JPH04164953A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH04164953A
JPH04164953A JP29076690A JP29076690A JPH04164953A JP H04164953 A JPH04164953 A JP H04164953A JP 29076690 A JP29076690 A JP 29076690A JP 29076690 A JP29076690 A JP 29076690A JP H04164953 A JPH04164953 A JP H04164953A
Authority
JP
Japan
Prior art keywords
epoxy resin
filler
thermal conductivity
fused silica
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29076690A
Other languages
Japanese (ja)
Other versions
JP2938177B2 (en
Inventor
Osamu Inoue
修 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17760256&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04164953(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP29076690A priority Critical patent/JP2938177B2/en
Publication of JPH04164953A publication Critical patent/JPH04164953A/en
Application granted granted Critical
Publication of JP2938177B2 publication Critical patent/JP2938177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To offer the title compsn. excellent in thermal conductivity, crack resistance, mechanical characteristics, flowability, moldability, etc., by mixing an epoxy resin, a curing agent, an accelerator, and a specific filler. CONSTITUTION:An epoxy resin (e.g. a bisphenol epoxy resin), a curing agent (e.g. phthalic anhydride), an accelerator (e.g. benzyldimethylamine), and a filler comprising a crystalline silica with a mean particle diameter of 5-30-mum and a spherical fused silica with a mean particle diameter of 5-40mum in a volume ratio of the latter filler to the whole filler of 5-50% are mixed to give an epoxy resin compsn., which, having a coefficient of thermal expansion as low as that of the fused silica while maintaining a thermal conductivity similar to that of the crystalline silica, is useful in semiconductor sealing, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱伝導性か良く、耐クラ・ツク性に良好な半
導体用封止樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a encapsulating resin composition for semiconductors that has good thermal conductivity and good scratch resistance.

〔従来の技術〕[Conventional technology]

従来より、エポキシ樹脂組成物はエポキシ樹脂に硬化剤
等を配合し、充填材として結晶シリカや破砕タイプの溶
融シリカを用いる事が知られている。
Conventionally, it has been known that epoxy resin compositions are made by blending an epoxy resin with a curing agent, etc., and using crystalline silica or crushed type fused silica as a filler.

しかし、最近の電子部品の急速な進歩及び、高機能化等
により、樹脂特性として、機械特性、電気特性、密着性
、耐湿性、耐クラツク性、成形性に加えて熱伝導性に優
れていることが要求されてきている。
However, due to recent rapid progress and increased functionality in electronic components, resin properties such as mechanical properties, electrical properties, adhesion, moisture resistance, crack resistance, moldability, and thermal conductivity are now excellent. There is a growing demand for this.

つまりICの高集積化、ハイパワー化によりチップより
の発熱か大きくなり、この熱をパッケージを通して放熱
する必要がでてきた。
In other words, as ICs become more highly integrated and have more power, the chips generate more heat, and it has become necessary to dissipate this heat through the package.

従来の結晶シリカ又は破砕タイプの溶融シリカきないと
いう欠点があった。
There is a drawback that conventional crystalline silica or crushed type fused silica cannot be used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は充填材として結晶シリカと球状の溶融シ
リカを併用することにより機械特性、耐クラツク性、熱
伝導性、成形性に優れたエポキシ樹脂組成物を提供する
ことにある。
An object of the present invention is to provide an epoxy resin composition that has excellent mechanical properties, crack resistance, thermal conductivity, and moldability by using both crystalline silica and spherical fused silica as fillers.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、これらの問題を解決するために研究を進め
、以下の組成物を見出した。
The present inventor conducted research to solve these problems and discovered the following composition.

エポキシ樹脂、硬化剤、硬化促進剤及び充填材からなる
エポキシ樹脂組成物において平均粒径か5〜30μの結
晶シリカと平均粒径か5〜40μの球状の溶融シリカと
からなり、球状の溶融シリカの配合割合か充填材中に5
〜50容量%となるエポキシ樹脂組成物である。
An epoxy resin composition consisting of an epoxy resin, a curing agent, a curing accelerator, and a filler is composed of crystalline silica with an average particle size of 5 to 30 μm and spherical fused silica with an average particle size of 5 to 40 μm. 5 in the filler
It is an epoxy resin composition with a concentration of 50% by volume.

〔作 用〕[For production]

本発明において用いられるエポキシ樹脂としては、ビス
フェノール型エポキシ樹脂、ノボラック型エポキシ樹脂
、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹
脂等か挙げられる。
Examples of the epoxy resin used in the present invention include bisphenol type epoxy resin, novolac type epoxy resin, biphenyl type epoxy resin, and naphthalene type epoxy resin.

