JPH1068018A - Production of fire resistant steel sheet for structural purpose excellent in welding heat affected zone toughness - Google Patents

Production of fire resistant steel sheet for structural purpose excellent in welding heat affected zone toughness

Info

Publication number
JPH1068018A
JPH1068018A JP22539696A JP22539696A JPH1068018A JP H1068018 A JPH1068018 A JP H1068018A JP 22539696 A JP22539696 A JP 22539696A JP 22539696 A JP22539696 A JP 22539696A JP H1068018 A JPH1068018 A JP H1068018A
Authority
JP
Japan
Prior art keywords
steel sheet
steel
less
affected zone
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22539696A
Other languages
Japanese (ja)
Inventor
Hiroshi Iki
浩 壱岐
Kazushi Onishi
一志 大西
Shuichi Suzuki
秀一 鈴木
Masahiko Hamada
昌彦 濱田
Takeshi Ichinose
威 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22539696A priority Critical patent/JPH1068018A/en
Publication of JPH1068018A publication Critical patent/JPH1068018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fire resistant steel sheet for structural purposes excellent in a welding heat affected zone toughness and advantageously usable as structural members for land structures in civil engineering and construction or the like and marine structures or the like. SOLUTION: A slab having a chemical compsn. contg., by weight, 0.03 to 0.2% C, <=0.6% Si, 0.6 to 2.0% Mn, <=0.030% S, 0.2 to 0.7% Mo, <=0.02% Al, <=0.02% Ti, 0.001 to 0.01% O, <=0.01% N, and the balance Fe with inevitable impurities, also composed of oxides, in which dispersed particles having 1 to 10μm dimension are dispersed into a steel matrix by the average density of >=4 pieces per mm<2> , as for the oxides, the oxide composing elements having a chemical compsn. contg., by atom, 5 to 50% Mn and 50 to 95% to regulate the total to 100% are contained is heated at 1000 to 1280 deg.C, after that, rolling is started and is finished at the Ar3 point or above, thereafter, the obtd. steel sheet is subjected to air cooling to a room temp. or is subjected to accelerated cooling to <=700 deg.C so as to regulate the cooling rate in the surface of the steel to >=3 deg.C/sec and is subsequently subjected to air cooling to form into a steel sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶接熱影響部靭性
の優れた構造用耐火鋼板の製造法に関する。より詳細に
は、本発明は、溶接熱影響部靭性に優れ、土木、建築等
の陸上構造物や海洋構造物の構造部材として有利的に使
用できる構造用耐火鋼板の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a structural refractory steel sheet having excellent toughness in a heat-affected zone of a weld. More specifically, the present invention relates to a method for producing a structural refractory steel sheet which has excellent toughness in a heat affected zone of a weld and can be advantageously used as a structural member of a land structure such as civil engineering or a building, or a marine structure.

【0002】[0002]

【従来の技術】建築構造物が火災に遭うと、その構造物
の構成部材である鉄骨は高温暴露されるため、その耐力
は、場合によっては建築構造物として要求される下限を
下回る。例えば、従来より建築用構造部材として使用さ
れているSi−Mn鋼板の場合には、350℃を超える
高温に暴露されると、建築構造物の構造部材として要求
されている耐力(「長期耐力」と言われているものであ
り、常温耐力の2/3程度の力である)である217N
/mm2を下回ってしまう。従って、火災に遭っても鉄
骨が建築構造物として必要な耐力を維持できるよう、従
来は、建築基準法により、鉄骨に耐火施工を実施するこ
とが義務づけられていた。具体的には、スラグウール、
ガラスウールアスベスト等を基材とする吹き付け材やフ
ェルトを展着する他、防火モルタル等で鉄骨の表面を包
被することが行われてきた。しかしながら、鉄骨に耐火
施工を実施することは、施工費の増大や工期の延長等を
必然的にもたらしていた。
2. Description of the Related Art When a building structure is fired, the steel members constituting the structure are exposed to high temperatures, so that its proof strength is sometimes lower than the lower limit required for the building structure. For example, in the case of a Si—Mn steel sheet conventionally used as a structural member for a building, when exposed to a high temperature exceeding 350 ° C., the proof stress required as a structural member of a building structure (“long-term proof stress”) 217N which is about 2/3 of the normal temperature proof stress).
/ Mm 2 . Therefore, in order to maintain the required strength of a steel structure as a building structure even in the event of a fire, it has been conventionally required to carry out fireproof construction on the steel frame by the Building Standards Law. Specifically, slag wool,
Spraying materials and felts made of glass wool asbestos or the like as a base material have been spread, and the surface of a steel frame has been covered with a fire mortar or the like. However, performing fireproof construction on steel frames inevitably results in an increase in construction costs and an extension of the construction period.

【0003】最近になって施行された「新耐火設計法」
によれば設計基準が変更され、耐火性すなわち高温耐力
の優れた鋼材である耐火鋼材を鉄骨として用いれば、耐
火施工を従来に比べて軽減でき、場合によっては耐火施
工の実施が免除されることとなった。現在は施工費の低
減や工期の短縮化が求められていることから、上記設計
基準を満足するような耐火鋼材の使用の動きが出てい
る。
[0003] The "New Fireproof Design Law" recently implemented
According to this, the design standards are changed, and if fire-resistant steel material, which is a steel material with excellent fire resistance, that is, high temperature resistance, can be used as a steel frame, fire-resistant construction can be reduced compared to the conventional case, and in some cases, the implementation of fire-resistant construction will be exempted It became. At present, there is a demand for a reduction in construction costs and a shortened construction period, and there is a movement to use refractory steel materials that satisfy the above design criteria.

