JPH05156126A - Epoxy resin composition and its cured article - Google Patents

Epoxy resin composition and its cured article

Info

Publication number
JPH05156126A
JPH05156126A JP3343893A JP34389391A JPH05156126A JP H05156126 A JPH05156126 A JP H05156126A JP 3343893 A JP3343893 A JP 3343893A JP 34389391 A JP34389391 A JP 34389391A JP H05156126 A JPH05156126 A JP H05156126A
Authority
JP
Japan
Prior art keywords
epoxy resin
parts
weight
particle size
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3343893A
Other languages
Japanese (ja)
Other versions
JP2595854B2 (en
Inventor
Toshio Shiobara
利夫 塩原
Kazutoshi Tomiyoshi
和俊 富吉
Hatsuji Shiraishi
初二 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3343893A priority Critical patent/JP2595854B2/en
Publication of JPH05156126A publication Critical patent/JPH05156126A/en
Application granted granted Critical
Publication of JP2595854B2 publication Critical patent/JP2595854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an epoxy resin composition which is excellent in flowability in molding and gives a cured article having low stress and excellent soldering characteristics, especially moisture resistance and crack resistance after moisture absorption. CONSTITUTION:The objective epoxy resin composition contains an epoxy resin, a curing agent and an inorganic filler, wherein a powder obtained by grinding massive quartz and fine spherical silica is used as the inorganic filler.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は成形時の流動性が良好で
ある上、吸湿後の半田耐熱性、耐クラック性に優れた半
導体封止用として好適なエポキシ樹脂組成物及びその硬
化物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition suitable for semiconductor encapsulation, which has excellent fluidity during molding and is excellent in solder heat resistance and crack resistance after moisture absorption, and a cured product thereof. ..

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】エポキ
シ樹脂及びこれに無機質充填剤を配合したエポキシ樹脂
組成物は、一般に他の熱硬化性樹脂組成物に比べて、成
形性、接着性、電気特性、機械特性、耐湿性等に優れて
いるため、各種成形材料、電気絶縁材料などとして広く
利用され、特に最近では半導体の封止材として注目され
ている。
2. Description of the Related Art Epoxy resins and epoxy resin compositions in which an inorganic filler is added to the epoxy resins generally have better moldability, adhesiveness, and electrical properties than other thermosetting resin compositions. Because of its excellent properties, mechanical properties, moisture resistance, etc., it has been widely used as various molding materials, electrical insulating materials, etc., and has recently attracted attention as a semiconductor sealing material.

【0003】最近、このエポキシ樹脂組成物に低応力性
を付与することを目的としてシリコーン系改質剤、ポリ
ブタジエン系改質剤を添加したり、更には膨張係数を下
げるために無機質充填剤添加量を増量することが検討さ
れている。
Recently, silicone-based modifiers and polybutadiene-based modifiers have been added for the purpose of imparting low stress properties to this epoxy resin composition, and the amount of inorganic filler added has been reduced in order to lower the expansion coefficient. Is being considered.

【0004】しかしながら、このような方法では、組成
物の応力性は低くなるものの、無機質充填剤添加量を増
量すると成形時の流動性が悪くなり、低応力性と流動性
といった封止材にとって重要な性能を両立させることが
難しいという重大な欠点がある。
However, in such a method, although the stress property of the composition is lowered, when the amount of the inorganic filler added is increased, the fluidity at the time of molding is deteriorated, which is important for the sealing material such as low stress and fluidity. There is a serious drawback in that it is difficult to achieve good performance at the same time.

【0005】また、最近ではパッケージが益々小型化、
薄型化されると共に、基板への実装方法も表面実装方式
が主流となり、従来のエポキシ樹脂組成物では十分な信
頼性を維持できなくなっている。例えばパッケージが吸
湿した状態で半田付けすると、パッケージにクラックが
発生する問題や、クラックが発生しないまでも耐湿性が
低下してしまうといった不具合が生じている。これらの
不具合の原因はパッケージ材料が吸湿することである。
このため吸湿性の少ないエポキシ樹脂、硬化剤等を見い
出すべく検討されているが、実用に供するものはまだ殆
んど開発されていない現状にある。
Recently, the package has become smaller and smaller,
In addition to the reduction in thickness, the surface mounting method has become the mainstream method for mounting on a substrate, and conventional epoxy resin compositions cannot maintain sufficient reliability. For example, when soldering is performed in a state where the package absorbs moisture, there are problems that a crack is generated in the package and the moisture resistance is lowered even if the crack is not generated. The cause of these problems is that the packaging material absorbs moisture.
For this reason, studies have been conducted to find out epoxy resins, curing agents, etc. having low hygroscopicity, but practically none have been developed yet.