本発明に用いられる硬化剤としては、前記硬化性樹脂に
用いられる一般的硬化剤例えば無水フタル酸、無水へキ
サヒドロフタル酸、無水トリメリット酸、無水ピロメリ
ット酸、無水ベンゾフェノンテトラカルボン酸等の酸無
水物や芳香族アミン類やフェノールノボラック樹脂、ク
レゾールノボラック樹脂、各種変性フェノールノボラッ
ク樹脂等のノボラック樹脂かあり、特に限定されるもの
ではなく、2種以上併用しても良いか、前記オルソクレ
ゾールノボラック型エポキシ樹脂の硬化剤としてはノボ
ラック型樹脂、中でもフェノールノボラック樹脂かコス
ト、作業性信頼性等の点て好ましい。
Examples of the curing agent used in the present invention include general curing agents used in the above-mentioned curable resins, such as phthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and benzophenonetetracarboxylic anhydride. There are novolak resins such as acid anhydrides, aromatic amines, phenol novolak resins, cresol novolak resins, various modified phenol novolak resins, etc., but there are no particular limitations, and two or more types may be used in combination. As the curing agent for the novolac type epoxy resin, novolac type resins, especially phenol novolac resins, are preferred from the viewpoint of cost, reliability of workability, and the like.

又、エポキシ樹脂とフェノールノボラック樹脂の配合比
はエポキシ当量lに対しフェノールノボラック樹脂の水
酸基当量が0.5〜1.2当量か好ましくこの範囲外で
は硬化特性に不良を来たす。また、硬化促進剤としては
、2−メチルイミダゾール、ベンジルジメチルアミン(
BDMA)、トリフェニルホスフィン等を挙げることが
できる。
Further, the compounding ratio of the epoxy resin and the phenol novolac resin is preferably such that the hydroxyl equivalent of the phenol novolak resin is 0.5 to 1.2 equivalents per 1 of the epoxy equivalent, and outside this range, the curing properties will be poor. In addition, as a curing accelerator, 2-methylimidazole, benzyldimethylamine (
BDMA), triphenylphosphine, and the like.

本発明に使用する充填材としては、平均粒径が5〜30
μの結晶シリカと平均粒径か5〜40μの球状の溶融シ
リカを混合して使用する。
The filler used in the present invention has an average particle size of 5 to 30
A mixture of crystalline silica with a particle diameter of 5 to 40 microns is used.

結晶シリカの平均粒径が5μ未満の場合は成形材料化し
た場合、成形材料の粘度か上りすぎ、ワイヤー流れや未
充填不良の原因となり好ましくない。
If the average particle size of the crystalline silica is less than 5 μm, when it is made into a molding material, it is not preferable because the viscosity of the molding material increases too much, causing wire flow and non-filling defects.

一方、平均粒径か30μを越えた場合は、ゲートの狭い
金型ては流動性か低下し、成形性劣化の原因になり好ま
しくない。
On the other hand, if the average particle size exceeds 30 μm, the fluidity in a mold with a narrow gate decreases, which is undesirable as it causes deterioration of moldability.

同様に球状シリカの場合も平均粒径か5μ未満になると
成形材料の粘度が上り、ワイヤー流れ等の成形不良の原
因となり好ましくない。
Similarly, in the case of spherical silica, if the average particle diameter is less than 5 μm, the viscosity of the molding material increases, which is undesirable as it causes molding defects such as wire flow.

平均粒径か40μを越えるとゲートの狭い金型等では流
動性低下の原因となり成形性上好ましくない。球状の混
合比率か50容量%を越えると樹脂のパリか多くなり成
形上好ましくない。一方、5容量%未渦の場合は球状の
特性がうまく引き出せず好ましくない結果となる。
If the average particle size exceeds 40 μm, it will cause a decrease in fluidity in molds with narrow gates, which is unfavorable in terms of moldability. If the spherical mixing ratio exceeds 50% by volume, resin particles will increase, which is unfavorable for molding. On the other hand, when 5% by volume is not swirled, the spherical characteristics cannot be brought out well, resulting in unfavorable results.

上記の混合率で配合すると熱伝導率を結晶シリカのレベ
ルに維持し、熱膨張率を溶融シリカなみに小さくおさえ
ることができると共に、流動性か向上するため成形性も
優れたものとなる。
When blended at the above mixing ratio, the thermal conductivity can be maintained at the level of crystalline silica, the coefficient of thermal expansion can be kept as low as that of fused silica, and the fluidity is improved, resulting in excellent moldability.

本発明の組成物は上記のものの他、必要に応じて、シラ
ンカップリング剤、離型剤、着色剤、難−燃剤なとを配
合し、混合混練しエポキシ樹脂組成物とする。
In addition to the above-mentioned compositions, the composition of the present invention may contain, if necessary, a silane coupling agent, a mold release agent, a coloring agent, a flame retardant, etc., and are mixed and kneaded to form an epoxy resin composition.

