cr ferritic heat resistant steel with excellent high temperature strength and toughness
JP2551250B2 (en) Method for manufacturing structural refractory steel with excellent high-temperature strength properties after reheating
JPS61186453A (en) High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JPS5825460A (en) High strength austenite stainless steel with high fabrication property and corrosion resistance
JP2551254B2 (en) Method for manufacturing structural refractory steel with excellent high-temperature strength properties after reheating
JPH09184043A (en) Low alloy heat resistant steel excellent in high temperature strength and weldability
JP2001234276A (en) Cr-Mo STEEL HAVING HIGH TOUGHNESS AND EXCELLENT IN REHEAT CRACKING RESISTANCE
JP2008121068A (en) Steel material for iron shell of converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 14