【0004】高温耐力に優れた耐火鋼材用の鋼板として
は、近年、ボイラ・圧力容器用に広く用いられているC
r−Mo鋼板が知られている(JISG4109参
照)。このCr−Mo鋼板は、重量%で、以下の化学組
成を有し: Si: 0.50%以下 Mn: 0.30〜0.60% P: 0.030%以下 S: 0.030%以下 Cr: 0.50〜6.00% Mo: 0.40〜1.15% 残部: Feおよび不可避的不純物 600℃における耐力が217N/mm2以上という特
性を有する。しかしながら、その一方で、該鋼板は、以
下の式で定義される溶接割れ感受性指数Pc(化学成分
の他に溶接金属の水素量及び試験材の板厚の係数を入れ
た(低温)溶接割れ感受性の度合を示す): Pc=C+Si/30+Mn/20+Ni/60+Cr/2
0+Mo/15+V/10+5B+H/60+t/600 (ここで、各成分は重量%、Hは溶着金属の拡散性水素
量(cc/g)、tは板厚(mm)で表す。)が高いた
め、溶接熱影響部の靭性が低い。従って、入熱の大きい
溶接を溶接割れを生ぜずに実施するのは困難である。
[0004] As a steel plate for refractory steel excellent in high-temperature proof strength, C-plate widely used for boilers and pressure vessels in recent years has been used.
An r-Mo steel sheet is known (see JIS G4109). This Cr-Mo steel sheet has the following chemical composition by weight%: Si: 0.50% or less Mn: 0.30 to 0.60% P: 0.030% or less S: 0.030% or less Cr: 0.50 to 6.00% Mo: 0.40 to 1.15% Remainder: Fe and unavoidable impurities The proof stress at 600 ° C. is 217 N / mm 2 or more. However, on the other hand, the steel plate has a weld cracking susceptibility index Pc (a low-temperature welding cracking susceptibility in which the coefficient of the hydrogen content of the weld metal and the thickness of the test material are included in addition to the chemical composition) as defined by the following equation. Pc = C + Si / 30 + Mn / 20 + Ni / 60 + Cr / 2
0 + Mo / 15 + V / 10 + 5B + H / 60 + t / 600 (where each component is weight%, H is the amount of diffusible hydrogen of the deposited metal (cc / g), and t is the plate thickness (mm)), so that welding is performed. Low heat affected zone toughness. Therefore, it is difficult to perform welding with a large heat input without causing welding cracks.

【0005】また、建築構造物用鋼材には、地震時にお
ける建築物の破壊を防止する観点から、降伏比(引張強
度に対する降伏強度の割合)を80%以下まで低減させ
ることが求められている。
[0005] Steel materials for building structures are required to reduce the yield ratio (the ratio of the yield strength to the tensile strength) to 80% or less from the viewpoint of preventing the destruction of the building during an earthquake. .

【0006】上述の様々な要求に答えるべく、建築構造
物用鋼材(鋼板)が提案されているが、その一つに、我
々が先に提案した溶接性、耐火性に優れた建築用鋼板が
ある(特開平6−192730)。この鋼板は、重量%
で C : 0.05〜0.10% Si: 0.05〜0.35% Mn: 0.60〜1.50% Nb: 0.010%以下 V: 0.020〜0.070% Mo: 0.10〜0.40% を含み、残部がFe及び不可避的不純物から成る化学組
成を有し;更に、下記式により規定されるCe
(W):0.30〜0.40%、下記式により規定さ
れるMo*:0.52%以上である Ceq(W)(%)=C+Si/24+Mn/6+Ni/40+Mo/4 +V/14+Cr/5 ‥‥‥ Mo*=9/17C+4/17Mn+Mo+24/17V
+92/17Nb ;鋼片を、1000〜1300℃の温度域に加熱して熱
間圧延を行った後、Ar3点以上の温度域より加速冷却
を行い、400℃以下の温度域で前記加速冷却を停止
し、(Ac1+10℃)以上(Ar3−20℃)以下の温
度域で焼戻しを行うことにより製造されたものである。
この鋼板は、Ceq(W)を低め、Mo*を規定すること
により、溶接継手の溶接熱影響部の靭性を向上させるこ
とが意図されている。
[0006] Steel materials (steel plates) for architectural structures have been proposed to meet the various requirements described above. One of them is a steel plate for architectural materials which we previously proposed, which has excellent weldability and fire resistance. (JP-A-6-192730). This steel sheet is
And C: 0.05 to 0.10% Si: 0.05 to 0.35% Mn: 0.60 to 1.50% Nb: 0.010% or less V: 0.020 to 0.070% Mo: 0.10 to 0.40%, with the balance being a chemical composition of Fe and unavoidable impurities;
q (W) : 0.30 to 0.40%, Mo * defined by the following formula: 0.52% or more Ceq (W) (%) = C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + V / 14 + Cr ‥‥‥ Mo * = 9 / 17C + 4 / 17Mn + Mo + 24 / 17V
+ 92 / 17Nb; After heating the slab to a temperature range of 1000 to 1300 ° C. and performing hot rolling, accelerated cooling is performed from a temperature range of Ar 3 points or more, and the accelerated cooling is performed at a temperature range of 400 ° C. or less. Is stopped, and tempering is performed in a temperature range of (Ac 1 + 10 ° C.) or more and (Ar 3 −20 ° C.) or less.
This steel sheet is intended to lower the Ceq (W) and to specify Mo *, thereby improving the toughness of the weld heat affected zone of the welded joint.

【0007】しかしながら、近年は施工能率のアップを
図る観点から、入熱が30KJ/mmやそれ以上にもサ
ブマージアーク溶接(SAW)のような大入熱溶接をボ
ックス柱などの構造部材の溶接に適用することが考えら
れており、更に溶接熱影響部靭性の一層優れた構造用鋼
板の開発が求められている。
However, in recent years, from the viewpoint of improving construction efficiency, large heat input welding such as submerged arc welding (SAW) having a heat input of 30 KJ / mm or more is used for welding structural members such as box columns. It is considered to be applied, and the development of a structural steel sheet having more excellent toughness in the heat-affected zone of the weld is required.

【0008】なお、これらは建築用を含む陸上構造物や
海洋構造物の構造部材に有利な特性である。
[0008] These are advantageous properties for structural members of land structures including buildings, and offshore structures.

【0009】[0009]

【発明が解決しようとする課題】それ故、本発明は、耐
火性に優れ、且つ、溶接熱影響部靭性が更に一層優れた
構造用鋼板であって、従来と同じように設計及び施工を
行うことができる構造用鋼板を提供することを目的とす
る。
SUMMARY OF THE INVENTION Therefore, the present invention is a structural steel sheet which is excellent in fire resistance and further excellent in the toughness of the weld heat affected zone, and is designed and constructed in the same manner as in the prior art. It is an object of the present invention to provide a structural steel sheet that can be used.