以下に本発明を実施例で説明する。The present invention will be explained below using examples.

実施例1 クレゾールノボラック型エポキン樹脂(エポキシ当量2
00、軟化点65°C)100重量部、フェノ− ヘルツボラック樹脂(OH当ji104、軟化点105
°C)50重量部、BDMA (ベンジルジメチルアミ
ン)2重量部、充填材として結晶ソリ力(平均粒径15
μ)と粒状の溶融シリカ(平均粒径20μ)とを混合し
た合計か700重量部のものを第1表に示す割合で配合
し70〜100℃の混線機で混合した後冷却して粉砕し
成形材料を得た。得られた成形材料についてはスバラル
フロー、熱膨張係数、熱伝導率、耐クラツク性を評価し
た。評価結果を第1表に示す。
Example 1 Cresol novolak type epochine resin (epoxy equivalent 2
00, softening point 65°C) 100 parts by weight, pheno-Hertzborac resin (OH per ji104, softening point 105
°C) 50 parts by weight, 2 parts by weight of BDMA (benzyldimethylamine), crystal warp strength (average particle size 15°C) as a filler,
A total of 700 parts by weight of granular fused silica (average particle size 20μ) was mixed in the proportions shown in Table 1, mixed in a mixer at 70 to 100°C, cooled and pulverized. A molding material was obtained. The resulting molding material was evaluated for its sparral flow, coefficient of thermal expansion, thermal conductivity, and crack resistance. The evaluation results are shown in Table 1.

実施例2、比較例1〜3 第1表に示した充填材の配合割合、種類を変えた以外は
実施例1と同一とし同様にして成形材料を得、評価した
。評価結果を第1表に示す。
Example 2, Comparative Examples 1 to 3 Molding materials were obtained and evaluated in the same manner as in Example 1, except that the blending ratio and type of filler shown in Table 1 were changed. The evaluation results are shown in Table 1.

※1 パッケージ  16pin DIPチップ   
3.5 X 3. Omm硬化時間   −!−175
°C13分ポストキュア 175℃、8時間 パッケージクラックの温度条件 一65°C(15分)   150’C(15分)※2
 スパイラルフロー 渦巻き状の金型て型温175±2℃、圧カフ0:2 k
g / cm2て硬化して、成形された連続スパイラル
の先端までの長さ。
*1 Package 16pin DIP chip
3.5 X 3. Omm curing time -! -175
°C 13 minutes post cure 175 °C, 8 hours Package crack temperature conditions - 65 °C (15 minutes) 150'C (15 minutes) *2
Spiral flow spiral mold mold temperature 175±2℃, pressure cuff 0:2k
Length to the tip of the formed continuous spiral after curing in g/cm2.

※3 α1 (熱膨張係数)及びTg 一定の寸法の成形品をポストキュアした後、TMAによ
り5℃/分の昇温スピードで室温から約300°Cまて
電気炉中て試料を加熱し、温度−伸び曲線を記録しα1
とTgを求める。
*3 α1 (coefficient of thermal expansion) and Tg After post-curing a molded product of a certain size, the sample was heated in an electric furnace from room temperature to approximately 300°C at a heating rate of 5°C/min using TMA. Record the temperature-elongation curve and α1
and find Tg.

※4 熱伝導率 PROB法により測定する。*4 Thermal conductivity Measured by PROB method.

厚み15mmの試験片にプローブを押し立てヒーターか
ら一定の電力を与える。ヒーターは試験片の熱伝導率に
対応して上昇する。
A probe is pressed onto a test piece with a thickness of 15 mm, and a constant power is applied from a heater. The heater increases in response to the thermal conductivity of the specimen.

10秒間の温度上昇を測定する。Measure the temperature rise for 10 seconds.

C発明の効果〕 本発明によると熱伝導率を結晶シリカ並みのレベルに維
持したまま、熱膨張率を溶融シリカ並みに小さくおさえ
る事かできるとともに流動性か向上するため、充填性等
の成形性にも優れた成形材料か得られる。
C Effects of the invention] According to the present invention, while maintaining thermal conductivity at a level comparable to that of crystalline silica, the coefficient of thermal expansion can be suppressed to a level comparable to that of fused silica, and fluidity is improved, resulting in improved moldability such as filling properties. It can also be used as an excellent molding material.

