JP2002338788A - Epoxy resin composition and hollow package housing semiconductor element using the composition - Google Patents

Epoxy resin composition and hollow package housing semiconductor element using the composition

Info

Publication number
JP2002338788A
JP2002338788A JP2001146666A JP2001146666A JP2002338788A JP 2002338788 A JP2002338788 A JP 2002338788A JP 2001146666 A JP2001146666 A JP 2001146666A JP 2001146666 A JP2001146666 A JP 2001146666A JP 2002338788 A JP2002338788 A JP 2002338788A
Authority
JP
Japan
Prior art keywords
silica powder
mass
epoxy resin
composition
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001146666A
Other languages
Japanese (ja)
Inventor
Tsukasa Sakuraba
庭 司 桜
Eiki Togashi
樫 栄 樹 富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2001146666A priority Critical patent/JP2002338788A/en
Publication of JP2002338788A publication Critical patent/JP2002338788A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition suitable for hollow packages which has a higher thermal conductivity compared to conventional compositions and shows a good flow property at transfer molding, and to provide a hollow package housing semiconductor elements. SOLUTION: The epoxy resin composition contains an epoxy resin, a hardener, a curing accelerator, a crystalline silica powder and a globular silica powder. Here, the crystalline silica powder has an average particle size of 0.1 μm or larger but smaller than 30 μm and a content of from 10 to 90 mass % against the total mass of the composition, while the globular silica powder has a sphericity, obtained by the formula: sphericity=(the projected area of the particle)/(the area of a circle having a circumference equal to the projected circumference of the particle), of >=0.8, an average particle size of 0.1 μm or larger but smaller than 30 μm and a content of from 1 to 50 mass % against the total mass of the composition (the total content is <=95 mass % against the total mass of the composition). The composition has a thermal conductivity (λp ) of >=1.2 W/m.k.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子を収納
するための中空パッケージ用として好適な熱伝導性と成
形性に優れたエポキシ樹脂組成物および該樹脂組成物か
らなる半導体素子収納中空パッケージに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition excellent in heat conductivity and moldability suitable for a hollow package for housing a semiconductor element, and a semiconductor element housing hollow package made of the resin composition. .

【0002】[0002]

【従来の技術】従来、CCD(Charge Coupled Devic
e)やCMOS(Complementary Metal Oxide Semicondu
ctor)等の固体撮像素子を収納するための中空パッケー
ジには、セラミックの他に、廉価な樹脂製パッケージが
用いられている。一般的に樹脂製中空パッケージは、イ
ンサート成形によって樹脂成形体と一体化され、両端が
パッケージの内側と外側に開放されたリードフレーム
と、パッケージ中央部に接着剤によって固着された半導
体素子とをボンディングワイヤーにより電気的に連結し
ている。また、樹脂成形体の上面は、透明な合成樹脂
板、ガラス板等の蓋材を接着剤によって固着し、気密封
止構造になっている。
2. Description of the Related Art Conventionally, a CCD (Charge Coupled Device) has been used.
e) and CMOS (Complementary Metal Oxide Semicondu
As a hollow package for accommodating a solid-state imaging device such as a ctor), an inexpensive resin package is used in addition to ceramic. Generally, a resin hollow package is integrated with a resin molded body by insert molding, and a lead frame with both ends opened to the inside and outside of the package is bonded to a semiconductor element fixed to the center of the package with an adhesive. They are electrically connected by wires. Further, the upper surface of the resin molded body has a hermetically sealed structure in which a lid material such as a transparent synthetic resin plate or a glass plate is fixed with an adhesive.

【0003】しかしながら、近年、このような樹脂製中
空パッケージを搭載するビデオカメラ、デジタルカメラ
等の映像記録装置の高画素化、小型化要求が高まる中
で、CCDやCMOS等の固体撮像素子に対する要求性
能も高まりつつある。すなわち、高画素化、小型化の進
展にともない、半導体素子の発熱量が増加し、これによ
って、撮像素子自体の機能を低下せしめる恐れがある。
そのため、中空パッケージの素材からの放熱性を高める
ことにより、このような問題を解決すべく、熱伝導率の
高い樹脂製中空パッケージが要望されている。
However, in recent years, demands for solid-state image pickup devices such as CCDs and CMOSs have been increasing as the number of pixels and size of video recording devices such as video cameras and digital cameras equipped with such a resin hollow package have increased. Performance is also increasing. That is, as the number of pixels increases and the miniaturization progresses, the amount of heat generated by the semiconductor element increases, which may reduce the function of the imaging element itself.
Therefore, in order to solve such a problem by increasing the heat radiation from the material of the hollow package, a resin hollow package having high thermal conductivity is demanded.

【0004】従来、樹脂成形物の熱伝導率を向上させる
手段として、溶融シリカ粉に比べ熱伝導性に優れている
結晶シリカ粉を添加する方法が用いられるが、結晶シリ
カ粉は破砕状の形状であるため、トランスファー成形時
にエポキシ樹脂組成物の流動性が低下し、成形性が悪く
なる問題が指摘されており、これによって熱伝導性を向
上させるために無機充填剤の充填率を向上させることが
難しいとされていた。
Conventionally, as a means for improving the thermal conductivity of a resin molded product, a method of adding crystalline silica powder having better thermal conductivity than fused silica powder has been used, but crystalline silica powder has a crushed shape. Therefore, it has been pointed out that the flowability of the epoxy resin composition decreases during transfer molding, and the moldability deteriorates.Therefore, in order to improve the thermal conductivity, the filling rate of the inorganic filler is increased. Was said to be difficult.

【0005】また一方で、パッケージが小型化になった
場合、それにともない樹脂成形体の肉厚が薄くなるた
め、大気中の水分が樹脂成形体を通してパッケージ内部
に浸入しやすくなる点も問題とされていた。
On the other hand, when the size of the package is reduced, the thickness of the resin molded body becomes thinner, which causes a problem that moisture in the air easily enters the inside of the package through the resin molded body. I was

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記問題点
を達成するために提案されたものであって、従来に比べ
熱伝導率が高く、トランスファー成形時の流動性が良好
な半導体素子収納中空パッケージ用として好適なエポキ
シ樹脂組成物を提供するとともに、CCD、CMOS等
の固体撮像素子を収納するための樹脂製中空パッケージ
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been proposed to achieve the above-mentioned problems, and has a high thermal conductivity and a good fluidity during transfer molding as compared with the prior art. It is an object of the present invention to provide an epoxy resin composition suitable for a hollow package and a resin hollow package for housing a solid-state imaging device such as a CCD and a CMOS.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため、種々検討を行った結果、本願発明を完
成するに至った。すなわち、本願発明は下記ないし
で示される。 エポキシ樹脂、硬化剤、硬化促進剤、結晶シリカ粉
および球状シリカ粉を含み、上記結晶シリカ粉は平均粒
径が0.1μm以上30μm未満であり、かつ組成物の
全質量に対する含有量が10質量%以上90質量%以下
であり、上記球状シリカ粉は下記(1)式で求めた球形
度が0.8以上であり、平均粒径が0.1μm以上30
μm未満であり、かつ組成物の全質量に対する含有量が
1質量%以上50質量%以下であり(但し、結晶シリカ
粉および球状シリカ粉の含有量は合計量で組成物の全質
量に対して95質量%以下である。)、
Means for Solving the Problems The present inventors have conducted various studies in order to achieve the above object, and as a result, completed the present invention. That is, the present invention is described below. It contains an epoxy resin, a curing agent, a curing accelerator, crystalline silica powder and spherical silica powder, and the crystalline silica powder has an average particle size of 0.1 μm or more and less than 30 μm, and has a content of 10 mass with respect to the total mass of the composition. % Or more and 90% by mass or less, the spherical silica powder has a sphericity of 0.8 or more determined by the following formula (1), and an average particle size of 0.1 μm or more and 30 or more.
μm, and the content based on the total mass of the composition is 1% by mass or more and 50% by mass or less (provided that the total content of the crystalline silica powder and the spherical silica powder is based on the total mass of the composition) 95% by mass or less.),