【0010】また、本発明は、上記構造用鋼板の簡便な
製造方法を提供することを目的とする。
Another object of the present invention is to provide a simple method for producing the above structural steel sheet.

【0011】[0011]

【課題を解決するための手段】本発明の発明者は、上述
の特開平6−192730号で提案された鋼板のように
Ceq(W)を低減し且つMo*を規定しただけのもので
は、30KJ/mmを超える大入熱溶接を行うと溶接熱
影響部の靭性が低下してしまうこと、更には、大入熱溶
接後に溶接熱影響部がシャルピー衝撃試験で評価される
熱影響部のノッチ位置の吸収エネルギー(VO)≧47
Jを満足するような靭性を鋼板に付与させるが必要であ
ることを認識した上で、かかる特性を具備した鋼板の製
造を試みたところ、主にAl、Mn及びTiからなる複
合酸化物からなる粒子を鋼マトリックス中に微細に分散
析出させると、溶接熱サイクルの冷却途中において粒内
フェライトの析出が促進され、結果的に、大入熱溶接適
用後の溶接熱影響部における低温靭性が有意的に改善で
きることを見いだし、更に十分な実験の結果、新規な溶
接熱影響部靭性の優れた構造用耐火鋼板の製造法を提案
するに至った。
Means for Solving the Problems The inventor of the present invention has proposed that the steel plate proposed in JP-A-6-192730, which only reduces Ceq (W) and specifies Mo *, When large heat input welding exceeding 30 KJ / mm is performed, the toughness of the heat affected zone decreases, and further, the notch of the heat affected zone is evaluated by a Charpy impact test after the large heat input welding. Absorbed energy of position ( V E O ) ≧ 47
Recognizing that it is necessary to impart to the steel sheet toughness that satisfies J, and tried to manufacture a steel sheet having such properties, it was mainly composed of a composite oxide consisting of Al, Mn, and Ti. When the particles are finely dispersed and precipitated in the steel matrix, the precipitation of intragranular ferrite is promoted during the cooling of the welding heat cycle, and as a result, the low-temperature toughness in the weld heat affected zone after application of large heat input welding is significant. As a result of more sufficient experiments, a new method for producing a structural refractory steel sheet having excellent toughness in the heat affected zone has been proposed.

【0012】すなわち、本発明は、重量%で C : 0.03〜0.2% Si: 0.6%以下 Mn: 0.6〜2.0% S : 0.030%以下 Mo: 0.2〜0.7% Al: 0.02%以下 Ti: 0.02%以下 O : 0.001〜0.01% N : 0.01%以下 を含み、残部がFe及び不可避的不純物から成る化学組
成を有し;且つ、酸化物からなり、大きさが1〜10μ
mの粒子が鋼マトリックス中に1mm2あたり4個以上
の平均密度で分散しており、該酸化物が、原子%で、 Mn:5〜50% (Al+Ti):50〜95% を含み、全部で100%となる化学組成の酸化物構成元
素を含む;鋼片を、1000〜1280℃の温度域に加
熱後圧延を開始し、Ar3点以上で圧延を終了した後、
得られた鋼板を室温まで放冷又は3℃/秒以上の鋼板表
面冷却速度で700℃以下の温度まで加速冷却した後室
温まで放冷することを特徴とする溶接熱影響部靭性の優
れた構造用耐火鋼板の製造法に関する。
That is, in the present invention, C: 0.03 to 0.2% Si: 0.6% or less Mn: 0.6 to 2.0% S: 0.030% or less Mo: 0% by weight%. 2 to 0.7% Al: 0.02% or less Ti: 0.02% or less O: 0.001 to 0.01% N: 0.01% or less, with the balance being Fe and unavoidable impurities Having composition; and made of oxide, having a size of 1 to 10 μm
m are dispersed in the steel matrix at an average density of 4 or more per mm 2 , and the oxide contains, in atomic%, Mn: 5 to 50% (Al + Ti): 50 to 95% After heating the steel slab to a temperature range of 1000 to 1280 ° C., starting rolling, and ending the rolling at three or more Ar points,
A structure having excellent toughness in a weld heat affected zone, characterized in that the obtained steel sheet is allowed to cool to room temperature or accelerated cooling to a temperature of 700 ° C or less at a steel sheet surface cooling rate of 3 ° C / sec or more, and then cooled to room temperature. The present invention relates to a method for producing a refractory steel sheet for use.

【0013】本発明の別の態様は、重量%で Cu: 0.05〜0.5% Ni: 0.05〜0.5% Cr: 0.05〜0.5% Nb: 0.005〜0.03% V : 0.005〜0.07% Ca: 0.0005〜0.005% REM:0.0001〜0.005% の1種以上を更に含有する鋼片を用いて、上述の製造法
を適用する。
According to another aspect of the present invention, Cu: 0.05 to 0.5% Ni: 0.05 to 0.5% Cr: 0.05 to 0.5% Nb: 0.005 to 0.5% by weight 0.03% V: 0.005 to 0.07% Ca: 0.0005 to 0.005% REM: 0.0001 to 0.005% Apply manufacturing method.

【0014】なお、以下の記載では、特に断り書きがな
い場合には、「%」は「重量%」を意味するものである
と理解されたい。
In the following description, "%" means "% by weight" unless otherwise specified.

【0015】[0015]

【発明の実施の形態】鋼片の化学組成及び組織 (基本成分) C : 0.03〜0.2% Cは、強度を増大できる元素であるが、0.03%未満
では効果が十分に発揮されず、一方、0.2%を超える
と製品である鋼板の溶接性及び靭性が劣化する。従っ
て、0.03〜0.2%と限定する。望ましくは0.0
6〜0.12%である。
BEST MODE FOR CARRYING OUT THE INVENTION Chemical composition and structure (basic component) of steel slab C: 0.03 to 0.2% C is an element capable of increasing the strength, but if it is less than 0.03%, the effect is sufficient. On the other hand, if it exceeds 0.2%, the weldability and toughness of the steel sheet as a product deteriorate. Therefore, it is limited to 0.03 to 0.2%. Desirably 0.0
6 to 0.12%.