Claims (1)

【特許請求の範囲】[Claims] (1)エポキシ樹脂、硬化剤、硬化促進剤及び充填材か
らなるエポキシ樹脂組成物において、平均粒径が5〜3
0μの結晶シリカと平均粒径が5〜40μの球状の溶融
シリカとからなり、球状の溶融シリカの配合割合が充填
材中に5〜50容量%となることを特徴とするエポキシ
樹脂組成物。
(1) In an epoxy resin composition consisting of an epoxy resin, a curing agent, a curing accelerator, and a filler, the average particle size is 5 to 3.
An epoxy resin composition comprising crystalline silica of 0 μm and spherical fused silica with an average particle size of 5 to 40 μm, and characterized in that the proportion of the spherical fused silica in the filler is 5 to 50% by volume.
JP29076690A 1990-10-30 1990-10-30 Epoxy resin composition Expired - Fee Related JP2938177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29076690A JP2938177B2 (en) 1990-10-30 1990-10-30 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29076690A JP2938177B2 (en) 1990-10-30 1990-10-30 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH04164953A true JPH04164953A (en) 1992-06-10
JP2938177B2 JP2938177B2 (en) 1999-08-23

Family

ID=17760256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29076690A Expired - Fee Related JP2938177B2 (en) 1990-10-30 1990-10-30 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP2938177B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173372A (en) * 1993-12-20 1995-07-11 Sumitomo Bakelite Co Ltd Epoxy resin composition
JP2002338788A (en) * 2001-05-16 2002-11-27 Mitsui Chemicals Inc Epoxy resin composition and hollow package housing semiconductor element using the composition
SG103883A1 (en) * 2002-07-29 2004-05-26 Sumitomo Bakelite Singapore Pt Epoxy resin composition
JP2017110089A (en) * 2015-12-16 2017-06-22 株式会社日立産機システム Resin composition for electric insulation
JP2019001841A (en) * 2017-06-12 2019-01-10 信越化学工業株式会社 Epoxy resin composition and semiconductor device having cured product of composition
CN111234465A (en) * 2020-01-16 2020-06-05 厦门稀土材料研究所 Rare earth modified high-thermal-conductivity epoxy composite material and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173372A (en) * 1993-12-20 1995-07-11 Sumitomo Bakelite Co Ltd Epoxy resin composition
JP2002338788A (en) * 2001-05-16 2002-11-27 Mitsui Chemicals Inc Epoxy resin composition and hollow package housing semiconductor element using the composition
SG103883A1 (en) * 2002-07-29 2004-05-26 Sumitomo Bakelite Singapore Pt Epoxy resin composition
JP2017110089A (en) * 2015-12-16 2017-06-22 株式会社日立産機システム Resin composition for electric insulation
WO2017104727A1 (en) * 2015-12-16 2017-06-22 株式会社日立産機システム Electrical insulation resin composition
JP2019001841A (en) * 2017-06-12 2019-01-10 信越化学工業株式会社 Epoxy resin composition and semiconductor device having cured product of composition
CN111234465A (en) * 2020-01-16 2020-06-05 厦门稀土材料研究所 Rare earth modified high-thermal-conductivity epoxy composite material and preparation method thereof
CN111234465B (en) * 2020-01-16 2022-05-24 厦门稀土材料研究所 Rare earth modified high-thermal-conductivity epoxy composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2938177B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
JPH04164953A (en) Epoxy resin composition
JPS61166822A (en) Resin composition for sealing
JP3107360B2 (en) Liquid epoxy resin sealing material
JPS6210159A (en) Resin composition for semiconductor sealing
JPH09151301A (en) Epoxy resin composition
JPS63280720A (en) Sealing resin composition
JP3440449B2 (en) Sealing resin composition and semiconductor sealing device
JPH1030049A (en) Epoxy resin composition and material for sealing electronic parts
JP3008981B2 (en) Epoxy resin composition
JPS61101523A (en) Sealing resin composition
JPH10182947A (en) Epoxy resin composition for sealing and semiconductor device using the same
JPH1135793A (en) Epoxy resin composition and resin-sealed semiconductor device made by using the same
JPH093169A (en) Sealing resin composition and device for sealing electronic part
JPH05156126A (en) Epoxy resin composition and its cured article
JPH03177451A (en) Sealing resin composition and semiconductor device
JPH09176279A (en) Epoxy resin composition
JP3468900B2 (en) Semiconductor device
JPH01144438A (en) Sealing resin composition
JP3298084B2 (en) Sealing resin composition and semiconductor sealing device
JP2004155841A (en) Sealing resin composition, and semiconductor sealing device
JP3317473B2 (en) Epoxy resin composition
JP3649893B2 (en) Resin composition for sealing and semiconductor sealing device
JPH0222322A (en) Resin compound for sealing
JPS60207353A (en) Resin sealed type semiconductor device
JPH01146948A (en) Sealing resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees