JPH07206983A - Epoxy resin composition, its production and semiconductor apparatus obtained by using the composition - Google Patents

Epoxy resin composition, its production and semiconductor apparatus obtained by using the composition

Info

Publication number
JPH07206983A
JPH07206983A JP626894A JP626894A JPH07206983A JP H07206983 A JPH07206983 A JP H07206983A JP 626894 A JP626894 A JP 626894A JP 626894 A JP626894 A JP 626894A JP H07206983 A JPH07206983 A JP H07206983A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
filler
powder
amorphous silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP626894A
Other languages
Japanese (ja)
Other versions
JP2853550B2 (en
Inventor
Shinji Hashimoto
眞治 橋本
Yasuhisa Kishigami
泰久 岸上
Kazuhiko Watanabe
和彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11633695&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07206983(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP626894A priority Critical patent/JP2853550B2/en
Publication of JPH07206983A publication Critical patent/JPH07206983A/en
Application granted granted Critical
Publication of JP2853550B2 publication Critical patent/JP2853550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain an epoxy resin composition capable of improving moisture-soldering resistance (resistance to the separation at the soldered position caused by the moisture absorbed) and heat shock resistance of a semiconductor apparatus in which a semiconductor chip loaded on a lead frame made of copper alloy is sealed with a resin and to provide the production method for the epoxy resin composition and a semiconductor apparatus sealed by the epoxy resin composition. CONSTITUTION:The filler of this epoxy resin composition has the following features. It is a mixture of amorphous silica powder A with >=1 kind of inorganic powder B having a larger coefficient of linear expansion than the amorphous silica powder. The content ratio of the inorganic powder B in the total filler material is 20-60vol.% in terms of true specific gravity of the components. Spherical amorphous silica powder having a weight average particle diameter of <1mum and specific gravities of 10-30m<2>/g is contained in an amount of 5-20vol.% based on the total filler material in terms of true specific gravity of the components. Further, when the molded article is produced by the compression under a pressure at which the average particle diameter of the filler is maintained, the fraction of the volume of the filler in the molded article is >=78%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体を保護するための
封止材用エポキシ樹脂組成物及びその製造方法及びこの
封止材用エポキシ樹脂組成物を用いた封止型半導体装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for encapsulating material for protecting semiconductors, a method for producing the same, and an encapsulation type semiconductor device using the epoxy resin composition for encapsulating material.

【0002】[0002]

【従来の技術】高度情報化社会の進展と半導体の進歩に
より、集積回路に付与する機能が増え、集積度や動作速
度が年々高まっている。これは半導体チップの大型化と
消費電力の増加を招いている。そのため、樹脂モールド
タイプのパッケージ(以下半導体装置と呼ぶ)では、リ
ードフレームとして熱伝導率の高い銅合金を使用するこ
とが多くなっている。銅合金と42アロイとでは線膨張
率が違うため、銅合金製リードフレームに搭載された大
型チップの集積回路を封止する封止材には、従来の42
アロイ製リードフレームに搭載された集積回路の封止材
とは異なる性能が求められる。各素材の線膨張率(α
[ppm/℃] )を示すと、銅合金は16〜18であ
り、42アロイは5〜7であり、シリコンチップは3〜
4である。42アロイ製リードフレームの場合は、チッ
プとリードフレーム共にαが小さいので、封止材の硬化
物のαを10ppm/℃程度以下にすることを目標に、
封止材中の非晶質シリカ体積含有率を70数%以上にす
る検討が続けられている。一方、銅合金製リードフレー
ムでは、封止材の硬化物のαを42アロイ用ほどに小さ
くすると、封止材の硬化物とリードフレームとの熱膨張
差が大きくなり、ヒートショック試験やヒートサイクル
試験などの熱応力による不具合をチェックする試験にお
いて不良が発生するので、封止材の硬化物のαはやや大
きめになるようにせざるを得ない。このため、封止材中
のフィラーである非晶質シリカの含有率を70体積%前
後以下にしているのが一般的である。
2. Description of the Related Art With the progress of the advanced information society and the progress of semiconductors, the functions given to integrated circuits are increasing, and the degree of integration and the operating speed are increasing year by year. This leads to an increase in the size of the semiconductor chip and an increase in power consumption. Therefore, in a resin mold type package (hereinafter referred to as a semiconductor device), a copper alloy having a high thermal conductivity is often used as a lead frame. Since the linear expansion coefficient of copper alloy is different from that of 42 alloy, the conventional 42 is used as an encapsulating material for encapsulating an integrated circuit of a large chip mounted on a copper alloy lead frame.
A performance different from that of the encapsulant for the integrated circuit mounted on the alloy lead frame is required. Linear expansion coefficient of each material (α
[ppm / ° C.]), copper alloy is 16-18, 42 alloy is 5-7, and silicon chip is 3-
It is 4. In the case of the 42 alloy lead frame, since both the chip and the lead frame have small α, the target α of the cured product of the sealing material is about 10 ppm / ° C or less.
Studies on making the volumetric content of amorphous silica in the encapsulant 70% or more have been continued. On the other hand, in the case of a copper alloy lead frame, when α of the cured product of the encapsulant is reduced to about 42 alloy, the difference in thermal expansion between the cured product of the encapsulant and the lead frame becomes large, and a heat shock test or a heat cycle test is performed. Since a defect occurs in a test such as a test for checking a defect due to thermal stress, it is unavoidable that α of the cured product of the sealing material is slightly large. For this reason, the content of the amorphous silica, which is the filler in the encapsulant, is generally about 70% by volume or less.