【0016】Si: 0.6%以下 Siは、溶鋼の脱酸のため必須の元素であるが、0.6
%を超えると鋼板の溶接性が劣化する。従って、0.6
%以下と限定する。
Si: 0.6% or less Si is an essential element for deoxidizing molten steel.
%, The weldability of the steel sheet deteriorates. Therefore, 0.6
% Or less.

【0017】Mn: 0.6〜2.0% Mnは、本発明においてはフェライト析出核となる複合
酸化物の構成元素として必須の元素であり、また、溶鋼
の脱酸や鋼板の強度や靭性を確保するために有効な元素
でもあるが、0.6%未満では効果が十分に発揮され
ず、一方、2.0%を超えると、焼入性が高まりその結
果として鋼板の溶接性及び溶接熱影響部靭性が劣化す
る。従って、0.6〜2.0%と限定する。
Mn: 0.6 to 2.0% Mn is an essential element in the present invention as a constituent element of a composite oxide that becomes a ferrite precipitation nucleus, and also deoxidizes molten steel and the strength and toughness of a steel sheet. However, if it is less than 0.6%, the effect is not sufficiently exerted. On the other hand, if it exceeds 2.0%, the hardenability is increased, and as a result, the weldability and weldability of the steel sheet are increased. The heat-affected zone toughness deteriorates. Therefore, it is limited to 0.6 to 2.0%.

【0018】S : 0.030%以下 SもPと同様に鋼に不可避的に含有される不純物元素で
ある。Sが多量に存在する場合には、MnS等の溶接割
れ起点となる析出物が形成される。このため、Sの含有
量は低い方が望ましいが、経済的観点を考慮して、0.
030%を許容できる上限とした。母材靭性や溶接熱影
響部靭性を更に一層向上させ、且つ、スラブ中心偏析も
低減するために、0.01%以下が望ましい。
S: 0.030% or less S, like P, is an impurity element inevitably contained in steel. When a large amount of S is present, precipitates, such as MnS, serving as weld crack initiation points are formed. For this reason, it is desirable that the content of S is low.
030% was set as an allowable upper limit. In order to further improve the base metal toughness and the toughness of the weld heat affected zone, and to reduce the segregation at the center of the slab, the content is preferably 0.01% or less.

【0019】Mo: 0.2〜0.7% Moは、高温強度を確保するのに必須の元素であって、
600℃における耐力を著しく上昇させるが、0.2%
未満では効果が十分に発揮されず、一方、0.70%を
超えると、溶接性が劣化し、大入熱溶接の際の靭性劣化
を招く。従って、0.2〜0.7%と限定する。0.4
〜0.7%が望ましい。
Mo: 0.2-0.7% Mo is an element essential for ensuring high-temperature strength.
Significant increase in proof stress at 600 ° C, but 0.2%
If it is less than 0.70%, the effect will not be sufficiently exhibited. On the other hand, if it exceeds 0.70%, the weldability will be deteriorated, and the toughness will be deteriorated during large heat input welding. Therefore, it is limited to 0.2 to 0.7%. 0.4
~ 0.7% is desirable.

【0020】Al: 0.02%以下 Alは、本発明においてはフェライト析出核となる複合
酸化物の構成元素として必須の元素であるが、0.02
%を超えると溶接熱影響部における島状マルテンサイト
の増加を招く。従って、0.02%以下と限定する。な
お、複合酸化物形成には、Alは計算上は少なくとも
0.0001%程度は添加させることが望ましい。
Al: 0.02% or less Al is an essential element in the present invention as a constituent element of the composite oxide serving as a ferrite precipitation nucleus.
%, An increase in island martensite in the heat affected zone is caused. Therefore, it is limited to 0.02% or less. For the formation of the composite oxide, it is desirable to add at least about 0.0001% of Al by calculation.

【0021】Ti: 0.02%以下 TiもAlと同様に、本発明においてはフェライト析出
核となる複合酸化物の構成元素として必須の元素である
が、0.02%を超えると粗大なTiCが単独で析出
し、母材や溶接熱影響部の靭性が劣化する。従って、
0.02%以下と限定する。なお、複合酸化物形成に
は、Tiは計算上は少なくとも0.0001%程度は添
加させることが望ましい。
Ti: 0.02% or less Ti, like Al, is an essential element in the present invention as a constituent element of a composite oxide that becomes a ferrite precipitation nucleus. If it exceeds 0.02%, coarse TiC Alone precipitates, and the toughness of the base metal and the heat affected zone of the weld deteriorates. Therefore,
It is limited to 0.02% or less. Note that it is desirable to add at least about 0.0001% of Ti in the calculation for forming the composite oxide.

【0022】O : 0.001〜0.01% Oは、フェライト析出核となる複合酸化物の形成のため
には最低0.001%は必要である。しかしながら、鋼
中に過剰のOが存在すると母材の靭性に悪影響を及ぼ
す。従って、0.001〜0.01%と限定する。
O: 0.001 to 0.01% O is required to be at least 0.001% in order to form a composite oxide which becomes a ferrite precipitation nucleus. However, the presence of excessive O in the steel adversely affects the toughness of the base metal. Therefore, it is limited to 0.001 to 0.01%.

【0023】N : 0.01%以下 Nは、鋼に不可避的に含まれる不純物元素であり、過剰
に存在すると母材の靭性に悪影響を及ぼすが、本発明に
おいては0.01%以下であればその影響が少ない。従
って、0.01%以下と限定する。
N: 0.01% or less N is an impurity element inevitably contained in steel, and if present excessively, adversely affects the toughness of the base material. In the present invention, N is 0.01% or less. If the influence is small. Therefore, it is limited to 0.01% or less.

【0024】残部はFeおよび不可避的不純物からな
る。
The balance consists of Fe and inevitable impurities.

【0025】(追加成分)なお、本発明で用いる鋼片
は、上記の基本成分の他に、強度改善元素群として、以
下の元素を添加すると、強度や靭性の更に一層の改善が
図れる。
(Additional Components) The steel slab used in the present invention can further improve strength and toughness by adding the following elements as a group of strength improving elements in addition to the above basic components.