【0008】[0008]

【数2】 (Equation 2)

【0009】熱伝導率(λp)が、1.2W/m・k以
上であることを特徴とするエポキシ樹脂組成物。 1−ブタノールを媒体として測定した密度が2.1
0g/cm3未満であり、吸湿率が3%以上かつ平均粒
径が0.1μm以上3μm未満の低密度球状シリカ粉を
全組成物中に1質量%以上30質量%以下含有する(但
し、結晶シリカ粉、球状シリカ粉および低密度球状シリ
カ粉の含有量は合計量で組成物の全質量に対して95質
量%以下である。)ことを特徴とするに記載のエポキ
シ樹脂組成物。 またはに記載のエポキシ樹脂組成物からなるこ
とを特徴とする半導体素子収納中空パッケージ用エポキ
シ樹脂組成物。 またはに記載のエポキシ樹脂組成物から成形さ
れたことを特徴とする半導体素子収納中空パッケージ。
An epoxy resin composition having a thermal conductivity (λ p ) of at least 1.2 W / mk. The density measured in 1-butanol as a medium is 2.1.
0 g / cm 3 or less, and a low-density spherical silica powder having a moisture absorption of 3% or more and an average particle size of 0.1 μm or more and less than 3 μm is contained in the entire composition in an amount of 1% by mass or more and 30% by mass or less (however, The total content of the crystalline silica powder, the spherical silica powder and the low-density spherical silica powder is 95% by mass or less based on the total mass of the composition.) Or an epoxy resin composition for a hollow package containing a semiconductor element, comprising the epoxy resin composition described in the above. A hollow package containing a semiconductor element, which is molded from the epoxy resin composition described in the above item.

【0010】[0010]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明のエポキシ樹脂組成物は、エポキシ樹脂、硬化
剤、硬化促進剤、結晶シリカ粉および球状シリカ粉を含
むエポキシ樹脂組成物である。 <エポキシ樹脂>本発明で用いられるエポキシ樹脂とし
ては、ビスフェノールA型、ビスフェノールF型、ビス
フェノールAD型の各エポキシ樹脂;フェノールノボラ
ック型エポキシ樹脂、オルソクレゾールノボラック型エ
ポキシ樹脂;ナフタレン骨格含有エポキシ樹脂、ビフェ
ニル骨格含有エポキシ樹脂が好適に用いられる。これら
はいずれか1種類を単独で使用してもよく、または2種
類以上を適当な比率で併用してもよい。なお、エポキシ
当量は300(g/eq)以下が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The epoxy resin composition of the present invention is an epoxy resin composition containing an epoxy resin, a curing agent, a curing accelerator, crystalline silica powder and spherical silica powder. <Epoxy resin> Examples of the epoxy resin used in the present invention include bisphenol A type, bisphenol F type, and bisphenol AD type epoxy resins; phenol novolak type epoxy resin, orthocresol novolak type epoxy resin; naphthalene skeleton-containing epoxy resin, biphenyl A skeleton-containing epoxy resin is preferably used. Any of these may be used alone or two or more of them may be used in an appropriate ratio. The epoxy equivalent is preferably 300 (g / eq) or less.

【0011】<硬化剤>本発明で用いられる硬化剤とし
ては、上記エポキシ樹脂と硬化反応するものであれば特
に制限無く使用することができる。硬化剤としてはフェ
ノール樹脂が好ましく、フェノール樹脂としては、フェ
ノールノボラック樹脂、アラルキルフェノール樹脂等が
挙げられる。
<Curing Agent> The curing agent used in the present invention can be used without any particular limitation as long as it is capable of undergoing a curing reaction with the epoxy resin. As the curing agent, a phenol resin is preferable, and as the phenol resin, a phenol novolak resin, an aralkyl phenol resin and the like can be mentioned.

【0012】また、硬化剤としては、ジアミノジフェニ
ルメタン、ジアミノジフェニルスルホン、m−フェニレ
ンジアミン等のアミン類;無水フタル酸、無水テトラヒ
ドロフタル酸、無水ヘキサヒドロフタル酸等の酸無水
物;イソフタル酸ジヒドラジド、アジピン酸ジヒドラジ
ド等の酸ジヒドラジド;ジシアンジアミド、三フッ化ホ
ウ素等が挙げられる。
As the curing agent, amines such as diaminodiphenylmethane, diaminodiphenylsulfone and m-phenylenediamine; acid anhydrides such as phthalic anhydride, tetrahydrophthalic anhydride and hexahydrophthalic anhydride; isophthalic dihydrazide; Acid dihydrazide such as adipic acid dihydrazide; dicyandiamide, boron trifluoride and the like;

【0013】硬化剤の配合量は、化学当量比で表した場
合、耐湿性および機械的特性の観点から、エポキシ樹脂
に対する化学当量比が、0.5以上1.5以下、特に
0.7以上1.2以下の範囲にあることが好ましい。 <硬化促進剤>本発明で用いられる硬化促進剤として
は、上記エポキシ樹脂と硬化剤との架橋反応を促進する
ものが制限無く使用することができる。
When the compounding amount of the curing agent is represented by the chemical equivalent ratio, the chemical equivalent ratio to the epoxy resin is 0.5 or more and 1.5 or less, particularly 0.7 or more from the viewpoint of moisture resistance and mechanical properties. It is preferably in the range of 1.2 or less. <Curing Accelerator> As the curing accelerator used in the present invention, one that promotes a crosslinking reaction between the epoxy resin and the curing agent can be used without limitation.

【0014】その具体的な例としては、2−メチルイミ
ダゾール、2−エチル4−メチルイミダゾール、2−エ
チル4−メチルイミダゾールアジン等のイミダゾール
類;トリフェニルホスフィン、トリ(p−メチルフェニ
ル)ホスフィン等の有機ホスフィン類;1,8−ジアザ
ビシクロ[5,4,0]ウンデセン−7フェノール塩、フ
ェノールノボラック塩、炭酸塩などのDBU誘導体;式
Ar−NH−CO−NR 2(Arは置換または非置換の
アリール基、Rは同一または異なってもよい置換または
非置換のアルキル基)で表される尿素誘導体等が挙げら
れる。
A specific example is 2-methylimi
Dazole, 2-ethyl 4-methylimidazole, 2-d
Imidazoles such as tyl 4-methylimidazoleazine
And triphenylphosphine, tri (p-methylphenyi)
L) Organic phosphines such as phosphine; 1,8-diaza
Bicyclo [5,4,0] undecene-7 phenol salt,
DBU derivatives such as enol novolak salts and carbonates;
Ar-NH-CO-NR Two(Ar is a substituted or unsubstituted
An aryl group, R is the same or different substituted or
Urea derivatives represented by unsubstituted alkyl groups) and the like.
It is.

【0015】これらの硬化促進剤は、エポキシ樹脂10
0質量部に対して0.1質量部以上20質量部以下、好
ましくは0.1質量部以上10質量部以下の割合で配合
される。 <無機充填剤>本発明で用いられる無機充填剤として
は、結晶シリカ粉および球状シリカ粉が挙げられる。無
機充填剤としては結晶シリカ粉、球状シリカ粉に加え
て、アルミナ粉、窒化アルミニウム粉、フェライト粉、
水酸化アルミニウム粉、炭酸カルシウム粉等を用いるこ
とができる。
These curing accelerators are epoxy resins 10
It is compounded at a ratio of 0.1 to 20 parts by mass, preferably 0.1 to 10 parts by mass with respect to 0 parts by mass. <Inorganic filler> Examples of the inorganic filler used in the present invention include crystalline silica powder and spherical silica powder. As inorganic fillers, in addition to crystalline silica powder and spherical silica powder, alumina powder, aluminum nitride powder, ferrite powder,
Aluminum hydroxide powder, calcium carbonate powder and the like can be used.

【0016】本発明で用いられる結晶シリカ粉は、平均
粒径が0.1μm以上30μm未満、好ましくは1μm
以上25μm未満、より好ましくは5μm以上20μm
未満であることが望ましい。また球状シリカ粉は、下記
式(1)で求めた球形度が0.8以上、好ましくは0.
82以上、より好ましくは0.85以上であり、平均粒
径が0.1μm以上30μm未満、好ましくは1μm以
上30μm未満、より好ましくは10μm以上30μm
未満であることが望ましい。
The crystalline silica powder used in the present invention has an average particle size of 0.1 μm or more and less than 30 μm, preferably 1 μm
Not less than 25 μm, more preferably not less than 5 μm and not more than 20 μm
Desirably less than. The spherical silica powder has a sphericity determined by the following formula (1) of 0.8 or more, preferably 0.1.
82 or more, more preferably 0.85 or more, and the average particle size is 0.1 to 30 μm, preferably 1 to 30 μm, more preferably 10 to 30 μm
Desirably less than.

【0017】[0017]

【数3】 (Equation 3)

【0018】このような結晶シリカ粉と球状シリカ粉と
を組み合わせると、トランスファー成形時の成形性、す
なわち流動性を向上させることができる。上記結晶シリ
カ粉および球状シリカ粉は、密度が通常2.20g/c
3 以上である。結晶シリカ粉は組成物の全質量に対し
て10質量%以上90質量%以下、好ましくは25質量
%以上90質量%以下、より好ましくは30質量%以上
80質量%以下配合されることが望ましい。
When such crystalline silica powder and spherical silica powder are combined, moldability during transfer molding, that is, fluidity can be improved. The above crystalline silica powder and spherical silica powder usually have a density of 2.20 g / c.
m 3 or more. It is desirable that the crystalline silica powder is blended in an amount of 10% by mass to 90% by mass, preferably 25% by mass to 90% by mass, more preferably 30% by mass to 80% by mass with respect to the total mass of the composition.

【0019】また、球状シリカ粉は組成物の全質量に対
して1質量%以上50質量%以下、好ましくは5質量%
以上40質量%以下、より好ましくは10質量%以上3
0質量%以下配合されることが望ましい。本発明では上
記結晶シリカ粉および球状シリカ粉に加えて、さらに1
−ブタノールを媒体として測定した密度が2.10g/
cm3未満、吸湿率が3%以上の低密度球状シリカ粉を
併用することが好ましい。低密度球状シリカ粉を用いる
と、樹脂製中空パッケージに充分な耐湿性を付与するこ
とができる。
The spherical silica powder accounts for 1% by mass to 50% by mass, preferably 5% by mass, based on the total mass of the composition.
Not less than 40% by mass and more preferably not less than 10% by mass.
Desirably, the content is 0% by mass or less. In the present invention, in addition to the crystalline silica powder and the spherical silica powder,
The density measured in butanol as a medium is 2.10 g /
It is preferable to use a low-density spherical silica powder having a density of less than 3 cm 3 and a moisture absorption of 3% or more. Use of the low-density spherical silica powder can impart sufficient moisture resistance to the resin hollow package.

【0020】低密度球状シリカ粉は、1−ブタノールを
媒体として測定した密度が2.10g/cm3 未満、好
ましくは1.55ないし2.05g/cm3 、より好ま
しくは、1.60ないし1.95g/cm3 のものであ
る。このような密度を有するシリカを使用することによ
って、エポキシ樹脂組成物の耐湿性は著しく改良され
る。
The low-density spherical silica powder has a density measured using 1-butanol as a medium of less than 2.10 g / cm 3 , preferably 1.55 to 2.05 g / cm 3 , more preferably 1.60 to 1 / g. 0.95 g / cm 3 . By using silica having such a density, the moisture resistance of the epoxy resin composition is significantly improved.

【0021】低密度球状シリカ粉は、最大粒径が100
μm以下、かつ平均粒径が0.1μm以上3μm未満、
好ましくは1ないし2μmのものが使用される。この低
密度球状シリカ粉は組成物の全質量に対して1質量%以
上30質量%以下、好ましくは1質量%以上25質量%
以下、より好ましくは1質量%以上10質量%以下配合
されることが望ましい。
The low-density spherical silica powder has a maximum particle size of 100.
μm or less, and the average particle size is 0.1 μm or more and less than 3 μm,
Preferably, one having a thickness of 1 to 2 μm is used. The low-density spherical silica powder accounts for 1 to 30% by mass, preferably 1 to 25% by mass, based on the total mass of the composition.
Below, it is desirable that it is more preferably blended in an amount of 1% by mass or more and 10% by mass or less.

【0022】上記シリカ粉(結晶シリカ粉、球状シリカ
粉、低密度球状シリカ粉が含まれる。)は合計量で組成
物の全質量に対して95質量%以下配合されることが望
ましい。なお、組成物に結晶シリカ粉および球状シリカ
粉が配合される場合の最低配合量は、合計量で組成物の
全質量に対して11質量%以上、好ましくは25質量%
以上であり、組成物に結晶シリカ粉、球状シリカ粉およ
び低密度球状シリカ粉が配合される場合の配合量は、合
計量で組成物の全質量に対して12質量%以上、好まし
くは25質量%以上である。
The above-mentioned silica powder (including crystalline silica powder, spherical silica powder and low-density spherical silica powder) is desirably incorporated in a total amount of not more than 95% by mass based on the total mass of the composition. When the crystalline silica powder and the spherical silica powder are mixed in the composition, the minimum amount is 11% by mass or more, preferably 25% by mass, based on the total mass of the composition.
When the crystalline silica powder, the spherical silica powder and the low-density spherical silica powder are blended in the composition, the total amount is 12% by mass or more, preferably 25% by mass, based on the total mass of the composition. % Or more.

【0023】また、半導体のソフトエラーの発生を抑え
るために、放射性元素であるウラン含有量が1ppb以
下のシリカ粉を使用することが好ましい。 <その他の配合剤>本発明においては、必要に応じて離
型剤として、モンタン酸、ステアリン酸、ベヘニン酸、
オレイン酸等の高級脂肪酸;カルナバろう(カルナバワ
ックス)等の高級脂肪酸のエステルワックス;ベヘニン
酸亜鉛、オレイン酸亜鉛、ステアリン酸マグネシウム、
ステアリン酸バリウム、ステアリン酸アルミニウムなど
の高級脂肪酸の金属塩;ジンクステアレート等の金属石
鹸を配合することができ、これらは単独であっても、混
合して用いられても差し支えない。
In order to suppress the occurrence of soft errors in semiconductors, it is preferable to use silica powder having a uranium content of 1 ppb or less as a radioactive element. <Other compounding agents> In the present invention, montanic acid, stearic acid, behenic acid,
Higher fatty acids such as oleic acid; ester waxes of higher fatty acids such as carnauba wax (carnauba wax); zinc behenate, zinc oleate, magnesium stearate;
Metal salts of higher fatty acids such as barium stearate and aluminum stearate; metal soaps such as zinc stearate can be blended, and these can be used alone or in combination.

【0024】また、これら以外に本発明のエポキシ樹脂
組成物に対して必要に応じて、シランカップリング剤、
ブロム化エポキシ樹脂、三酸化アンチモンなどの難燃
剤;カーボンブラック、フタロシアニンなどの着色剤;
低応力化剤を配合しても差し支えない。 <組成物の製法等>本発明のエポキシ樹脂組成物は、こ
れらの全材料を二本ロールやニーダー等により加熱混練
し、続いて冷却、粉砕することで目的とするエポキシ樹
脂組成物が得られる。
In addition to the above, a silane coupling agent may be added to the epoxy resin composition of the present invention, if necessary.
Flame retardants such as brominated epoxy resins and antimony trioxide; coloring agents such as carbon black and phthalocyanine;
A low stress agent may be added. <Production method of composition> The epoxy resin composition of the present invention is obtained by kneading and heating all of these materials with a two-roll or kneader, followed by cooling and pulverization to obtain the desired epoxy resin composition. .

【0025】本発明に係るエポキシ樹脂組成物は、プロ
ーブ法によって下記(2)式で求めた硬化物の熱伝導率
(λp)が、1.2W/m・k以上、好ましくは1.3
W/m・k以上、より好ましくは1.5W/m・k以上
である。
The epoxy resin composition according to the present invention has a cured product having a thermal conductivity (λ p ) of 1.2 W / m · k or more, preferably 1.3, determined by the following formula (2) by a probe method.
It is at least W / mk, more preferably at least 1.5 W / mk.

【0026】[0026]

【数4】 (Equation 4)

【0027】ここで、 I:電流(A) t2、t1:サンプリング時間(s) v2、v1:熱電対の出力(mA) K:プローブ定数 H:プローブ定数 を示す。熱伝導率(λp)の測定は、具体的には後述す
る方法で行われる。
Here, I: current (A) t 2 , t 1 : sampling time (s) v 2 , v 1 : thermocouple output (mA) K: probe constant H: probe constant The measurement of the thermal conductivity (λ p ) is specifically performed by a method described later.

【0028】また、本発明に係るエポキシ樹脂組成物は
後述する方法で測定したスパイラルフローが、通常20
cm以上、好ましくは22cm以上、より好ましくは2
5cm以上であり、後述する方法で測定した溶融トルク
が、通常1.30J以下、好ましくは1.2J以下、よ
り好ましくは1.1J以下である。このような特性を示
す本発明のエポキシ樹脂組成物は、熱伝導性に優れ、か
つトランスファー成形時の流動性に優れている。
The epoxy resin composition according to the present invention has a spiral flow of usually 20 measured by the method described below.
cm or more, preferably 22 cm or more, more preferably 2 cm or more.
It is 5 cm or more, and the melting torque measured by the method described later is usually 1.30 J or less, preferably 1.2 J or less, more preferably 1.1 J or less. The epoxy resin composition of the present invention exhibiting such characteristics has excellent thermal conductivity and excellent fluidity during transfer molding.

【0029】本発明のエポキシ樹脂組成物は、CCD、
CMOS等の固体撮像素子等の半導体素子を収納するた
めの中空パッケージ用として優れた適性を示すものであ
るが、エポキシ樹脂組成物が一般的に使われる他の用途
にも使用し得ることはもちろんである。 <中空パッケージ>次に、本発明の中空パッケージにつ
いて説明する。図1に本発明のエポキシ樹脂組成物によ
って成形されうる中空パッケージの断面図の一例を示
す。
The epoxy resin composition of the present invention comprises a CCD,
It shows excellent suitability for a hollow package for accommodating a semiconductor device such as a solid-state imaging device such as a CMOS, but of course, the epoxy resin composition can also be used for other applications generally used. It is. <Hollow Package> Next, the hollow package of the present invention will be described. FIG. 1 shows an example of a cross-sectional view of a hollow package that can be molded with the epoxy resin composition of the present invention.

【0030】本発明のエポキシ樹脂組成物によって成形
されうる中空パッケージ10は、通常、図1に示すよう
に、上方が開口した箱形のパッケージ本体1を有し、そ
の上面はガラスや透明なプラスチックなどの蓋材2によ
って、接着剤3を介して密封されている。さらにパッケ
ージ本体1の中央凹陥部にはアイランド4が設けられ、
そこに載置された半導体素子5が、ボンディングワイヤ
ー6を介してリードフレームと連結される。リードフレ
ームはパッケージ成形時にインサート成形により一体成
形され、外部リード7と内部リード8とがパッケージ内
に封入されたリードフレームを介して連結されている。
A hollow package 10 which can be molded from the epoxy resin composition of the present invention usually has a box-shaped package body 1 having an open top, as shown in FIG. And the like, and is sealed via an adhesive 3. Further, an island 4 is provided in the central concave portion of the package body 1,
The semiconductor element 5 mounted thereon is connected to a lead frame via a bonding wire 6. The lead frame is integrally formed by insert molding when forming the package, and the external lead 7 and the internal lead 8 are connected via a lead frame sealed in the package.

【0031】このような構成からなるパッケージは、上
述エポキシ樹脂組成物をトランスファー成形によって、
圧力が1〜50×106Pa(10〜500kg/c
2)、温度が150〜200℃、時間が1〜5分の成
形条件によって成形することができる。
A package having such a structure is obtained by transfer molding the above-mentioned epoxy resin composition.
Pressure is 1 to 50 × 10 6 Pa (10 to 500 kg / c
m 2 ), molding can be performed under molding conditions of a temperature of 150 to 200 ° C. and a time of 1 to 5 minutes.

【0032】[0032]

【実施例】以下、本発明の優れた効果を実施例により説
明するが、本発明は実施例に限定されるものではない。
本発明においてシリカの物性は以下のようにして測定し
た。 (1)密度 シリカの密度は、次の方法で測定した。JIS R35
03で規定された容量50mlのワードン型比重瓶(質
量mO)に、十分に粉砕し乾燥したシリカ約5gを入れ
精秤した。この時の(比重瓶)+(シリカ)の質量をm
Sとした。予め脱気した1−ブタノール約10ミリリッ
トルを入れ、超音波撹拌を30分間行った。次いで、こ
の比重瓶を減圧デシケーターに移し、少なくとも30m
mHgの真空度中に15分間置き、シリカに1−ブタノ
ールを十分に浸透させた。次に1−ブタノールを比重瓶
に満たし、蓋をし、25℃の恒温水槽に15分間浸漬放
置させた後、質量を測定した。この時の(比重瓶)+
(シリカ)+(1−ブタノール)の質量をmSlとした。
EXAMPLES Hereinafter, the excellent effects of the present invention will be described with reference to examples, but the present invention is not limited to the examples.
In the present invention, the physical properties of silica were measured as follows. (1) Density The density of silica was measured by the following method. JIS R35
Approximately 5 g of sufficiently crushed and dried silica was weighed in a 50 ml Warden-type specific gravity bottle (mass m O ) specified in 03 and precisely weighed. The mass of (specific gravity bottle) + (silica) at this time is m
S. About 10 ml of 1-butanol which had been degassed in advance was added, and ultrasonic stirring was performed for 30 minutes. The pycnometer is then transferred to a vacuum desiccator for at least 30 m.
Placed in a vacuum of mHg for 15 minutes to allow the silica to fully infiltrate 1-butanol. Next, the specific gravity bottle was filled with 1-butanol, covered, and immersed in a constant temperature water bath at 25 ° C. for 15 minutes to measure the mass. At this time (specific gravity bottle) +
The mass of (silica) + (1-butanol) was defined as m Sl .

【0033】また、これとは別に、比重瓶の体積を測定
する目的で次の操作を行った。比重瓶に予め脱気処理し
た水を満たし、蓋をし、25℃の恒温水槽に15分間浸
漬放置させた後、質量を測定した。この時の(比重瓶)
+(水)の質量をmlとした。次の計算法により、密度
ρS を算出した。
Separately, the following operation was performed for the purpose of measuring the volume of the pycnometer. The specific gravity bottle was filled with water that had been degassed in advance, covered, and immersed in a constant temperature water bath at 25 ° C. for 15 minutes, and then the mass was measured. At this time (specific gravity bottle)
+ The weight of (water) was m l. The density ρ S was calculated by the following calculation method.

【0034】[0034]

【数5】 (Equation 5)

【0035】ここで、 mO :(比重瓶)の質量(g) mS :(比重瓶)+(シリカ)の質量(g) mSl:(比重瓶)+(シリカ)+(1−ブタノール)の
質量(g) ml :(比重瓶)+(水)の質量(g) ρS :25℃におけるシリカ密度(g/cm3) ρB :25℃における1−ブタノールの密度(=0.8
060g/cm3) ρW :25℃における水の密度(=0.997047g
/cm3) V:比重瓶の体積(cm3) である。
Here, m O : mass of specific gravity bottle (g) m S : mass of specific gravity bottle + (silica) m Sl : (specific gravity bottle) + (silica) + (1-butanol) mass) (g) m l :( pycnometer) + (mass of water) (g) [rho S: silica density at 25 ℃ (g / cm 3) ρ B: 25 density of 1-butanol at ° C. (= 0 .8
060 g / cm 3 ) ρ W : density of water at 25 ° C. (= 0.997047 g)
/ Cm 3 ) V: Volume of specific gravity bottle (cm 3 ).

【0036】なお、測定は2回繰り返し、その平均値を
算出した。 (2)吸湿率 吸湿率は、次の方法で測定した。十分に乾燥したシリカ
約5gを容器に入れ、精秤し、この時の重量をW0 とす
る。次いで、この容器を60℃、90%RHの恒温恒湿
槽に入れ、24時間放置し、この時の重量をW1 とす
る。このW0、W1から次の式で吸湿率を計算した。
The measurement was repeated twice, and the average was calculated. (2) Moisture absorption rate The moisture absorption rate was measured by the following method. About 5 g of sufficiently dried silica is placed in a container, precisely weighed, and the weight at this time is defined as W 0 . Next, the container is placed in a thermo-hygrostat at 60 ° C. and 90% RH, and left for 24 hours. The weight at this time is defined as W 1 . From these W 0 and W 1 , the moisture absorption was calculated by the following equation.

【0037】[0037]

【数6】 (Equation 6)

【0038】(3)平均粒径 低密度球状シリカの平均粒径は次ぎの方法によって測定
した。シリカ5ないし50mgを、分散媒10ないし2
0mlに超音波攪拌機を用いて分散させた。分散媒とし
ては、粒径に応じて、水またはポリエチレングリコール
を使用した。分散液をセルに移し、気泡を除いて蓋を
し、遠心沈降法粒度分布測定機(堀場製作所製 CAP
A−700型)にかけた。測定機の回転速度は、粒径に
応じて500ないし5000rpmとした。測定機によ
り算出されたD(MEDIAN)値を平均粒径とした。また、
結晶シリカおよび球状シリカは、レーザー回折法によっ
て測定した。
(3) Average Particle Size The average particle size of the low-density spherical silica was measured by the following method. 5 to 50 mg of silica is dispersed in 10 to 2 dispersion media.
0 ml was dispersed using an ultrasonic stirrer. As the dispersion medium, water or polyethylene glycol was used depending on the particle size. Transfer the dispersion to the cell, remove the air bubbles, cover the cell, and use a centrifugal sedimentation method particle size analyzer (CAP manufactured by Horiba, Ltd.)
A-700). The rotation speed of the measuring machine was 500 to 5000 rpm depending on the particle size. The D (MEDIAN) value calculated by the measuring instrument was defined as the average particle size. Also,
Crystalline silica and spherical silica were measured by a laser diffraction method.

【0039】[0039]

【実施例1】表1に示す全原料をヘンシェルミキサーに
より混合した後、温度90〜110℃の二本ロールで加
熱混練し、さらに冷却粉砕してエポキシ樹脂組成物を得
た。この組成物を用いて、以下の(1)〜(4)の特性
を評価した。結果は表1に示した。なお表1中各原料の
配合割合は重量部を示す。
Example 1 After mixing all raw materials shown in Table 1 with a Henschel mixer, the mixture was heated and kneaded with two rolls at a temperature of 90 to 110 ° C, and then cooled and pulverized to obtain an epoxy resin composition. Using this composition, the following characteristics (1) to (4) were evaluated. The results are shown in Table 1. In Table 1, the mixing ratio of each raw material indicates parts by weight.

【0040】<評価方法> (1)スパイラルフロー EMMI1−66規格に準じた、内部がスパイラル状に
なった金型を用い、トランスファー成形にて、金型温度
150℃、実効圧力6.9×106Pa(70kgf/
cm2)で成形し、180秒間硬化した時の金型内で流
動した長さを測定した。
<Evaluation method> (1) Spiral flow Using a mold having a spiral shape in accordance with the EMMI1-66 standard, transfer molding was performed, and the mold temperature was 150 ° C. and the effective pressure was 6.9 × 10 5. 6 Pa (70kgf /
cm 2 ), and the length of flow in the mold when cured for 180 seconds was measured.

【0041】(2)熱伝導率 京都電子工業(株)製の迅速熱伝導率計を用いて測定し
た。まず、調製したエポキシ樹脂組成物を105mm
(L)×55mm(W)×15mm(H)のサイズに成
形し、この成形体を23℃の雰囲気中に12時間以上放
置した。次に、迅速熱伝導率計のプローブを成形体に載
せ、1分後の値を読み取り熱伝導率とした。
(2) Thermal conductivity Measured using a rapid thermal conductivity meter manufactured by Kyoto Electronics Industry Co., Ltd. First, 105 mm of the prepared epoxy resin composition
(L) × 55 mm (W) × 15 mm (H), and the molded body was left in an atmosphere at 23 ° C. for 12 hours or more. Next, the probe of the rapid thermal conductivity meter was placed on the molded body, and the value after one minute was read to be the thermal conductivity.

【0042】(3)溶融トルク (株)東洋精機製作所製のラボプラストミル20R−2
00型を用いて測定した。まず、調製したエポキシ樹脂
組成物を160℃に加熱した混練部に投入し、組成物の
溶融トルクを測定した。この溶融トルクも上述(1)の
スパイラルフローと同様、トランスファー成形時の流動
性の判断基準とした。
(3) Melting torque Labo Plastomill 20R-2 manufactured by Toyo Seiki Seisaku-sho, Ltd.
It was measured using a 00 type. First, the prepared epoxy resin composition was put into a kneading section heated to 160 ° C., and the melting torque of the composition was measured. This melting torque was also used as a criterion for determining the fluidity during transfer molding, similarly to the spiral flow of (1) above.

【0043】(4)成形品外観 成形品の外観は、金型形状および成形条件によって左右
されるため、外観良否の差を明確にする方法として、キ
ャビティー容積に対してゲート寸法が小さい金型で成形
を行った。従来、無機充填剤を70質量%以上90質量
%以下程度含有したエポキシ樹脂組成物を、トランスフ
ァー成形にて成形する場合の金型ゲート寸法は、キャビ
ティー容量に対して0.5cc/mm2以下を目安に設
計することは良く知られている。しかし、本発明の測定
においては、ゲート寸法をキャビティー容量に対して
1.7cc/mm2とした。
(4) Appearance of Molded Article Since the appearance of a molded article depends on the shape of the mold and the molding conditions, a method of clarifying the difference in appearance is to mold the mold with a gate size smaller than the cavity volume. Molding was carried out. Conventionally, when molding an epoxy resin composition containing about 70% by mass or more and 90% by mass or less of an inorganic filler by transfer molding, the mold gate dimension is 0.5 cc / mm 2 or less with respect to the cavity capacity. It is well known to design with a guideline. However, in the measurement of the present invention, the gate dimension was set to 1.7 cc / mm 2 with respect to the cavity capacity.

【0044】具体的には図2に示すキャビティー寸法6
3.5mm(L)×12.7mm(W)×12.7mm
(H)の金型を用い、上述のように調製したエポキシ樹
脂組成物を高周波予熱機で110℃に加熱した後、トラ
ンスファー成形にて、金型温度180℃、実効圧力2
9.4×106Pa(300kgf/cm2)で成形し、
120秒間硬化した成形品の外観を目視で判定した。判
定は成形品を10本成形し、未充填およびボイドの発生
率で表した。
Specifically, the cavity size 6 shown in FIG.
3.5mm (L) x 12.7mm (W) x 12.7mm
Using the mold of (H), the epoxy resin composition prepared as described above was heated to 110 ° C. by a high frequency preheater, and then subjected to transfer molding at a mold temperature of 180 ° C. and an effective pressure of 2 ° C.
Molded at 9.4 × 10 6 Pa (300 kgf / cm 2 )
The appearance of the molded article cured for 120 seconds was visually judged. Judgment was performed by molding 10 molded articles, and was represented by the unfilled and void occurrence rates.

【0045】[0045]

【実施例2】実施例1において、結晶シリカ粉(1)の
量を942重量部から804重量部に減らし、球状シリ
カ粉(1)の量を139重量部から277重量部に増や
したこと以外は、実施例1と同様に行った。評価の結果
は表1に示した。
Example 2 In Example 1, except that the amount of crystalline silica powder (1) was reduced from 942 parts by weight to 804 parts by weight, and the amount of spherical silica powder (1) was increased from 139 parts by weight to 277 parts by weight. Was performed in the same manner as in Example 1. The results of the evaluation are shown in Table 1.

【0046】[0046]

【実施例3】実施例1において、結晶シリカ粉(1)の
量を942重量部から664重量部に減らし、球状シリ
カ粉(1)の量を139重量部から417重量部に増や
したこと以外は、実施例1と同様に行った。評価の結果
は表1に示した。
Example 3 Example 1 was repeated except that the amount of crystalline silica powder (1) was reduced from 942 parts by weight to 664 parts by weight, and the amount of spherical silica powder (1) was increased from 139 parts by weight to 417 parts by weight. Was performed in the same manner as in Example 1. The results of the evaluation are shown in Table 1.

【0047】[0047]

【実施例4】実施例1において、結晶シリカ粉(1)を
結晶シリカ粉(2)に変更したこと以外は、実施例1と
同様に行った。評価の結果は表1に示した。
Example 4 The procedure of Example 1 was repeated, except that the crystalline silica powder (1) was changed to the crystalline silica powder (2). The results of the evaluation are shown in Table 1.

【0048】[0048]

【実施例5】実施例1において、結晶シリカ粉(1)を
結晶シリカ粉(2)に変更するとともに量を942重量
部から804重量部に減らし、球状シリカ粉(1)の量
を139重量部から277重量部に増やしたこと以外
は、実施例1と同様に行った。評価の結果は表1に示し
た。
Example 5 In Example 1, the crystalline silica powder (1) was changed to the crystalline silica powder (2), the amount was reduced from 942 parts by weight to 804 parts by weight, and the amount of the spherical silica powder (1) was 139 parts by weight. Example 1 was repeated except that the amount was increased to 277 parts by weight. The results of the evaluation are shown in Table 1.

【0049】[0049]

【参考例1】実施例1において、球状シリカ粉(1)を
使用せず、結晶シリカ粉(1)の量を942重量部から
1081重量部に増やしたこと以外は、実施例1と同様
に行った。評価の結果は表1に示した。
Reference Example 1 In the same manner as in Example 1, except that the spherical silica powder (1) was not used and the amount of the crystalline silica powder (1) was increased from 942 parts by weight to 1081 parts by weight. went. The results of the evaluation are shown in Table 1.

【0050】[0050]

【参考例2】実施例1において、結晶シリカ粉(1)の
量を942重量部から804重量部に減らし、球状シリ
カ粉(1)を球状シリカ粉(2)に変更するとともに量
を139重量部から277重量部に増やしたこと以外
は、実施例1と同様に行った。評価の結果は表1に示し
た。
Reference Example 2 In Example 1, the amount of the crystalline silica powder (1) was reduced from 942 parts by weight to 804 parts by weight, and the spherical silica powder (1) was changed to the spherical silica powder (2) and the amount was 139 parts by weight. Example 1 was repeated except that the amount was increased to 277 parts by weight. The results of the evaluation are shown in Table 1.

【0051】[0051]

【参考例3】実施例1において、結晶シリカ粉(1)の
量を942重量部から664重量部に減らし、球状シリ
カ粉(1)を球状シリカ粉(2)に変更するとともに量
を139重量部から417重量部に増やしたこと以外
は、実施例1と同様に行った。評価の結果は表1に示し
た。
Reference Example 3 In Example 1, the amount of the crystalline silica powder (1) was reduced from 942 parts by weight to 664 parts by weight, and the spherical silica powder (1) was changed to the spherical silica powder (2) and the amount was changed to 139 parts by weight. The procedure was the same as in Example 1, except that the amount was increased to 417 parts by weight. The results of the evaluation are shown in Table 1.

【0052】[0052]

【参考例4】実施例1において、結晶シリカ粉(1)の
量を942重量部から804重量部に減らし、球状シリ
カ粉(1)を球状シリカ粉(3)に変更するとともに量
を139重量部から277重量部に増やしたこと以外
は、実施例1と同様に行った。評価の結果は表1に示し
た。
REFERENCE EXAMPLE 4 In Example 1, the amount of the crystalline silica powder (1) was reduced from 942 parts by weight to 804 parts by weight, and the spherical silica powder (1) was changed to the spherical silica powder (3) and the amount was 139 parts by weight. Example 1 was repeated except that the amount was increased to 277 parts by weight. The results of the evaluation are shown in Table 1.