【0003】一方、実装密度を高めるために表面実装タ
イプの薄型半導体装置が主流となってきているが、この
表面実装型半導体装置では、封止材の硬化物の吸湿が原
因だと考えられるが、半田付け処理後に封止材の硬化物
とチップの間あるいは、封止材の硬化物とダイパッド裏
のリードフレームの間が剥離するという不良が発生しや
すい(吸湿耐半田性が悪い)。これを解決するために
は、フィラー含有率を高めた封止材を用いて、封止材の
硬化物を低吸湿化するという方策が最も有効であり、こ
の方策の実現が望まれている。
On the other hand, in order to increase the packaging density, surface-mounting type thin semiconductor devices have become mainstream. In this surface-mounting type semiconductor device, it is considered that the moisture absorption of the cured material of the sealing material is the cause. After the soldering process, the cured product of the encapsulating material and the chip, or the cured product of the encapsulating material and the lead frame on the back of the die pad are apt to peel off (bad moisture absorption soldering resistance). In order to solve this, it is most effective to use a sealing material having a high filler content to reduce the moisture absorption of the cured product of the sealing material, and it is desired to realize this method.

【0004】[0004]

【発明が解決しようとする課題】銅合金製リードフレー
ム用封止材のフィラーの体積含有率が少ないという事は
樹脂成分が多いことなので、得られる封止材の硬化物の
吸湿率が高くなってしまい、半導体装置(パッケージ)
の吸湿耐半田性を向上できないという問題点がある。こ
れは、近年、半導体の実装形態が表面実装型に移行しつ
つある中で、早急に解決が必要な課題となっている。ま
た、表面実装型の半導体装置では、封止材使用部分の肉
厚が薄くなっているので、成形時に充填不良やボイドが
発生しやすくなっており、封止材の流動性を良好に維持
したまま、前記吸湿耐半田性や耐ヒートショックなどの
諸特性向上を図る必要がある。
Since the volume fraction of the filler in the copper alloy lead frame encapsulant is low, it means that the resin component is large, and the moisture absorption of the cured product of the encapsulant obtained is high. Semiconductor device (package)
However, there is a problem that the moisture absorption solder resistance cannot be improved. This is an issue that needs to be solved urgently as the mounting form of semiconductors is shifting to the surface mounting type in recent years. Further, in the surface-mounting type semiconductor device, since the thickness of the portion where the sealing material is used is thin, defective filling and voids are likely to occur during molding, and the fluidity of the sealing material is maintained well. As it is, it is necessary to improve various characteristics such as moisture absorption solder resistance and heat shock resistance.

【0005】本発明は上記のような状況に鑑みてなされ
たものであり、その目的とするところは、銅合金製リー
ドフレームに搭載した半導体チップを封止した半導体装
置の吸湿耐半田性及び耐ヒートショック性が改善できる
エポキシ樹脂組成物及びその製造方法を提供することで
あり、また、当該エポキシ樹脂組成物を用いた吸湿耐半
田性及び耐ヒートショック性の優れた封止型半導体装置
を提供することである。
The present invention has been made in view of the above situation, and an object of the present invention is to prevent moisture absorption and solder resistance of a semiconductor device in which a semiconductor chip mounted on a copper alloy lead frame is sealed. An epoxy resin composition having improved heat shock resistance and a method for producing the same are provided, and a sealed semiconductor device excellent in moisture absorption solder resistance and heat shock resistance using the epoxy resin composition is provided. It is to be.