【0026】Ni: 0.05〜0.5% Niは、溶接性、溶接熱影響部靭性に悪影響を及ぼすこ
となく、母材の強度や靭性を向上させるが、0.05%
未満では効果が十分に発揮されず、一方、0.5%を超
えると特に建築用構造物用構造部材として許容し難い程
度の価格の増大を招く。従って、0.05〜0.5%と
限定する。
Ni: 0.05 to 0.5% Ni improves the strength and toughness of the base material without adversely affecting the weldability and the toughness of the heat affected zone.
When the amount is less than 0.5%, the effect is not sufficiently exhibited. On the other hand, when the amount exceeds 0.5%, the price is increased to such an extent that it is unacceptable especially as a structural member for a building structure. Therefore, it is limited to 0.05 to 0.5%.

【0027】Cu: 0.05〜0.5% Cuは、Niと略同様の効果を発揮する他、Cu析出物
による高温強度の増大や耐食性及び耐候性の向上にも効
果を発揮するが、0.05%未満ではその効果が十分に
発揮されず、一方、0.5%を超えると熱間圧延の際に
Cu割れが発生し成形が困難となる。従って、0.05
〜0.5%と限定する。
Cu: 0.05 to 0.5% Cu exerts substantially the same effect as Ni, and also exhibits an effect on an increase in high-temperature strength and an improvement in corrosion resistance and weather resistance due to Cu precipitates. If it is less than 0.05%, the effect is not sufficiently exhibited, while if it exceeds 0.5%, Cu cracks occur during hot rolling, making molding difficult. Therefore, 0.05
Limited to ~ 0.5%.

【0028】Cr: 0.05〜0.5% Crは、母材及び溶接部の強度を高め、更に、耐候性の
向上をも図れる元素であるが、0.005%未満ではそ
の効果が十分発揮されず、一方、0.5%を超えると溶
接性や溶接熱影響部靭性が劣する。従って、0.05〜
0.5%と限定する。
Cr: 0.05-0.5% Cr is an element that can increase the strength of the base material and the welded portion and further improve the weather resistance. On the other hand, if it exceeds 0.5%, the weldability and the toughness of the heat affected zone are poor. Therefore, 0.05-
Limited to 0.5%.

【0029】Nb: 0.005〜0.03% Nbは、析出硬化及び変態強化による高温強度(耐火
性)の向上と、細粒化による靭性の向上とを図れる元素
であるが、0.005%未満ではその効果が十分に発揮
されず、一方、0.03%を超えると大入熱溶接の際に
溶接熱影響部靭性が劣化する。従って、0.005〜
0.03%と限定する。
Nb: 0.005 to 0.03% Nb is an element capable of improving high-temperature strength (fire resistance) by precipitation hardening and transformation strengthening and improving toughness by grain refinement. %, The effect is not sufficiently exhibited. On the other hand, when it exceeds 0.03%, the toughness of the welded heat-affected zone is deteriorated during large heat input welding. Therefore, 0.005
Limited to 0.03%.

【0030】V : 0.005〜0.07% Vは、高温耐力に対する効果は劣るが、Nbと略同様の
効果を発揮する元素である。しかしながら、0.005
%未満ではその効果が十分に発揮されず、一方、0.0
7%を超えると溶接熱影響部靭性に悪影響を及ぼす。従
って、0.005〜0.07%と限定する。
V: 0.005 to 0.07% V is an element exhibiting substantially the same effect as Nb, although the effect on the high-temperature proof stress is inferior. However, 0.005
%, The effect is not sufficiently exhibited.
If it exceeds 7%, the toughness of the heat affected zone is adversely affected. Therefore, it is limited to 0.005 to 0.07%.

【0031】Ca: 0.0005〜0.005% Caは、硫化物(MnS)の形態を制御し、(シャルピ
ー)吸収エネルギーを増大させて低温靭性を向上させる
他、耐水素誘起割れの改善にも効果を発揮する。しかし
ながら、0.0005%未満では効果が十分に発揮され
ず、一方、0.005%を超えるとCaOやCaSが多
量に生成して大形介在物となり、鋼の靭性のみならず清
浄度が害され、更には溶接性も劣化する。従って、0.
0005〜0.005%と限定する。
Ca: 0.0005% to 0.005% Ca controls the form of sulfide (MnS), increases (Charpy) absorbed energy to improve low-temperature toughness, and improves hydrogen-induced cracking resistance. Is also effective. However, if the content is less than 0.0005%, the effect is not sufficiently exhibited. On the other hand, if the content is more than 0.005%, CaO and CaS are generated in large amounts to form large inclusions, which impair not only the toughness of the steel but also the cleanliness. In addition, the weldability also deteriorates. Therefore, 0.
0005 to 0.005%.

【0032】REM:0.0001〜0.005% REM(希土類元素)は、Caと略同様の効果を発揮す
ると共に、添加量が増大すればCaと同様の問題も招く
元素である。また、経済的な観点からも過剰な添加は望
ましくない。従って、0.0001〜0.005%と限
定する。
REM: 0.0001% to 0.005% REM (rare earth element) is an element that exerts substantially the same effect as Ca and also causes the same problem as Ca when the added amount increases. Excessive addition is not desirable from an economic viewpoint. Therefore, it is limited to 0.0001 to 0.005%.

【0033】組織 鋼マトリックス中に、複合酸化物からなる粒子が分散し
ている。粒子は、大きさが1〜10μmであり、鋼マト
リックス中に1mm2あたり4個以上の平均密度で分散
している。大きさが1μm未満では粒内フェライトの析
出核としては小さすぎ、一方、10μmを超えると大き
すぎ、いずれもフェライトの析出核としては十分な機能
を発揮しない。この結果は実験結果に基づいて見いだし
た。また、粒子の分散密度は1mm2あたり4個以上と
限定した。これ未満では組織改善作用が十分に現れず溶
接熱影響部靭性が満足できる程度に改善されないからで
ある。
[0033] In the structure steel matrix, particles composed of the composite oxide are dispersed. The particles are 1-10 μm in size and are dispersed in the steel matrix with an average density of 4 or more per mm 2 . When the size is less than 1 μm, it is too small as a precipitation nucleus of intragranular ferrite, while when it exceeds 10 μm, it is too large, and none of them functions sufficiently as a ferrite precipitation nucleus. This result was found based on experimental results. Further, the dispersion density of the particles was limited to 4 or more per 1 mm 2 . If it is less than this, the structure improving effect does not sufficiently appear and the toughness of the heat affected zone is not improved to a satisfactory degree.

【0034】粒子は複合酸化物からなり、該酸化物は、
原子%で、 Mn:5〜50% (Al+Ti):50〜95% を含み、全部で100%となる化学組成の酸化物構成元
素を含むものに限定する。従って、Mnの含有量が50
原子%のときは、(Al+Ti)の含有量の上限は50
原子%である。また、Mnと(Al+Ti)の合計含有
量が100原子%に達しない場合もある。Mnや(Al
+Ti)が上記の範囲で含まれると、溶接後の冷却中に
粒内フェライトの析出核として有効なその機能を発揮す
る。該粒子はフェライトとの結晶整合性が高いためフェ
ライトの析出核として機能し易いのではないかと思われ
る。
The particles consist of a composite oxide, which is
Atomic%: Mn: 5 to 50% (Al + Ti): 50 to 95%, limited to those containing oxide constituent elements having a chemical composition of 100% in total. Therefore, the content of Mn is 50
Atomic%, the upper limit of the content of (Al + Ti) is 50
Atomic%. In some cases, the total content of Mn and (Al + Ti) does not reach 100 atomic%. Mn or (Al
When (+ Ti) is contained in the above range, it exerts its function effective as a precipitation nucleus of intragranular ferrite during cooling after welding. It is considered that the particles have high crystal matching with ferrite and thus easily function as precipitation nuclei of ferrite.

【0035】製造法 上述の条件を満足する鋼片を、 1000〜1280℃の温度域に加熱後圧延を開始
し、 Ar3点以上で圧延を終了した後、 得られた鋼板を室温まで空冷又は3℃/秒以上の鋼
板表面冷却速度で700℃以下の温度まで冷却した後室
温まで空冷する。
Manufacturing Method A steel slab satisfying the above conditions is heated to a temperature range of 1000 to 1280 ° C., and rolling is started. After rolling is completed at three or more Ar points, the obtained steel sheet is air-cooled or cooled to room temperature. After cooling to a temperature of 700 ° C. or less at a steel sheet surface cooling rate of 3 ° C./sec or more, air cooling is performed to room temperature.

【0036】(工程)圧延前に鋼片を加熱する。添加
した元素を固溶するため、1000℃以上に加熱する。
一方、1280℃を超えるとオーステナイト粒が粗大化
しすぎて熱間圧延により細粒化を図ることが困難とな
る。従って、加熱の温度域を1000〜1280℃に限
定する。
(Process) The slab is heated before rolling. Heat to 1000 ° C. or higher to dissolve the added element.
On the other hand, if the temperature exceeds 1280 ° C., the austenite grains become too coarse, and it is difficult to reduce the size by hot rolling. Therefore, the heating temperature range is limited to 1000 to 1280 ° C.

【0037】(工程)加熱後熱間圧延を施すが、その
圧延終了温度をAr3点以上の高温とする。Ar3未満で
圧延を終了するとMoが析出して析出物が大きくなり過
ぎ、高温耐力が著しく低下するからである。
(Step) After the heating, hot rolling is performed, and the rolling end temperature is set to a high temperature of three or more Ar points. This is because when rolling is completed at less than Ar 3 , Mo precipitates and the precipitates become too large, and the high-temperature proof stress is significantly reduced.

【0038】(工程)圧延後は、室温まで放冷(典型
的には空冷)又は3℃/秒以上の鋼板表面冷却速度で7
00℃以下の温度まで冷却した後室温まで放冷する。板
厚の厚い場合(40mm以上)には、加速冷却を実施す
ると、適量の初析フェライトを生成して、強度の劣化を
もたらすことなく低降伏比を実現することができる。厚
肉(50〜1000mm程度)の場合には、鋼板表面温
度がAr3−60℃からAr3−120℃までの範囲の温
度から3℃/秒以上の鋼板表面冷却速度で400℃以下
まで冷却後、空冷するのが望ましい。また、中肉(40
〜50mm程度)の場合には、圧延後3℃/秒以上の鋼
板表面冷却速度で500〜700℃の範囲の温度まで冷
却後、空冷するのが望ましい。
(Step) After the rolling, the steel sheet is allowed to cool to room temperature (typically air cooling) or at a steel sheet surface cooling rate of 3 ° C./sec or more.
After cooling to a temperature of 00 ° C. or lower, it is allowed to cool to room temperature. When the plate thickness is large (40 mm or more), when accelerated cooling is performed, an appropriate amount of pro-eutectoid ferrite is generated, and a low yield ratio can be realized without deteriorating the strength. In the case of a thick wall (about 50 to 1000 mm), the steel sheet surface temperature is cooled from a temperature in the range of Ar 3 −60 ° C. to Ar 3 −120 ° C. to 400 ° C. or less at a steel sheet surface cooling rate of 3 ° C./sec or more Later, it is desirable to air-cool. In addition, medium meat (40
(About 50 mm), it is preferable to cool the steel sheet at a cooling rate of 3 ° C./sec or more to a temperature in the range of 500 ° C. to 700 ° C. after rolling, and then air-cool.

【0039】[0039]

【実施例】試料の作製 種々の鋼片を実験室規模の真空精錬炉を用いて溶解後イ
ンゴッド鋳造により作製した。その際、分散粒子を構成
する酸化物の組成を変化させるため、脱酸元素の添加時
期や順序を種々変化させ、また、分散密度を変化させる
ため、鋳型寸法を種々変化させた。得られた鋼片の化学
組成及び鋼中に存在する酸化物粒子は、本発明例に関し
ては表1に、比較例に関しては表3に示す通りであっ
た。精錬条件を同一とした結果、分散粒子の組成は略同
一のものが得られた。なお、分散粒子の分散密度は、5
00倍の光学顕微鏡でミクロ試料の表面を観察し計測し
た。分散粒子を構成する酸化物の組成は、該粒子をSE
M−EDX装置で分析した。
EXAMPLES Preparation of Samples Various steel slabs were prepared by ingot casting after melting in a laboratory-scale vacuum refining furnace. At that time, the timing and order of addition of the deoxidizing element were variously changed in order to change the composition of the oxide constituting the dispersed particles, and the mold dimensions were variously changed in order to change the dispersion density. The chemical composition of the obtained steel slab and the oxide particles present in the steel are as shown in Table 1 for the examples of the present invention and Table 3 for the comparative examples. As a result of making the refining conditions the same, substantially the same composition of the dispersed particles was obtained. The dispersion density of the dispersed particles is 5
The surface of the micro sample was observed and measured with a 00 × optical microscope. The composition of the oxide constituting the dispersed particles is such that the particles
The analysis was performed using an M-EDX apparatus.