【0006】このため、硬化物が低応力で、しかも半田
特性、特に吸湿後の耐湿性、耐クラック性に優れ、かつ
成形時の流動性が良好なエポキシ樹脂組成物の開発が望
まれていた。
Therefore, it has been desired to develop an epoxy resin composition having a cured product with low stress, excellent soldering characteristics, particularly moisture resistance after moisture absorption and crack resistance, and good fluidity during molding. ..

【0007】本発明は、上記事情に鑑みなされたもの
で、硬化物が低応力で、しかも半田特性、特に吸湿後の
耐湿性、耐クラック性に優れ、かつ成形時の流動性が良
好なエポキシ樹脂組成物及びその硬化物を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and an epoxy resin having a low stress in a cured product, excellent soldering properties, particularly moisture resistance after moisture absorption and crack resistance, and good fluidity during molding. An object is to provide a resin composition and a cured product thereof.

【0008】[0008]

【課題を解決するための手段及び作用】本発明者らは上
記目的を達成するため、半導体封止用として好適なエポ
キシ樹脂組成物の無機質充填剤について鋭意検討した結
果、エポキシ樹脂と硬化剤と無機質充填剤とを含有して
なるエポキシ樹脂組成物において、無機質充填剤として
塊状石英を粉砕する際に微細球状シリカを加えて粉砕す
ることにより得られた粉体を使用すること、また好まし
くはこれに平均粒径5〜35μmの球状シリカを併用す
ることにより、得られた硬化物が低応力で、しかも半田
特性、特に吸湿後の耐湿性、耐クラック性に優れ、かつ
成形時の流動性が良好であることを見い出し、本発明を
完成したものである。
Means and Actions for Solving the Problems In order to achieve the above object, the present inventors have made earnest studies on an inorganic filler of an epoxy resin composition suitable for semiconductor encapsulation. In an epoxy resin composition containing an inorganic filler, use a powder obtained by pulverizing by adding fine spherical silica when pulverizing agglomerated quartz as an inorganic filler, and preferably this By using spherical silica having an average particle diameter of 5 to 35 μm in combination, the obtained cured product has low stress, soldering characteristics, particularly moisture resistance after moisture absorption and crack resistance, and fluidity during molding. The present invention has been found to be good, and the present invention has been completed.

【0009】以下、本発明を詳細に説明すると、本発明
に使用されるエポキシ樹脂は1分子中に2個以上のエポ
キシ基を有するものであれば特に制限はなく、例えばオ
ルソクレゾールノボラック型エポキシ樹脂、フェノール
ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ビス
フェノール型エポキシ樹脂、置換又は非置換のナフタレ
ン型エポキシ樹脂、置換又は非置換のビフェニル型エポ
キシ樹脂、置換又は非置換のトリフェノールアルカン型
エポキシ樹脂、上記エポキシ樹脂のハロゲン化物などを
挙げることができ、これらの1種又は2種以上が適宜選
択して使用される。
The present invention will be described in detail below. The epoxy resin used in the present invention is not particularly limited as long as it has two or more epoxy groups in one molecule. For example, orthocresol novolac type epoxy resin. , Phenol novolac type epoxy resin, alicyclic epoxy resin, bisphenol type epoxy resin, substituted or unsubstituted naphthalene type epoxy resin, substituted or unsubstituted biphenyl type epoxy resin, substituted or unsubstituted triphenolalkane type epoxy resin, Examples thereof include halides of the above epoxy resins, and one or more of these are appropriately selected and used.

【0010】また、硬化剤はエポキシ樹脂に応じたもの
が使用され、例えばアミン系硬化剤、酸無水物系硬化
剤、フェノール系硬化剤等を用いることができるが、中
でもフェノール系硬化剤が組成物の成形性、耐湿性とい
った面でより望ましい。なお、フェノール系硬化剤とし
て、具体的にはフェノールノボラック樹脂、クレゾール
ノボラック樹脂、ナフタレン型樹脂、トリフェノールア
ルカン型樹脂が例示される。
As the curing agent, one corresponding to the epoxy resin is used. For example, an amine type curing agent, an acid anhydride type curing agent, a phenol type curing agent and the like can be used. Among them, a phenol type curing agent is used. More desirable in terms of moldability and moisture resistance of the product. Specific examples of the phenol-based curing agent include phenol novolac resin, cresol novolac resin, naphthalene type resin, and triphenol alkane type resin.

【0011】ここで、硬化剤の配合量は別に制限されな
いが、フェノールノボラック型硬化剤を使用する場合
は、エポキシ樹脂中のエポキシ基と硬化剤中のフェノー
ル性水酸基とのモル比を0.5〜1.5の範囲にするこ
とが好適である。
Although the amount of the curing agent is not particularly limited, when a phenol novolac type curing agent is used, the molar ratio of the epoxy group in the epoxy resin to the phenolic hydroxyl group in the curing agent is 0.5. It is suitable to be in the range of 1.5.

【0012】更に本発明の組成物には、エポキシ樹脂と
硬化剤との反応を促進させるために硬化促進剤を配合す
ることが好ましい。硬化促進剤としてはイミダゾール化
合物、1,8−ジアザビシクロ(5.4.0)ウンデセ
ン(DBU)等のシクロアミジン誘導体、トリフェニル
ホスフィン等のホスフィン誘導体、三級アミン類などの
1種又は2種以上が用いられる。なお、硬化促進剤の使
用量は特に制限されないが、通常エポキシ樹脂とフェノ
ール樹脂の合計量に対し0.01〜5重量部、望ましく
は0.2〜3重量部である。
Further, it is preferable to add a curing accelerator to the composition of the present invention in order to accelerate the reaction between the epoxy resin and the curing agent. As the curing accelerator, one or more of imidazole compounds, cycloamidine derivatives such as 1,8-diazabicyclo (5.4.0) undecene (DBU), phosphine derivatives such as triphenylphosphine, and tertiary amines. Is used. The amount of the curing accelerator used is not particularly limited, but is usually 0.01 to 5 parts by weight, preferably 0.2 to 3 parts by weight, based on the total amount of the epoxy resin and the phenol resin.

【0013】本発明のエポキシ樹脂組成物には、上記成
分に加え、無機質充填剤として塊状石英を微細球状シリ
カと共に粉砕することにより得られた粉体を使用する。
In the epoxy resin composition of the present invention, in addition to the above components, a powder obtained by pulverizing massive quartz together with fine spherical silica is used as an inorganic filler.

【0014】ここで、粉砕すべき塊状石英の平均粒径
は、通常約0.1〜100mm、特に1〜50mmであ
ることが好ましく、またこれに添加される微細球状シリ
カの平均粒径は0.1〜4μm、特に0.5〜2μmで
あることが好ましい。この微細球状シリカの添加量は、
塊状石英100重量部に対し1〜50重量部、特に5〜
40重量部であり、全充填剤100重量部に対し2〜2
5重量部、特に4〜17重量部であることが流動性向上
の点から好ましい。
Here, the average particle size of the lump quartz to be crushed is usually about 0.1 to 100 mm, preferably 1 to 50 mm, and the average particle size of fine spherical silica added thereto is 0. 0.1 to 4 μm, particularly 0.5 to 2 μm is preferable. The addition amount of this fine spherical silica is
1 to 50 parts by weight, especially 5 to 100 parts by weight of lumped quartz
40 parts by weight, and 2 to 2 with respect to 100 parts by weight of the total filler.
It is preferably 5 parts by weight, particularly 4 to 17 parts by weight from the viewpoint of improving fluidity.

【0015】上記塊状石英と微細球状シリカとの混合物
の粉砕は、ボールミル等により通常30分〜5時間行う
ことができるが、粉砕後の粉体は平均粒径が5〜35μ
m、特に7〜30μmであることが好ましい。ここで、
このように塊状石英と微細球状シリカとの混合物を粉砕
せず、塊状石英のみを粉砕して得られた破砕シリカを微
細球状シリカとヘンシェルミキサー、V−ブレンダー等
の混合装置で混合する方法では、微細球状シリカの分散
が不十分であり、また微細球状シリカの二次凝集物が発
生し易いといった欠点がある。
The crushing of the mixture of the lump quartz and the fine spherical silica can be carried out usually by a ball mill for 30 minutes to 5 hours, and the powder after crushing has an average particle diameter of 5 to 35 μm.
m, particularly preferably 7 to 30 μm. here,
As described above, in the method of mixing the crushed silica obtained by crushing only the lumped quartz with the crushed silica obtained by crushing only the lumped quartz without crushing the mixture of the lumped quartz and the fine spherical silica, with a mixing device such as a Henschel mixer or a V-blender, There are drawbacks that the fine spherical silica is not sufficiently dispersed and secondary aggregates of the fine spherical silica are easily generated.

【0016】これに対し、塊状石英と微細球状シリカと
の混合物を粉砕することにより、微細球状シリカの分散
が十分であり、二次凝集物がなく、エポキシ樹脂組成物
の流動性に優れたものになる。なお、粉砕時に水又はシ
ランカップリング剤をの0.05〜2重量%添加すると
微細シリカが破砕シリカの表面にくっつき、より分散性
が良くなる。
On the other hand, by pulverizing a mixture of agglomerated quartz and fine spherical silica, the fine spherical silica is sufficiently dispersed, there are no secondary aggregates, and the epoxy resin composition has excellent fluidity. become. If 0.05 to 2% by weight of water or a silane coupling agent is added at the time of pulverization, fine silica sticks to the surface of the crushed silica, and the dispersibility is further improved.

【0017】本発明においては、上記粉体に加え、平均
粒径が5〜35μmの球状シリカを併用することが好ま
しく、これにより更に流動性が向上する。
In the present invention, it is preferable to use spherical silica having an average particle diameter of 5 to 35 μm in combination with the above powder, which further improves the fluidity.