【0006】[0006]

【課題を解決するための手段】エポキシ樹脂組成物に係
る発明は、エポキシ樹脂、硬化剤、硬化促進剤及びフィ
ラーを含有するエポキシ樹脂組成物において、フィラー
として、非晶質シリカ粉(A)と非晶質シリカよりも線
膨張率の大きな1種類以上の無機粉(B)の混合粉であ
るフィラーであり、全フィラー中に占める前記無機粉
(B)の割合が真比重換算で20〜60体積%であるフ
ィラーであり、重量平均粒子径が1μm未満で、比表面
積が10〜30m2 /gの球状非晶質シリカ粉を全フィ
ラー中に真比重換算で5〜20体積%含むフィラーであ
り、さらに、その平均粒径が維持される圧力でフィラー
を圧縮して得られる成形体中のフィラーの体積分率が7
8%以上であるフィラーを、使用していることを特徴と
している。
The invention relating to an epoxy resin composition is an epoxy resin composition containing an epoxy resin, a curing agent, a curing accelerator and a filler, and an amorphous silica powder (A) as a filler. A filler, which is a mixed powder of one or more kinds of inorganic powder (B) having a linear expansion coefficient larger than that of amorphous silica, and the proportion of the inorganic powder (B) in the total filler is 20 to 60 in terms of true specific gravity. It is a filler which is a volume% and has a weight average particle diameter of less than 1 μm and a spherical amorphous silica powder having a specific surface area of 10 to 30 m 2 / g in an amount of 5 to 20 volume% in terms of true specific gravity in all fillers. Furthermore, the volume fraction of the filler in the molded body obtained by compressing the filler at a pressure that maintains the average particle size is 7
It is characterized by using a filler of 8% or more.

【0007】また、エポキシ樹脂組成物の製造方法に係
る発明は、常温で固形のエポキシ樹脂及び/または硬化
剤を、重量平均粒子径が1μm未満で、比表面積が10
〜30m2 /gの球状非晶質シリカ粉を添加した状態で
粉砕し、次いで他の原料と混合・混練することを特徴と
している。
The invention relating to the method for producing an epoxy resin composition comprises an epoxy resin and / or a curing agent which are solid at room temperature, have a weight average particle diameter of less than 1 μm and a specific surface area of 10 μm.
It is characterized in that it is pulverized in the state of adding spherical amorphous silica powder of ˜30 m 2 / g, and then mixed and kneaded with other raw materials.

【0008】また、半導体装置に係る発明は、請求項1
から請求項5までのいずれかに記載のエポキシ樹脂組成
物を用いて、銅合金製リードフレームに搭載された半導
体素子を封止していることを特徴としている。
The invention relating to a semiconductor device is defined in claim 1.
The semiconductor element mounted on a copper alloy lead frame is sealed with the epoxy resin composition according to any one of claims 1 to 5.