【0053】表1の結果より、結晶シリカ粉と球形度が
0.8以上の球状シリカ粉を混合して配合したエポキシ
樹脂組成物(実施例1〜5)は、1.2W/m・k以上
の熱伝導率を示し、また溶融トルクも低く、成形品の外
観不良率も発生しないことから、球状シリカ粉を配合し
なかった組成物(参考例1)、球形度が0.8未満の球
状シリカ粉を配合した組成物(参考例2〜4)に比べ、
トランスファー成形性が良好なことが判る。
From the results shown in Table 1, it is found that the epoxy resin composition (Examples 1 to 5) obtained by mixing the crystalline silica powder and the spherical silica powder having a sphericity of 0.8 or more was 1.2 W / m · k. A composition not containing spherical silica powder (Reference Example 1) having the above thermal conductivity, a low melting torque, and no appearance defect rate of a molded product, and having a sphericity of less than 0.8. Compared with compositions containing spherical silica powder (Reference Examples 2 to 4),
It turns out that transfer moldability is favorable.

【0054】また参考例2、4は、結晶シリカ粉と球形
度の小さい球状シリカ粉を配合した組成物であり、熱伝
導率は1.6W/m・k以上あるものの、球状シリカ粉
の球形度が低いため成形品の外観不良が発生する。
Reference Examples 2 and 4 are compositions in which a crystalline silica powder and a spherical silica powder having a small sphericity were blended. Although the thermal conductivity was 1.6 W / m · k or more, the spherical silica powder had a spherical shape. Due to the low degree, poor appearance of the molded article occurs.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【発明の効果】本発明のエポキシ樹脂組成物は、熱伝導
率が高く、CCDやCMOS等の固体撮像素子を収納す
るための樹脂製中空パッケージ用の素材に適している。
また本発明のエポキシ樹脂組成物は、流動性に優れてい
るためトランスファー成形時の成形性に優れている。
The epoxy resin composition of the present invention has a high thermal conductivity and is suitable as a material for a resin hollow package for housing a solid-state imaging device such as a CCD or CMOS.
Further, the epoxy resin composition of the present invention is excellent in flowability and therefore excellent in moldability during transfer molding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体素子収納用中空パッケージの一例の断面
図を示す。
FIG. 1 shows a cross-sectional view of an example of a hollow package for housing a semiconductor element.

【図2】(A)は成形品の外観評価に用いたトランスフ
ァー成形金型(下金型のみ)を示し、(B)は(A)中
のA−A断面図を示す。
FIG. 2A shows a transfer molding die (only a lower die) used for evaluating the appearance of a molded product, and FIG. 2B shows a cross-sectional view taken along the line AA in FIG.

【符号の説明】[Explanation of symbols]

1 … パッケージ本体 2 … 蓋材 3 … 接着剤 4 … アイランド 5 … 半導体素子 6 … ボンディングワイヤー 7 … 外部リード部 8 … 内部リード部 10 … 中空パッケージ 11 … キャビティー 12 … ゲート 13 … ランナ 14 … コールドスラッグウェル 15 … 下金型 16 … 上金型 DESCRIPTION OF SYMBOLS 1 ... Package body 2 ... Lid material 3 ... Adhesive 4 ... Island 5 ... Semiconductor element 6 ... Bonding wire 7 ... External lead part 8 ... Internal lead part 10 ... Hollow package 11 ... Cavity 12 ... Gate 13 ... Runner 14 ... Cold Slug well 15… Lower mold 16… Upper mold

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/29 H01L 23/30 R 23/31 Fターム(参考) 4J002 CC042 CC122 CD031 CD051 CD061 DD076 DE118 DE148 DE238 DF018 DJ018 EF126 EN056 EN076 EQ026 EU117 EU207 EW017 FA088 FD018 FD090 FD142 FD146 FD157 FD160 4J036 AA01 AD08 AF06 DA01 DA02 DA05 DB15 DC03 DC35 DC40 DC46 DD05 DD07 FA03 FA05 FB07 FB08 GA19 JA15 4M109 AA01 CA21 EA03 EB03 EB04 EB11 EB13 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 23/29 H01L 23/30 R 23/31 F term (Reference) 4J002 CC042 CC122 CD031 CD051 CD061 DD076 DE118 DE148 DE238 DF018 DJ018 EF126 EN056 EN076 EQ026 EU117 EU207 EW017 FA088 FD018 FD090 FD142 FD146 FD157 FD160 4J036 AA01 AD08 AF06 DA01 DA02 DA05 DB15 DC03 DC35 DC40 DC46 DD05 DD07 FA03 FA05 FB07 FB08 GA19 JA15 4E109 EA03 EB03 EB03 EB08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂、硬化剤、硬化促進剤、結
晶シリカ粉および球状シリカ粉を含み、 上記結晶シリカ粉は平均粒径が0.1μm以上30μm
未満であり、かつ組成物の全質量に対する含有量が10
質量%以上90質量%以下であり、 上記球状シリカ粉は下記(1)式で求めた球形度が0.
8以上であり、平均粒径が0.1μm以上30μm未満
であり、かつ組成物の全質量に対する含有量が1質量%
以上50質量%以下であり(但し、結晶シリカ粉および
球状シリカ粉の含有量は合計量で組成物の全質量に対し
て95質量%以下である。)、 【数1】 熱伝導率(λp)が、1.2W/m・k以上であること
を特徴とするエポキシ樹脂組成物。
1. An epoxy resin, a curing agent, a curing accelerator, a crystalline silica powder and a spherical silica powder, wherein the crystalline silica powder has an average particle size of 0.1 μm or more and 30 μm or more.
Less than 10 and the content relative to the total mass of the composition is 10
The spherical silica powder has a sphericity of 0.
8 or more, the average particle size is 0.1 μm or more and less than 30 μm, and the content relative to the total mass of the composition is 1% by mass.
Not less than 50% by mass (provided that the total content of the crystalline silica powder and the spherical silica powder is not more than 95% by mass with respect to the total mass of the composition). An epoxy resin composition having a thermal conductivity (λ p ) of 1.2 W / m · k or more.
【請求項2】 1−ブタノールを媒体として測定した密
度が2.10g/cm3未満であり、吸湿率が3%以上
かつ平均粒径が0.1μm以上3μm未満の低密度球状
シリカ粉を全組成物中に1質量%以上30質量%以下含
有する(但し、結晶シリカ粉、球状シリカ粉および低密
度球状シリカ粉の含有量は合計量で組成物の全質量に対
して95質量%以下である。)ことを特徴とする請求項
1に記載のエポキシ樹脂組成物。
2. A low-density spherical silica powder having a density of less than 2.10 g / cm 3 measured using 1-butanol as a medium, a moisture absorption of 3% or more, and an average particle size of 0.1 μm or more and less than 3 μm. 1% by mass or more and 30% by mass or less in the composition (however, the content of crystalline silica powder, spherical silica powder and low-density spherical silica powder is 95% by mass or less based on the total mass of the composition. The epoxy resin composition according to claim 1, wherein:
【請求項3】 請求項1または2に記載のエポキシ樹脂
組成物からなることを特徴とする半導体素子収納中空パ
ッケージ用エポキシ樹脂組成物。
3. An epoxy resin composition for a hollow package containing a semiconductor element, comprising the epoxy resin composition according to claim 1 or 2.
【請求項4】 請求項1または2に記載のエポキシ樹脂
組成物から成形されたことを特徴とする半導体素子収納
中空パッケージ。
4. A hollow package containing a semiconductor element, which is molded from the epoxy resin composition according to claim 1.
JP2001146666A 2001-05-16 2001-05-16 Epoxy resin composition and hollow package housing semiconductor element using the composition Pending JP2002338788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001146666A JP2002338788A (en) 2001-05-16 2001-05-16 Epoxy resin composition and hollow package housing semiconductor element using the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001146666A JP2002338788A (en) 2001-05-16 2001-05-16 Epoxy resin composition and hollow package housing semiconductor element using the composition