【0018】ここで、上記粉体及び平均粒径が5〜35
μmの球状シリカの配合量は、エポキシ樹脂と硬化剤と
の合計量100重量部に対し、上記粉体が250〜80
0重量部、特に300〜700重量部であり、球状シリ
カが0〜600重量部、特に50〜150重量部であ
り、かつ両者の合計量が250〜850重量部、特に3
00〜650重量部であることが好ましい。配合量が2
50重量部より少ないと内部応力を十分に低下させるこ
とができず、また850重量部より多いと樹脂の流動性
が著しく低下し、成形困難になる場合がある。
Here, the powder and the average particle diameter are 5 to 35.
The compounding amount of the spherical silica of μm is 250 to 80 with respect to 100 parts by weight of the total amount of the epoxy resin and the curing agent.
0 parts by weight, especially 300 to 700 parts by weight, spherical silica 0 to 600 parts by weight, especially 50 to 150 parts by weight, and the total amount of both is 250 to 850 parts by weight, especially 3 parts by weight.
It is preferably from 0.00 to 650 parts by weight. Compounding amount is 2
If it is less than 50 parts by weight, the internal stress cannot be sufficiently reduced, and if it is more than 850 parts by weight, the fluidity of the resin is remarkably reduced, and molding may be difficult.

【0019】なお、上記充填剤はその使用に際し予めそ
の表面を有機珪素化合物、チタネート類、有機アルミニ
ウム類等の表面処理剤で表面処理して使用することが好
ましい。これらの中でもシランカップリング剤と呼ばれ
るものが特に望ましい。
When the filler is used, it is preferable that the surface of the filler is previously treated with a surface treating agent such as an organic silicon compound, a titanate or an organic aluminum. Among these, what is called a silane coupling agent is particularly desirable.

【0020】本発明の組成物には更に上記した無機質充
填剤の他に、他の充填剤を添加しても良い。これら充填
剤としては、結晶シリカ、アルミナ、タルク、カオリ
ン、窒化珪素、窒化アルミニウム、ボロンナイトライ
ド、ガラス繊維等が代表的なものである。
In addition to the above-mentioned inorganic fillers, other fillers may be added to the composition of the present invention. Typical examples of these fillers are crystalline silica, alumina, talc, kaolin, silicon nitride, aluminum nitride, boron nitride, glass fiber and the like.

【0021】更に、本発明では、エポキシ樹脂組成物に
応力を低下させる目的でシリコーン系ポリマーや熱可塑
性ポリマーを配合することが好ましく、これらのポリマ
ーの添加により、熱衝撃テストにおけるパッケージクラ
ックの発生を著しく低下させることができる。
Further, in the present invention, it is preferable to add a silicone polymer or a thermoplastic polymer to the epoxy resin composition for the purpose of reducing stress, and the addition of these polymers causes the generation of package cracks in a thermal shock test. It can be significantly reduced.

【0022】シリコーン系ポリマーとしては、例えばエ
ポキシ基、アミノ基、カルボキシル基、水酸基、ヒドロ
シリル基、ビニル基等を有するシリコーンオイル、シリ
コーンレジン又はシリコーンゴム、更にはこれらシリコ
ーンポリマーとフェノールノボラック樹脂、エポキシ化
フェノールノボラック樹脂等の有機重合体との共重合体
を用いることができる。またシリコーンゴムやゲルの微
粉末も使用可能である。
Examples of the silicone polymer include silicone oil, silicone resin or silicone rubber having an epoxy group, an amino group, a carboxyl group, a hydroxyl group, a hydrosilyl group, a vinyl group, etc., and further, these silicone polymers and phenol novolac resins, epoxidized. A copolymer with an organic polymer such as phenol novolac resin can be used. Further, fine powder of silicone rubber or gel can also be used.

【0023】熱可塑性樹脂としてはMBS樹脂、ブチラ
ール樹脂、芳香族ポリエステル樹脂などが代表的なもの
である。
MBS resin, butyral resin, aromatic polyester resin and the like are typical examples of the thermoplastic resin.

【0024】なお、これら樹脂の配合量は、エポキシ樹
脂と硬化剤の合計量100重量部に対し1〜50重量部
とすることが好ましい。
The blending amount of these resins is preferably 1 to 50 parts by weight based on 100 parts by weight of the total amount of the epoxy resin and the curing agent.

【0025】また、本発明組成物には、カップリング
剤、着色剤、離型剤、ハロゲントラップ剤などを適宜配
合しても良い。
Further, a coupling agent, a coloring agent, a releasing agent, a halogen trapping agent and the like may be appropriately added to the composition of the present invention.

【0026】本発明の組成物は、上記成分を混練するこ
とにより得ることができるが、混練方法としては、通常
ニーダー、ロールミル、連続混練機を用いれば良い。
The composition of the present invention can be obtained by kneading the above-mentioned components, and as a kneading method, a kneader, a roll mill or a continuous kneader may be usually used.

【0027】本発明のエポキシ樹脂組成物は、IC,L
SI,トランジスタ等の半導体装置の封止用に好適に使
用される。ここで、半導体装置の封止を行う場合は、従
来より採用されている成形法、例えばトランスファー成
形法、インジェクション成形法、注型法などが使用され
る。この場合成形温度は150〜180℃で行うことが
望ましい。
The epoxy resin composition of the present invention is
It is preferably used for sealing semiconductor devices such as SI and transistors. Here, when the semiconductor device is sealed, conventionally used molding methods such as a transfer molding method, an injection molding method, and a casting method are used. In this case, the molding temperature is preferably 150 to 180 ° C.

【0028】[0028]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be specifically described below by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0029】〔実施例1〜4,比較例1〕エポキシ当量
200、軟化点65℃のエポキシ化クレゾールノボラッ
ク樹脂58部、エポキシ当量280の臭素化エポキシ化
フェノールノボラック樹脂6部、フェノール当量11
0,軟化点80℃のフェノールノボラック樹脂36部、
トリフェニルホスフィン0.7部、三酸化アンチモン1
0部、カルナバワックス1.5部、γ−グリシドキシプ
ロピルトリメトキシシラン1.6部、カーボンブラック
1部をベースとして使用し、このベースにシリカを所定
量配合し、80℃のミキシングロールで5分間溶融混合
した後、シート状に取り出して冷却し、粉砕してエポキ
シ樹脂組成物を作成した。
Examples 1 to 4 and Comparative Example 1 58 parts of epoxidized cresol novolac resin having an epoxy equivalent of 200 and a softening point of 65 ° C., 6 parts of brominated epoxidized phenol novolac resin having an epoxy equivalent of 280, and 11 equivalents of phenol.
0, 36 parts of phenol novolac resin with a softening point of 80 ° C,
0.7 parts of triphenylphosphine, 1 part of antimony trioxide
0 parts, carnauba wax 1.5 parts, γ-glycidoxypropyltrimethoxysilane 1.6 parts, and carbon black 1 part were used as a base, and a predetermined amount of silica was blended into this base, which was then mixed with a mixing roll at 80 ° C. After melt-mixing for 5 minutes, it was taken out into a sheet form, cooled and pulverized to prepare an epoxy resin composition.

【0030】得られた組成物について、以下の諸試験を
行った。結果を表1に示す。 (1)スパイラルフロー EMMI規格に準じた金型を使用して175℃,70k
g/cm2の条件で測定した。 (2)膨張係数、ガラス転移温度 175℃,70kg/cm2、成形時間2分で成形後、
180℃/4Hrのポストキュアーの条件で作成した5
×5×15mmの試験片を用い、アグネ(真空理工社
製)を使用して測定した。 (3)曲げ強さ (3−1)室温測定 JIS−K6911に準じて175℃,70kg/cm
2、成形時間2分の条件で試験片を作成し、180℃/
4Hrポストキュアーしたものについて測定した。 (3−2)吸湿処理後 3−1で作成、ポストキュアーした試験片をPCT(プ
レッシャークッカ)中に100時間放置した後測定し
た。 (4)吸湿後の半田クラック 175℃,70kg/cm2、成形時間2分の条件で厚
さ2.7mmのQFPを成形し、180℃/4Hrポス
トキュアーした。このパッケージを35℃/85%RH
の雰囲気に24Hr放置して吸湿処理を行った後、これ
を260℃の半田浴に10秒浸漬した。この時に発生す
るパッケージのクラック発生不良率を調べた。
The following tests were conducted on the obtained composition. The results are shown in Table 1. (1) Spiral flow 175 ° C, 70k using a mold conforming to EMMI standard
It was measured under the condition of g / cm 2 . (2) After molding with a coefficient of expansion, a glass transition temperature of 175 ° C., 70 kg / cm 2 and a molding time of 2 minutes,
Created under the conditions of 180 ° C / 4Hr post cure 5
It measured using the Agne (Vacuum Riko Co., Ltd.) using the test piece of x5x15mm. (3) Bending strength (3-1) Room temperature measurement According to JIS-K6911, 175 ° C, 70 kg / cm
2 、 Create a test piece under the condition of molding time 2 minutes, 180 ℃ /
It measured about what was post-cured for 4 hours. (3-2) After Moisture Absorption Treatment The test piece prepared and post-cured in 3-1 was left standing in a PCT (pressure cooker) for 100 hours and then measured. (4) Solder crack after moisture absorption QFP having a thickness of 2.7 mm was molded under the conditions of 175 ° C., 70 kg / cm 2 , and molding time of 2 minutes, and post-cured at 180 ° C./4Hr. This package is 35 ℃ / 85% RH
After being left in the atmosphere for 24 hours for a moisture absorption treatment, it was immersed in a solder bath at 260 ° C. for 10 seconds. The crack generation defect rate of the package generated at this time was examined.