【0009】以下、本発明を詳しく説明する。封止材用
エポキシ樹脂組成物に用いられるフィラーのなかで、非
晶質シリカは線膨張率が0.5〜0.7ppm/℃であ
り、また粒子形状を球状化できるのでフィラーを封止材
中に高充填させやすいことから、封止材の硬化物の低吸
湿化と低線膨張率化の目的で、広く使用されている。し
かし、非晶質シリカを高充填化するほど封止材の硬化物
の線膨張率は低くなり、一般には70体積%以上含有す
る封止材の硬化物のαは12ppm/℃未満になり、銅
合金リードフレームとの差は広がって行く。そこで、本
発明では非晶質シリカ粉(A)と、非晶質シリカよりも
線膨張率の大きな1種以上の無機粉(B)からなり、各
粉体の真体積に着目した体積混合比が80/20乃至4
0/60の混合粉をフィラーとして使用することによ
り、フィラー含有率を高めても、封止材の硬化物の線膨
張率を銅合金リードフレーム用として好ましい範囲に維
持するものである。無機粉(B)の全フィラーに占める
真比重換算の体積分率が20%より少なくなると硬化物
の線膨張率が低くなり、また、60%を越えると硬化物
の線膨張率が大きくなり、好ましくない。
The present invention will be described in detail below. Among the fillers used in the epoxy resin composition for encapsulant, amorphous silica has a linear expansion coefficient of 0.5 to 0.7 ppm / ° C., and since the particle shape can be made spherical, the filler is encapsulant. It is widely used for the purpose of lowering moisture absorption and lowering the coefficient of linear expansion of the cured product of the encapsulating material because it can be easily filled with a high content. However, the higher the filling amount of amorphous silica, the lower the linear expansion coefficient of the cured product of the encapsulant, and generally the α of the cured product of the encapsulant containing 70% by volume or more is less than 12 ppm / ° C., The difference with the copper alloy lead frame will widen. Therefore, in the present invention, the amorphous silica powder (A) and one or more kinds of inorganic powder (B) having a linear expansion coefficient larger than that of the amorphous silica are used, and the volume mixing ratio focusing on the true volume of each powder. 80/20 to 4
By using 0/60 mixed powder as a filler, even if the filler content is increased, the linear expansion coefficient of the cured product of the encapsulant is maintained in a preferable range for a copper alloy lead frame. If the volume fraction of the inorganic powder (B) in terms of true specific gravity in all the fillers is less than 20%, the linear expansion coefficient of the cured product becomes low, and if it exceeds 60%, the linear expansion coefficient of the cured product becomes large. Not preferable.

【0010】また、封止材の硬化物の吸湿率を下げて吸
湿耐半田性を向上するためには、封止材中にフィラーを
高充填することが必要である。高充填化可能なフィラー
としては、粒子間の自由体積を極小化したものが必要で
あり、これは、重量平均粒子径が1μm未満で、かつ、
比表面積が10〜30m2 /gの球状非晶質シリカを、
全フィラーに対して真比重換算で5〜20体積%占める
ように配合し、かつ、この全フィラーとして、その平均
粒径が維持される圧力でフィラーを圧縮して得られる成
形体中のフィラーの体積分率が78%以上であるフィラ
ーを用いる事で達成できる。
Further, in order to lower the moisture absorption rate of the cured product of the sealing material and improve the moisture absorption solder resistance, it is necessary to highly fill the sealing material with the filler. As the highly packable filler, it is necessary to minimize the free volume between particles, which has a weight average particle diameter of less than 1 μm and
Spherical amorphous silica having a specific surface area of 10 to 30 m 2 / g,
Of the filler in the molded product obtained by compounding so as to occupy 5 to 20% by volume in terms of true specific gravity with respect to all the filler, and compressing the filler at a pressure at which the average particle size is maintained. This can be achieved by using a filler having a volume fraction of 78% or more.

【0011】ここで前記の「圧縮して得られる成形体中
のフィラー体積分率」について説明する。無機フィラー
として使用するn種(nは2以上の整数)のフィラーの
それぞれの真比重をdi、無機フィラーそれぞれの配合
重量をwi(iは1〜nの整数)とした場合の無機フィ
ラー全体の真比重dは下記の式(C)で算出される値と
なる。
The above "filler volume fraction in the compact obtained by compression" will be described. When the true specific gravity of each of n kinds of fillers (n is an integer of 2 or more) used as an inorganic filler is di, and the blending weight of each inorganic filler is wi (i is an integer of 1 to n), The true specific gravity d is a value calculated by the following formula (C).

【0012】 d=Σwi/Σ(wi/di)─────(C) そして、圧縮して得られる成形体中のフィラー体積分率
をPとしたときに、Pは重量がWグラムである無機フィ
ラーを圧縮して得られる成形体の見かけ体積V立方セン
チメートルから、次の式(D)で算出される。
D = Σwi / Σ (wi / di) ────────────────────────────────────────── (C) Then, when the volume fraction of the filler in the compact obtained by compression is P, P is W grams. From the apparent volume V cubic centimeter of the molded body obtained by compressing a certain inorganic filler, it is calculated by the following formula (D).

【0013】 P=100(W/d)/V ─────(D) そして、本発明では、体積分率Pを測定するために行う
無機フィラーの圧縮成形の成形圧力は、圧縮成形前の平
均粒子径が圧縮成形後も保持される圧力である事が重要
である。この成形圧力が高すぎると、無機フィラーの粒
子が破壊され、圧縮成形後の平均粒子径は圧縮成形前の
平均粒子径とは異なるものになり、測定される体積分率
Pはエポキシ樹脂組成物中の無機フィラーの性質を示さ
なくなる不都合が生じる。なぜなら、どのような無機フ
ィラーでも、圧縮成形時の成形圧力を極端に高くする
と、粒子が破壊されて、得られる成形体中には空隙が含
まれない状態に近づき、測定される体積分率Pは100
%に漸近するようになるからである。従って、本発明で
は、圧縮成形して得られる成形体中の無機フィラーが、
エポキシ樹脂組成物中に含有させる無機フィラーと同じ
状態で存在するように、圧縮成形の際の成形圧力は圧縮
成形前の無機フィラーの平均粒径が圧縮成形後も保持さ
れる圧力で行うように限定している。
P = 100 (W / d) / V ──────── (D) And, in the present invention, the molding pressure of the compression molding of the inorganic filler for measuring the volume fraction P is before compression molding. It is important that the average particle size of is the pressure that is maintained even after compression molding. If this molding pressure is too high, the particles of the inorganic filler are destroyed, the average particle size after compression molding becomes different from the average particle size before compression molding, and the measured volume fraction P is the epoxy resin composition. The disadvantage occurs that the properties of the inorganic filler therein are not exhibited. This is because, with any inorganic filler, if the molding pressure during compression molding is made extremely high, the particles will be destroyed and the resulting molded body will approach a state in which voids are not included, and the measured volume fraction P Is 100
This is because it becomes asymptotic to%. Therefore, in the present invention, the inorganic filler in the molded body obtained by compression molding,
As it exists in the same state as the inorganic filler to be contained in the epoxy resin composition, the molding pressure during compression molding is such that the average particle size of the inorganic filler before compression molding is carried out at a pressure that is retained even after compression molding. Limited.

【0014】なお、圧縮成形前の無機フィラーの平均粒
子径が、圧縮成形後も保持される圧力の範囲内の最高圧
力(以降Fmaxと略す)で成形した成形体により得ら
れる体積分率Pは、Fmax未満で成形した成形体によ
り得られる体積分率Pよりも必ず大きい値となる。なな
わち、Fmax未満で成形した成形体の無機フィラーの
体積分率Pが78%以上となる場合には、その無機フィ
ラーをFmaxで成形したときの体積分率Pは必ず78
%以上になる。
The volume fraction P of the inorganic filler before compression molding obtained by the molded body molded at the maximum pressure (hereinafter abbreviated as Fmax) within the range of pressure retained after compression molding is , Fmax, which is always larger than the volume fraction P obtained by the molded body. That is, when the volume fraction P of the inorganic filler in the molded body molded at less than Fmax is 78% or more, the volume fraction P when the inorganic filler is molded at Fmax is always 78.
% Or more.

【0015】重量平均粒子径が1μm未満で、比表面積
が10〜30m2 /gの球状非晶質シリカの全フィラー
に対する真比重換算の体積分率(Vsと略す)が5体積
%以下であると、前記Pを78%以上にすることが困難
であると共に、エポキシ樹脂組成物を成形する際のバリ
が多くなるので好ましくない。またVsが20体積%を
越えると前記Pを78%以上にすることはできるが、全
フィラー中の粒子数が多くなりすぎる事により、エポキ
シ樹脂組成物を成形する際に溶融状態となった組成物の
非ニュートン性あるいはチクソトロピックな性質が大き
くなりすぎることによると考えられる、成形不良が発生
し易くなるので好ましくない。
The volume fraction (abbreviated as Vs) in terms of true specific gravity with respect to all fillers of spherical amorphous silica having a weight average particle diameter of less than 1 μm and a specific surface area of 10 to 30 m 2 / g is 5% by volume or less. In addition, it is difficult to set P to 78% or more, and burrs are increased when molding the epoxy resin composition, which is not preferable. Further, when Vs exceeds 20% by volume, the P can be 78% or more, but the number of particles in the total filler becomes too large, so that the composition becomes a molten state when molding the epoxy resin composition. It is not preferable because molding defects are likely to occur, which is considered to be due to the non-Newtonian property or thixotropic property of the product becoming too large.

【0016】本発明で使用する、非晶質シリカよりも線
膨張率の大きな1種以上の無機粉(B)としては、結晶
シリカ、故意に内部にボイドを含ませていないガラス
粉、または粒子の内部が多孔質で表面は無孔質の、もし
くは中空のガラス粉が挙げられる。結晶シリカは線膨張
率が5〜6ppm/℃と大きく、イオン性不純物の少な
いものを入手できるので、半導体封止材に用いるエポキ
シ樹脂組成物を対象とした本発明の主旨に適合してい
る。故意に内部にボイドを含ませていないガラス粉の一
種であるガラスビーズはSiO2 以外の成分の種類と量
を変える事で、ガラスの線膨張率を大きくすることが容
易で、かつ球状化も容易であることから、本発明の主旨
に適合する。また、粒子の内部が多孔質で表面は無孔質
の、もしくは中空のガラス粉は、粒子の内部にボイドを
含まないガラス粉に比べてエポキシ樹脂組成物の硬化物
の弾性率を低下させることができ、半導体装置において
発生する熱応力低減の効果がある。
The inorganic powder (B) having a linear expansion coefficient larger than that of the amorphous silica used in the present invention is crystalline silica, glass powder not intentionally containing voids, or particles. Examples thereof include glass powder having a porous interior and a non-porous or hollow surface. Since crystalline silica has a large linear expansion coefficient of 5 to 6 ppm / ° C. and is available with a small amount of ionic impurities, it is suitable for the purpose of the present invention for an epoxy resin composition used as a semiconductor encapsulant. Glass beads, which is a type of glass powder that does not intentionally contain voids inside, can easily increase the coefficient of linear expansion of glass by changing the type and amount of components other than SiO 2 , and can also be spheroidized. Since it is easy, it complies with the gist of the present invention. Further, the inside of the particles is porous and the surface is non-porous, or the glass powder is hollow, which lowers the elastic modulus of the cured product of the epoxy resin composition as compared to glass powder containing no voids inside the particles. This is effective in reducing the thermal stress generated in the semiconductor device.

【0017】なお、以上述べたフィラーは、最終のエポ
キシ樹脂組成物がメモリー素子の封止に適用される場合
には、α線によるメモリー素子のソフトエラーを回避す
る目的で、ウランやトリウム等のα線源となる放射性同
位元素の含有率が少なくとも1ppb以下の、いわゆる
α線フリーのフィラーを用いるのが好ましい。
When the final epoxy resin composition is applied to the sealing of the memory element, the above-mentioned filler is used for the purpose of avoiding a soft error of the memory element due to α rays, such as uranium or thorium. It is preferable to use a so-called α-ray-free filler having a content of a radioisotope serving as an α-ray source of at least 1 ppb or less.

【0018】以上述べたフィラーを、エポキシ樹脂組成
物中に真比重換算で70体積%以上含有させることで、
エポキシ樹脂組成物の硬化物の吸湿率を低減して銅合金
性リードフレームを使用した半導体装置の吸湿耐半田性
を高める事ができ、かつ、硬化物の50〜100℃の間
の線膨張率を12〜17ppm/℃にすることで、銅合
金性リードフレームを使用した半導体装置の耐熱応力性
の一種である耐ヒートショック性を高める事ができる。
なお、50〜100℃での線膨張率は、エポキシ樹脂、
硬化剤及び有機物低弾性率付与剤等の構造や配合比によ
っても変化するものであり、エポキシ樹脂組成物中のフ
ィラー体積分率だけで決まるものではない。例えば、硬
化物のガラス転移点温度(Tg)が100℃未満の樹脂
であれば、50〜100℃の間に樹脂のTg以降の線膨
張率(α2 )の領域が入ってくるために、Tgが百数十
℃の樹脂の場合に比べて、樹脂組成物の硬化物の50〜
100℃の間の線膨張率は大きくなる。しかし、樹脂の
特性がどのような場合でも、エポキシ樹脂組成物の硬化
物の50〜100℃の間の線膨張率が12〜17ppm
/℃であれば耐ヒートショック性を高める事ができる。
By containing the above-mentioned filler in the epoxy resin composition in an amount of 70 vol% or more in terms of true specific gravity,
The moisture absorption rate of the cured product of the epoxy resin composition can be reduced to enhance the moisture absorption solder resistance of the semiconductor device using the copper alloy lead frame, and the linear expansion rate of the cured product between 50 and 100 ° C. By setting 12 to 17 ppm / ° C., heat shock resistance, which is a kind of heat stress resistance of a semiconductor device using a copper alloy lead frame, can be improved.
The linear expansion coefficient at 50 to 100 ° C. is
It also changes depending on the structure and the compounding ratio of the curing agent and the organic material low elastic modulus-imparting agent, and is not determined only by the filler volume fraction in the epoxy resin composition. For example, in the case of a resin having a glass transition temperature (Tg) of less than 100 ° C. of a cured product, a region of linear expansion coefficient (α 2 ) after Tg of the resin comes in between 50 and 100 ° C. Compared to the case of a resin having a Tg of a hundred and several tens of degrees C.
The coefficient of linear expansion between 100 ° C increases. However, regardless of the characteristics of the resin, the linear expansion coefficient between 50 and 100 ° C. of the cured product of the epoxy resin composition is 12 to 17 ppm.
If it is / ° C, heat shock resistance can be improved.

【0019】また、以上述べたフィラーは、樹脂との化
学結合を強固にするため、カップリング剤で表面処理す
るのが望ましい。この方法は、あらかじめカップリング
剤で粉体粒子表面を処理した後、樹脂と混練しても良い
し、樹脂分にカップリング剤を混合してからフィラーと
混練するという、いわゆるインテグラルブレンド法によ
るものでも良い。
The above-mentioned filler is preferably surface-treated with a coupling agent in order to strengthen the chemical bond with the resin. This method may be carried out by treating the powder particle surface with a coupling agent in advance and then kneading with the resin, or by kneading the resin component with the coupling agent and then kneading with the filler, which is a so-called integral blending method. Anything is fine.

【0020】また、本発明の必須成分であるエポキシ樹
脂は1分子内にエポキシ基を2個以上有する化合物であ
って、例えば、フェノールノボラック型エポキシ樹脂、
クレゾールノボラック型エポキシ樹脂、ビスフェノール
A型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェ
ニル型エポキシ樹脂、ジシクロペンタジエン−フェノー
ル共重合体型エポキシ樹脂、1つのベンゼン環に少なく
とも2つのエポキシ基の結合した形のエポキシ樹脂など
を挙げることができる。また、硬化剤としてはフェノー
ル系硬化剤やアミン系化合物などがあるが、硬化物の吸
湿率低減に効果のあるフェノール系の硬化剤を使用する
のが好ましい。フェノール系硬化剤とは1分子内に2個
以上のフェノール性水酸基を持つ化合物であって、たと
えば、フェノールノボラック樹脂及びその誘導体、クレ
ゾールノボラック樹脂及びその誘導体、モノまたはジヒ
ドロキシナフタレン及びその誘導体、ジシクロペンタジ
エンとフェノールの共重合体、ヒドロキシスチレン及び
その誘導体などを挙げることができる。これらのエポキ
シ樹脂と硬化剤は、フィラー含有率を高くして吸湿を下
げかつ、成形時の流動性を良好に保持するという本発明
の主旨から、溶融粘度の低いものを使用することが望ま
しい。
Further, the epoxy resin which is an essential component of the present invention is a compound having two or more epoxy groups in one molecule. For example, a phenol novolac type epoxy resin,
Cresol novolac type epoxy resin, bisphenol A type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene-phenol copolymer type epoxy resin, epoxy resin in which at least two epoxy groups are bonded to one benzene ring And so on. Further, as the curing agent, there are a phenol type curing agent, an amine type compound and the like, but it is preferable to use a phenol type curing agent which is effective in reducing the moisture absorption rate of the cured product. The phenolic curing agent is a compound having two or more phenolic hydroxyl groups in one molecule, and examples thereof include phenol novolac resin and its derivative, cresol novolac resin and its derivative, mono- or dihydroxynaphthalene and its derivative, dicyclo Examples thereof include copolymers of pentadiene and phenol, hydroxystyrene and derivatives thereof. It is desirable to use these epoxy resins and curing agents having a low melt viscosity in order to increase the filler content to reduce moisture absorption and to maintain good fluidity during molding.