Publications (1)

Publication Number Publication Date
JP2002338788A true JP2002338788A (en) 2002-11-27

Family

ID=18992270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001146666A Pending JP2002338788A (en) 2001-05-16 2001-05-16 Epoxy resin composition and hollow package housing semiconductor element using the composition

Country Status (1)

Country Link
JP (1) JP2002338788A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249343A (en) * 2005-03-14 2006-09-21 Mitsui Chemicals Inc Epoxy resin composition and package for housing semiconductor element
WO2013146404A1 (en) * 2012-03-30 2013-10-03 積水化学工業株式会社 White curable composition for optical semiconductor device, molded article for optical semiconductor device and optical semiconductor device
WO2017104727A1 (en) * 2015-12-16 2017-06-22 株式会社日立産機システム Electrical insulation resin composition
CN110504222A (en) * 2018-05-17 2019-11-26 艾普凌科有限公司 Pre- mold substrate and its manufacturing method and hollow type semiconductor device and its manufacturing method
CN112014297A (en) * 2020-09-22 2020-12-01 中建西部建设西南有限公司 Method for evaluating particle shape of machine-made sand particles

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496964A (en) * 1990-08-10 1992-03-30 Matsushita Electric Works Ltd Epoxy resin composition
JPH04164953A (en) * 1990-10-30 1992-06-10 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH04188855A (en) * 1990-11-22 1992-07-07 Nitto Denko Corp Semiconductor device
JPH0649333A (en) * 1992-06-02 1994-02-22 Mitsui Petrochem Ind Ltd Epoxy resin composition, and joined member and semiconductor device made by using it
JPH09208809A (en) * 1996-02-01 1997-08-12 Mizusawa Ind Chem Ltd Resin composition for semiconductor sealing and moisture-adsorbing filler used therefor
JPH10287767A (en) * 1997-04-11 1998-10-27 Denki Kagaku Kogyo Kk Filler and resin composition for semiconductor sealing
JPH11273934A (en) * 1998-03-19 1999-10-08 Toyota Motor Corp Sealing material comprising gradient structure in filler concentration, and method for molding the same
JP2000003983A (en) * 1998-06-16 2000-01-07 Nippon Chem Ind Co Ltd Liquid sealing material fused spherical silica and liquid sealing resin composition
JP2001048521A (en) * 1999-08-13 2001-02-20 Denki Kagaku Kogyo Kk Fine spherical silica powder and its production and use
JP2001206711A (en) * 2000-01-21 2001-07-31 Denki Kagaku Kogyo Kk Method of manufacturing for super fine powdery spherical silica

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496964A (en) * 1990-08-10 1992-03-30 Matsushita Electric Works Ltd Epoxy resin composition
JPH04164953A (en) * 1990-10-30 1992-06-10 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH04188855A (en) * 1990-11-22 1992-07-07 Nitto Denko Corp Semiconductor device
JPH0649333A (en) * 1992-06-02 1994-02-22 Mitsui Petrochem Ind Ltd Epoxy resin composition, and joined member and semiconductor device made by using it
JPH09208809A (en) * 1996-02-01 1997-08-12 Mizusawa Ind Chem Ltd Resin composition for semiconductor sealing and moisture-adsorbing filler used therefor
JPH10287767A (en) * 1997-04-11 1998-10-27 Denki Kagaku Kogyo Kk Filler and resin composition for semiconductor sealing
JPH11273934A (en) * 1998-03-19 1999-10-08 Toyota Motor Corp Sealing material comprising gradient structure in filler concentration, and method for molding the same
JP2000003983A (en) * 1998-06-16 2000-01-07 Nippon Chem Ind Co Ltd Liquid sealing material fused spherical silica and liquid sealing resin composition
JP2001048521A (en) * 1999-08-13 2001-02-20 Denki Kagaku Kogyo Kk Fine spherical silica powder and its production and use
JP2001206711A (en) * 2000-01-21 2001-07-31 Denki Kagaku Kogyo Kk Method of manufacturing for super fine powdery spherical silica

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249343A (en) * 2005-03-14 2006-09-21 Mitsui Chemicals Inc Epoxy resin composition and package for housing semiconductor element
WO2013146404A1 (en) * 2012-03-30 2013-10-03 積水化学工業株式会社 White curable composition for optical semiconductor device, molded article for optical semiconductor device and optical semiconductor device
CN103890936A (en) * 2012-03-30 2014-06-25 积水化学工业株式会社 White curable composition for optical semiconductor device, molded article for optical semiconductor device and optical semiconductor device
WO2017104727A1 (en) * 2015-12-16 2017-06-22 株式会社日立産機システム Electrical insulation resin composition
JP2017110089A (en) * 2015-12-16 2017-06-22 株式会社日立産機システム Resin composition for electric insulation
CN110504222A (en) * 2018-05-17 2019-11-26 艾普凌科有限公司 Pre- mold substrate and its manufacturing method and hollow type semiconductor device and its manufacturing method
CN110504222B (en) * 2018-05-17 2024-06-07 艾普凌科有限公司 Pre-molded substrate and method for manufacturing the same, and hollow semiconductor device and method for manufacturing the same
CN112014297A (en) * 2020-09-22 2020-12-01 中建西部建设西南有限公司 Method for evaluating particle shape of machine-made sand particles
CN112014297B (en) * 2020-09-22 2024-04-02 中建西部建设西南有限公司 Evaluation method for grain shape of machine-made sand grains

Similar Documents

Publication Publication Date Title
JP4614214B2 (en) Hollow package for semiconductor device elements
JP6023992B1 (en) Epoxy resin composition for sealing, cured product, and semiconductor device
US6221509B1 (en) Semiconductor encapsulating epoxy resin compositions, and semiconductor devices encapsulated therewith
JP3388538B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
TWI564331B (en) Hydrophobic inorganic particles, resin composition for heat-dissipation member and electronic component device
CN107250235A (en) For the semiconductor device for encapsulating the constituent of semiconductor device and being encapsulated using it
JP2002338788A (en) Epoxy resin composition and hollow package housing semiconductor element using the composition
JP6197187B1 (en) Semiconductor device
JP4973322B2 (en) Epoxy resin composition and semiconductor device
WO2019131097A1 (en) Encapsulating epoxy resin composition for ball grid array package, cured epoxy resin object, and electronic component/device
JP2021167422A (en) Epoxy resin composition, epoxy resin cured product, and electronic component device
JPH07206983A (en) Epoxy resin composition, its production and semiconductor apparatus obtained by using the composition
JPS5819136B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2003160714A (en) Epoxy resin composition and hollow package for housing semiconductor device using the same
JP4111865B2 (en) Epoxy resin composition and hollow package for housing semiconductor device using the same
JPS635429B2 (en)
JP2000129139A (en) Production of granular semiconductor sealing material and granular semiconductor sealing material
JP2846551B2 (en) Epoxy resin composition, bonding member using the same, and semiconductor device
JPWO2019131669A1 (en) Encapsulation composition and semiconductor device
JPH0841294A (en) Insulating resin paste and semiconductor apparatus
JP2002080694A (en) Epoxy resin composition and semiconductor device
JP2009173845A (en) Epoxy resin composition for use in semiconductor encapsulation and semiconductor device using it
JP3417283B2 (en) Epoxy resin composition for sealing and semiconductor device sealing method
JPH0710939B2 (en) Resin composition for electronic component encapsulation
JP2655833B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803