【0040】表1、3に示す鋼片を、それぞれ、表2、
4に示す条件で圧延処理して、右欄に示す板厚の鋼板と
した。
The steel slabs shown in Tables 1 and 3 were replaced by Tables 2 and 3, respectively.
Rolling was performed under the conditions shown in FIG. 4 to obtain steel sheets having the thickness shown in the right column.

【0041】試験 作製された鋼板からそれぞれ試験片を切り出し、常温強
度、すなわち、引張強度:YS(N/mm2)、剪断強
度:TS(N/mm2)、降伏比:YR(%)及びシャ
ルピー吸収エネルギー:VO(J)と、600℃におけ
る耐力(オフセット即ち荷重を除いたときの残留歪が
0.2%になる点の応力)(N/mm2)と、溶接性を
評価するために再現溶接熱サイクルに暴露した後の溶接
熱影響部の特にノッチ位置のシャルピー吸収エネルギ
ー:VO(J)とを測定した。
The cut out each test piece from the test fabricated steel, strength at room temperature, i.e., tensile strength: YS (N / mm 2) , shear strength: TS (N / mm 2) , yield ratio: YR (%) and Charpy absorbed energy: V EO (J), proof stress at 600 ° C. (stress at a point where residual strain becomes 0.2% when an offset, that is, when a load is removed) (N / mm 2 ), and weldability are evaluated. For this purpose, the Charpy absorbed energy: V E O (J) of the heat-affected zone of the weld, especially at the notch position, after exposure to the reproducible welding heat cycle was measured.

【0042】なお、再現溶接熱サイクル暴露処理とし
て、鋼板を両面からそれぞれ板厚にして4分の1程度切
取って除去した後に、それから幅11mm、厚さ11m
m、長さ60mmの試験片を採取し、これに最高加熱温
度を1400℃として加熱を行った後、800〜500
℃に300秒間かけて冷却した。これは、溶接入熱:3
0kJ/mmに相当する。そして、熱サイクル暴露後、
試験片をJIS4号試験片に加工してシャルピー衝撃試
験に供した。測定結果は、本発明例に関しては表5に、
比較例に関しては表6に示す。
As a reproduction welding heat cycle exposure treatment, the steel sheet was cut off from both sides by a thickness of about one quarter and removed, and then the width was 11 mm and the thickness was 11 m.
m, a test piece having a length of 60 mm was collected and heated at a maximum heating temperature of 1400 ° C., and then 800 to 500
Cool to 300C over 300 seconds. This is welding heat input: 3
It corresponds to 0 kJ / mm. And after the heat cycle exposure,
The test piece was processed into a JIS No. 4 test piece and subjected to a Charpy impact test. The measurement results are shown in Table 5 for the examples of the present invention.
Table 6 shows comparative examples.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】[0047]

【表5】 [Table 5]

【0048】[0048]

【表6】 [Table 6]

【0049】評価 本発明が規定する化学組成(鋼片全体、分散粒子)、分
散粒子の大きさ及び分散密度を満足する鋼片を本発明の
工程に従って圧延して鋼板を製造した場合には、常温で
も高温でも優れた母材強度を示すと共に、30KJ/m
mの入熱を模擬した再現溶接熱サイクルに暴露された後
にも熱影響部が優れた靭性を示した。一方、分散粒子の
数の少ない鋼片から鋼板を製造した場合には、その鋼板
は母材強度に関しては本発明例のものと同等の性能を示
したが、熱影響部靭性が著しく劣化した。鋼中のS量を
低減させてMnSの影響を検討した本発明例(No.
8)においては、MnSの析出は殆ど観察されず、優れ
た熱影響部靭性を示した。
Evaluation When a steel slab that satisfies the chemical composition (whole steel slab, dispersed particles), size and dispersion density of the steel stipulated by the present invention is rolled according to the process of the present invention, a steel sheet is produced. Shows excellent base metal strength at normal temperature and high temperature, and 30KJ / m
The heat affected zone showed excellent toughness even after exposure to a reproducible welding heat cycle simulating a heat input of m. On the other hand, when a steel sheet was manufactured from a slab having a small number of dispersed particles, the steel sheet exhibited the same performance as that of the inventive example in terms of base metal strength, but the toughness of the heat-affected zone was significantly deteriorated. Example of the present invention in which the effect of MnS was studied by reducing the amount of S in steel (No.
In 8), precipitation of MnS was hardly observed, and excellent heat-affected zone toughness was exhibited.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱田 昌彦 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 一ノ瀬 威 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiko Hamada 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka Inside Sumitomo Metal Industries, Ltd. (72) Inventor Takeshi Ichinose 4-5-Kitahama, Chuo-ku, Osaka, Osaka No. 33 Inside Sumitomo Metal Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C : 0.03〜0.2% Si: 0.6%以下 Mn: 0.6〜2.0% S : 0.030%以下 Mo: 0.2〜0.7% Al: 0.02%以下 Ti: 0.02%以下 O : 0.001〜0.01% N : 0.01%以下 を含み、残部がFe及び不可避的不純物から成る化学組
成を有し;且つ、 酸化物からなり、大きさが1〜10μmの粒子が鋼マト
リックス中に1mm2あたり4個以上の平均密度で分散
しており、 該酸化物が、原子%で、 Mn:5〜50% (Al+Ti):50〜95% を含み、全部で100%となる化学組成の酸化物構成元
素を含む;鋼片を、 1000〜1280℃の温度域に加熱後圧延を開始し、
Ar3点以上で圧延を終了した後、得られた鋼板を室温
まで放冷又は3℃/秒以上の鋼板表面冷却速度で700
℃以下の温度まで加速冷却した後室温まで放冷すること
を特徴とする溶接熱影響部靭性の優れた構造用耐火鋼板
の製造法。
C: 0.03 to 0.2% Si: 0.6% or less Mn: 0.6 to 2.0% S: 0.030% or less Mo: 0.2 to 0% by weight% 7% Al: 0.02% or less Ti: 0.02% or less O: 0.001 to 0.01% N: 0.01% or less, and the balance has a chemical composition composed of Fe and unavoidable impurities. And particles composed of an oxide and having a size of 1 to 10 μm are dispersed in a steel matrix at an average density of 4 or more per 1 mm 2 , and the oxide is represented by atomic% and Mn: 5 to 50 % (Al + Ti): contains 50 to 95%, and contains oxide constituent elements having a chemical composition of 100% in total; rolling the steel slab after heating to a temperature range of 1000 to 1280 ° C.,
After finishing rolling at Ar 3 or more, the obtained steel sheet is allowed to cool to room temperature or 700 ° C. at a steel sheet surface cooling rate of 3 ° C./sec or more.
A method for producing a refractory steel sheet for a structure having excellent toughness in a heat affected zone of a weld, characterized in that the steel sheet is cooled to a temperature of not more than ° C and then cooled to a room temperature.
【請求項2】 重量%で Ni: 0.05〜0.5% Cu: 0.05〜0.5% Cr: 0.05〜0.5% Nb: 0.005〜0.03% V : 0.005〜0.07% Ca: 0.0005〜0.005% REM:0.0001〜0.005% の1種以上を更に含有する鋼片を用いる請求項1に記載
の構造用耐火鋼板の製造法。
2. Ni: 0.05-0.5% Cu: 0.05-0.5% Cr: 0.05-0.5% Nb: 0.005-0.03% by weight% V: The structural refractory steel sheet according to claim 1, wherein a steel slab further containing one or more of 0.005 to 0.007% Ca: 0.0005 to 0.005% REM: 0.0001 to 0.005% is used. Manufacturing method.
JP22539696A 1996-08-27 1996-08-27 Production of fire resistant steel sheet for structural purpose excellent in welding heat affected zone toughness Pending JPH1068018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22539696A JPH1068018A (en) 1996-08-27 1996-08-27 Production of fire resistant steel sheet for structural purpose excellent in welding heat affected zone toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22539696A JPH1068018A (en) 1996-08-27 1996-08-27 Production of fire resistant steel sheet for structural purpose excellent in welding heat affected zone toughness

Publications (1)

Publication Number Publication Date
JPH1068018A true JPH1068018A (en) 1998-03-10

Family

ID=16828710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22539696A Pending JPH1068018A (en) 1996-08-27 1996-08-27 Production of fire resistant steel sheet for structural purpose excellent in welding heat affected zone toughness

Country Status (1)

Country Link
JP (1) JPH1068018A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079793B2 (en) * 2007-04-06 2012-11-21 新日本製鐵株式会社 Steel material excellent in high temperature characteristics and toughness and method for producing the same
JP5079794B2 (en) * 2007-04-11 2012-11-21 新日本製鐵株式会社 Steel material excellent in high-temperature strength and toughness and manufacturing method thereof
CN106399655A (en) * 2016-09-20 2017-02-15 天津理工大学 Method for refining ferritic structure by loading microstress on 20MnSi thread steel
CN114293094A (en) * 2021-11-17 2022-04-08 攀钢集团攀枝花钢铁研究院有限公司 450 MPa-grade vanadium-titanium microalloyed weather-resistant B-shaped steel and production method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079793B2 (en) * 2007-04-06 2012-11-21 新日本製鐵株式会社 Steel material excellent in high temperature characteristics and toughness and method for producing the same
JP5079794B2 (en) * 2007-04-11 2012-11-21 新日本製鐵株式会社 Steel material excellent in high-temperature strength and toughness and manufacturing method thereof
CN106399655A (en) * 2016-09-20 2017-02-15 天津理工大学 Method for refining ferritic structure by loading microstress on 20MnSi thread steel
CN114293094A (en) * 2021-11-17 2022-04-08 攀钢集团攀枝花钢铁研究院有限公司 450 MPa-grade vanadium-titanium microalloyed weather-resistant B-shaped steel and production method thereof

Similar Documents

Publication Publication Date Title
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP6795048B2 (en) Non-treated low yield ratio high-strength thick steel sheet and its manufacturing method
JP2007051321A (en) 490 MPa CLASS THICK HIGH-TENSILE STRENGTH FIRE-RESISTANT STEEL FOR WELDED STRUCTURE HAVING EXCELLENT WELDABILITY AND GAS CUTTING PROPERTY, AND ITS MANUFACTURING METHOD
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP2014198866A (en) Low yield ratio high tensile steel sheet excellent in heat affected zone toughness and method of producing the same
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JP3635208B2 (en) Low yield ratio fireproof steel plate and steel pipe excellent in toughness and method for producing the same
JPH1068018A (en) Production of fire resistant steel sheet for structural purpose excellent in welding heat affected zone toughness
KR20230041060A (en) Thick steel plate and its manufacturing method
JP2764007B2 (en) Low yield ratio refractory steel sheet for building with excellent weldability and method of manufacturing the same
JPS5952687B2 (en) Manufacturing method of tempered high-strength steel plate with excellent low-temperature toughness
JPH1121623A (en) Manufacture of steel product for welded structure, having excellent atmospheric corrosion resistance and low yield ratio
JP2020204091A (en) High strength steel sheet for high heat input welding
JP6164171B2 (en) Low yield ratio high strength steel sheet with excellent high temperature strength and weldability and method for producing the same
JPH05117745A (en) Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose
JP3991552B2 (en) Manufacturing method of rolled steel
JPH05112823A (en) Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JPH06264136A (en) Production of thick-walled refractory steel with low yield ratio for construction use, excellent in weldability
JP3232118B2 (en) Hot-rolled steel strip for construction with excellent fire resistance and toughness and method for producing the same
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness
JP3221322B2 (en) High toughness heat-resistant steel for large heat input welding and method for producing the same
JPH07216498A (en) Production of oxide grain dispersed cast bloom and rolled shape steel with superior toughness, using this cast bloom as stock
JPH07173532A (en) Production of low yield ratio type fire resistant architectural steel excellent in weldability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040220

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040813