【0031】[0031]

【表1】 [Table 1]

【0032】シリカNo.1:塊状石英(粒径約20〜
30mm)1000g、平均粒径1μmの微細球状シリ
カ200gをボールミルに仕込み、60分粉砕した。得
られたシリカの平均粒径は12μmであり、200メッ
シュのふるい上に残った二次凝集物は0.1%以下であ
った。この粉体300重量部と平均粒径30μmの球状
シリカ(三菱マテリアル製BF100)200重量部と
を配合した。
Silica No. 1: Aggregate quartz (particle size of about 20 ~
30 g) and 200 g of fine spherical silica having an average particle size of 1 μm were charged in a ball mill and pulverized for 60 minutes. The average particle size of the obtained silica was 12 μm, and the secondary aggregate remaining on the 200-mesh sieve was 0.1% or less. 300 parts by weight of this powder and 200 parts by weight of spherical silica (BF100 manufactured by Mitsubishi Materials) having an average particle size of 30 μm were mixed.

【0033】シリカNo.2:塊状石英(粒径約20〜
30mm)1000g、平均粒径1μmの微細球状シリ
カ200gをボールミルに仕込み、60分粉砕した。得
られたシリカの平均粒径は12μmであり、200メッ
シュのふるい上に残った二次凝集物は0.1%以下であ
った。この粉体300重量部と平均粒径30μmの球状
シリカ(三菱マテリアル製BF100)200重量部と
をカップリング剤(信越化学製KBM403)3重量部
で表面処理したものを配合した。
Silica No. 2: Lumped quartz (particle size of about 20 ~
30 g) and 200 g of fine spherical silica having an average particle size of 1 μm were charged in a ball mill and pulverized for 60 minutes. The average particle size of the obtained silica was 12 μm, and the secondary aggregate remaining on the 200-mesh sieve was 0.1% or less. 300 parts by weight of this powder and 200 parts by weight of spherical silica (BF100 manufactured by Mitsubishi Materials) having an average particle diameter of 30 μm were surface-treated with 3 parts by weight of a coupling agent (KBM403 manufactured by Shin-Etsu Chemical) and blended.

【0034】シリカNo.3:塊状石英(粒径約20〜
30mm)1000g、平均粒径1μmの微細球状シリ
カ400gをボールミルに仕込み、60分粉砕した。得
られたシリカの平均粒径は10μmであり、200メッ
シュのふるい上に残った二次凝集物は0.1%以下であ
った。この粉体150重量部と平均粒径15μmの球状
シリカ(三菱マテリアル製BF015)350重量部と
をカップリング剤(信越化学製KBM403)3重量部
で表面処理したものを配合した。
Silica No. 3: Agglomerated quartz (particle size of about 20 ~
(30 mm) 1000 g, 400 g of fine spherical silica having an average particle size of 1 μm was charged in a ball mill and pulverized for 60 minutes. The average particle size of the obtained silica was 10 μm, and the amount of secondary aggregates remaining on the 200-mesh sieve was 0.1% or less. 150 parts by weight of this powder and 350 parts by weight of spherical silica (BF015, manufactured by Mitsubishi Materials) having an average particle size of 15 μm were surface-treated with 3 parts by weight of a coupling agent (KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.).

【0035】シリカNo.4:塊状石英(粒径約20〜
30mm)1000g、平均粒径1μmの微細球状シリ
カ400gをボールミルに仕込み、60分粉砕した。得
られたシリカの平均粒径は10μmであり、200メッ
シュのふるい上に残った二次凝集物は0.1%以下であ
った。この粉体200重量部と平均粒径15μmの球状
シリカ(三菱マテリアル製BF015)400重量部と
をカップリング剤(信越化学製KBM403)3重量部
で表面処理したものを配合した。
Silica No. 4: Agglomerated quartz (particle size of about 20 ~
(30 mm) 1000 g, 400 g of fine spherical silica having an average particle size of 1 μm was charged in a ball mill and pulverized for 60 minutes. The average particle size of the obtained silica was 10 μm, and the amount of secondary aggregates remaining on the 200-mesh sieve was 0.1% or less. 200 parts by weight of this powder and 400 parts by weight of spherical silica (BF015, manufactured by Mitsubishi Materials) having an average particle size of 15 μm were surface-treated with 3 parts by weight of a coupling agent (KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.).

【0036】シリカNo.5:平均粒径15μmの破砕
シリカ1000g、平均粒径1μmの微細球状シリカ2
00gをヘンシェルミキサーに仕込み、10分間混合し
た。200メッシュのふるい上に残った二次凝集物は2
%であった。この粉体300重量部と平均粒径30μm
の球状シリカ(三菱マテリアル製BF100)200重
量部とを配合した。
Silica No. 5: 1000 g of crushed silica having an average particle size of 15 μm, fine spherical silica 2 having an average particle size of 1 μm 2
00 g was placed in a Henschel mixer and mixed for 10 minutes. 2 secondary agglomerates remaining on the 200 mesh screen
%Met. 300 parts by weight of this powder and an average particle size of 30 μm
200 parts by weight of spherical silica (BF100 manufactured by Mitsubishi Materials).

【0037】〔実施例5〜7〕エポキシ当量200、軟
化点70℃のエポキシ化クレゾールノボラック樹脂58
部、エポキシ当量280の臭素化エポキシ化フェノール
ノボラック樹脂6部、フェノール当量110,軟化点8
0℃のフェノールノボラック樹脂36部、トリフェニル
ホスフィン0.7部、三酸化アンチモン10部、カルナ
バワックス1.5部、γ−グリシドキシプロピルトリメ
トキシシラン1.6部、カーボンブラック1部をベース
として使用し、このベースにシリカを所定量配合し、8
0℃のミキシングロールで5分間溶融混合した後、シー
ト状に取り出して冷却し、粉砕してエポキシ樹脂組成物
を作成した。
[Examples 5 to 7] Epoxidized cresol novolac resin 58 having an epoxy equivalent of 200 and a softening point of 70 ° C.
Parts, epoxy equivalent 280, brominated epoxidized phenol novolac resin 6 parts, phenol equivalent 110, softening point 8
Based on 36 parts of phenol novolac resin at 0 ° C, 0.7 parts of triphenylphosphine, 10 parts of antimony trioxide, 1.5 parts of carnauba wax, 1.6 parts of γ-glycidoxypropyltrimethoxysilane and 1 part of carbon black. As a base material, add a certain amount of silica to this base,
After melt-mixing with a mixing roll at 0 ° C. for 5 minutes, it was taken out in a sheet form, cooled and pulverized to prepare an epoxy resin composition.

【0038】得られた組成物について、上記(1)〜
(4)に加え、下記(5)の諸試験を行った。結果を表
2に示す。 (5)バリ特性 180℃/70kg/cm2の条件でバリ金型を用い成
形し、厚み30μmのスリットに出たバリの長さを測定
した。
Regarding the obtained composition, the above (1) to
In addition to (4), the following tests (5) were conducted. The results are shown in Table 2. (5) Burr characteristics Molding was performed using a burr die under the conditions of 180 ° C / 70 kg / cm 2 , and the length of the burr that appeared in the slit having a thickness of 30 µm was measured.

【0039】[0039]

【表2】 [Table 2]

【0040】シリカNo.6:塊状石英(粒径約20〜
30mm)1000g、平均粒径0.5μmの微細球状
シリカ300gをボールミルに仕込み、60分粉砕し
た。得られたシリカの平均粒径は12μmであり、20
0メッシュのふるい上に残った二次凝集物は0.1%以
下であった。この粉体250重量部と平均粒径30μm
の球状シリカ(三菱マテリアル製BF100)250重
量部とを配合した。
Silica No. 6: Agglomerated quartz (particle size of about 20 ~
(30 mm) and 300 g of fine spherical silica having an average particle size of 0.5 μm were charged in a ball mill and pulverized for 60 minutes. The average particle size of the obtained silica was 12 μm,
Secondary aggregates remaining on the 0 mesh sieve were 0.1% or less. 250 parts by weight of this powder and an average particle size of 30 μm
250 parts by weight of spherical silica (BF100 manufactured by Mitsubishi Materials).

【0041】シリカNo.7:塊状石英(粒径約20〜
30mm)1000g、平均粒径1μmの微細球状シリ
カ300gをボールミルに仕込み、60分粉砕した。得
られたシリカの平均粒径は12μmであり、200メッ
シュのふるい上に残った二次凝集物は0.1%以下であ
った。この粉体250重量部と平均粒径30μmの球状
シリカ(三菱マテリアル製BF100)250重量部と
を配合した。
Silica No. 7: Aggregate quartz (particle size about 20-
(30 mm) 1000 g, 300 g of fine spherical silica having an average particle size of 1 μm was charged in a ball mill and pulverized for 60 minutes. The average particle size of the obtained silica was 12 μm, and the secondary aggregate remaining on the 200-mesh sieve was 0.1% or less. 250 parts by weight of this powder and 250 parts by weight of spherical silica (BF100 manufactured by Mitsubishi Materials) having an average particle size of 30 μm were mixed.

【0042】シリカNo.8:塊状石英(粒径約20〜
30mm)1000g、平均粒径3μmの微細球状シリ
カ300gをボールミルに仕込み、60分粉砕した。得
られたシリカの平均粒径は13μmであり、200メッ
シュのふるい上に残った二次凝集物は0.1%以下であ
った。この粉体250重量部と平均粒径30μmの球状
シリカ(三菱マテリアル製BF100)250重量部と
を配合した。
Silica No. 8: Aggregate quartz (particle size of about 20 ~
30 mm) and 300 g of fine spherical silica having an average particle size of 3 μm were charged in a ball mill and pulverized for 60 minutes. The average particle size of the obtained silica was 13 μm, and the amount of secondary aggregates remaining on the 200-mesh sieve was 0.1% or less. 250 parts by weight of this powder and 250 parts by weight of spherical silica (BF100 manufactured by Mitsubishi Materials) having an average particle size of 30 μm were mixed.

【0043】[0043]

【発明の効果】本発明のエポキシ樹脂組成物は、成形後
の流動性に優れ、また低応力で、半田特性、特に吸湿後
の耐湿性、耐クラック性に優れた硬化物を与える。
EFFECT OF THE INVENTION The epoxy resin composition of the present invention provides a cured product having excellent fluidity after molding, low stress, and excellent solder characteristics, particularly moisture resistance after moisture absorption and crack resistance.

フロントページの続き (72)発明者 白石 初二 群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料 技術研究所内Front page continuation (72) Inventor Hatsuji Shiraishi 1 Hitomi, Katsura, Matsuida-cho, Usui-gun, Gunma 10 Shin-Etsu Chemical Co., Ltd. Silicone Electronic Materials Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂と硬化剤と無機質充填剤と
を含有してなるエポキシ樹脂組成物において、無機質充
填剤として塊状石英を微細球状シリカとともに粉砕する
ことにより得られる粉体を用いたことを特徴とするエポ
キシ樹脂組成物。
1. An epoxy resin composition containing an epoxy resin, a curing agent, and an inorganic filler, wherein a powder obtained by pulverizing lump quartz with fine spherical silica is used as the inorganic filler. A characteristic epoxy resin composition.
【請求項2】 請求項1記載の組成物の硬化物。2. A cured product of the composition according to claim 1.
JP3343893A 1991-12-02 1991-12-02 Epoxy resin composition and cured product thereof Expired - Lifetime JP2595854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3343893A JP2595854B2 (en) 1991-12-02 1991-12-02 Epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3343893A JP2595854B2 (en) 1991-12-02 1991-12-02 Epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JPH05156126A true JPH05156126A (en) 1993-06-22
JP2595854B2 JP2595854B2 (en) 1997-04-02

Family

ID=18365055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3343893A Expired - Lifetime JP2595854B2 (en) 1991-12-02 1991-12-02 Epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP2595854B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749996A1 (en) * 1995-01-05 1996-12-27 Toray Industries, Inc. Epoxy resin composition
JP2003012895A (en) * 2001-06-27 2003-01-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
US7667339B2 (en) * 2006-03-13 2010-02-23 Cheil Industries, Inc. Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749996A1 (en) * 1995-01-05 1996-12-27 Toray Industries, Inc. Epoxy resin composition
EP0749996A4 (en) * 1995-01-05 2000-05-03 Toray Industries Epoxy resin composition
JP2003012895A (en) * 2001-06-27 2003-01-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
US7667339B2 (en) * 2006-03-13 2010-02-23 Cheil Industries, Inc. Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Also Published As

Publication number Publication date
JP2595854B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
JP3033445B2 (en) Inorganic filler for resin and epoxy resin composition
JPH062799B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2595854B2 (en) Epoxy resin composition and cured product thereof
JP2003171531A (en) Resin composition for sealing and resin-sealed semiconductor device
JPH0645740B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2690795B2 (en) Epoxy resin composition
JPH05206331A (en) Resin composition for sealing semiconductor
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JP2658749B2 (en) Resin composition for semiconductor encapsulation and semiconductor device
JPH08134330A (en) Epoxy resin composition for sealing tab and tab device
JP3013511B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0841292A (en) Production of epoxy resin composition and epoxy resin composition for sealing semiconductor
JPH0625385A (en) Epoxy resin composition and semiconductor device
JP2003155393A (en) Epoxy resin composition and semiconductor device
JP4040370B2 (en) Epoxy resin composition and semiconductor device
JP3093051B2 (en) Epoxy resin composition
JP3366456B2 (en) Epoxy resin composition
JPH07173255A (en) Epoxy resin composition
JPH0625384A (en) Epoxy resin composition and semiconductor device
JP3093050B2 (en) Epoxy resin composition
JP3317473B2 (en) Epoxy resin composition
JP3298084B2 (en) Sealing resin composition and semiconductor sealing device
JPH05343570A (en) Epoxy resin composition
JPH07107122B2 (en) Epoxy resin composition
JPH07238140A (en) Epoxy resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100329

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120329

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

EXPY Cancellation because of completion of term