【0021】また、本発明で用いる硬化促進剤として
は、例えば、トリフェニルフォスフィン及びその誘導
体、ジアザビシクロウンデセン及びその塩を含めた誘導
体、イミダゾール及びその塩を含めた誘導体などが挙げ
られる。
Examples of the curing accelerator used in the present invention include triphenylphosphine and its derivatives, diazabicycloundecene and its salts, and imidazole and its salts. .

【0022】以上述べた本発明のエポキシ樹脂組成物の
必須成分以外の成分は、本発明の目的を妨害しない範囲
であれば使用することができる。たとえば、離型効果を
付与するためのワックス類、着色剤としての顔料や染
料、不純イオンを捕捉して耐湿信頼性を向上させるため
のイオントラップ剤、難燃化効果を付与するための各種
難燃剤、弾性率あるいは線膨張率を低減させるためのエ
ラストマーに代表される低応力性付与成分などである。
Components other than the essential components of the epoxy resin composition of the present invention described above can be used as long as they do not interfere with the object of the present invention. For example, waxes for imparting a releasing effect, pigments and dyes as colorants, ion trap agents for capturing impure ions to improve moisture resistance reliability, various flame retardants for imparting flame retarding effect. It is a low stress imparting component typified by a flame retardant and an elastomer for reducing the elastic modulus or linear expansion coefficient.

【0023】さらに、エポキシ樹脂組成物を製造するに
際して、特定の製造方法を採用する事により、エポキシ
樹脂組成物の流動性が高まる事を見いだした。すなわ
ち、常温で固形のエポキシ樹脂及び/または硬化剤の、
エポキシ樹脂組成物に必要な全量あるいは一部を粉砕し
て樹脂粉体とし、その後に他の原材料などと混合し、混
練して最終的にエポキシ樹脂組成物を製造する方法に於
いて、前記エポキシ樹脂及び/または硬化剤を粉砕する
際に、重量平均粒子径が1μm未満で、比表面積が10
〜30m2 /gの球状非晶質シリカ粉が樹脂に添加され
ていることを特徴とする製造方法である。エポキシ樹脂
組成物の製造において、必要な樹脂成分を微粉体化して
混合・混練するのは一般的であるが、樹脂微粉は極めて
凝集する傾向あるいはケーキングする傾向が強く、樹脂
微粉以外のフィラー等と混合するまでの間に、多くが大
粒子化している。そのため、混練時に樹脂成分が溶融さ
れた際に、近傍の微細フィラー粒子からなる凝集物を取
り込んで、いわゆる「ダマ」のような強い液体架橋によ
る凝集体を形成し、この凝集体は混練によっても完全に
は消滅しないと考えられる。本発明の製造方法によれ
ば、樹脂成分の微粉表面に重量平均粒子径が1μm未満
のシリカ粒子の層が形成されることで、樹脂微粉が凝集
あるいはケーキングするのが防止され、樹脂成分以外の
成分と混合した際に、配合成分が極めて細かく均一に分
散され、混練後におけるフィラー凝集体残存程度が少な
くなり、これによりエポキシ樹脂組成物の流動性が向上
する。なお、常温で固形のエポキシ樹脂及び/または硬
化剤に球状非晶質シリカ粉を添加して粉砕する際に、硬
化促進剤等の他の樹脂成分を同時に添加して粉砕するよ
うにしても差し支えない。
Further, it was found that the fluidity of the epoxy resin composition is enhanced by adopting a specific production method when producing the epoxy resin composition. That is, of the epoxy resin and / or the curing agent that are solid at room temperature,
In the method for finally producing an epoxy resin composition, the epoxy resin composition is pulverized in whole or in part to be a resin powder, and then mixed with other raw materials, and finally kneaded to produce an epoxy resin composition. When crushing the resin and / or the curing agent, the weight average particle diameter is less than 1 μm and the specific surface area is 10
The method is characterized in that ˜30 m 2 / g of spherical amorphous silica powder is added to the resin. In the production of an epoxy resin composition, it is common to make necessary resin components into fine powder and then mix and knead them, but the resin fine powder has a strong tendency to agglomerate or cake, and it may be used as a filler other than the resin fine powder. By the time they are mixed, most of them have become large particles. Therefore, when the resin component is melted during kneading, it takes in an agglomerate composed of fine filler particles in the vicinity to form an agglomerate by strong liquid crosslinking such as so-called "damage", and this agglomerate is also kneaded. It is believed that it will not completely disappear. According to the production method of the present invention, a layer of silica particles having a weight average particle size of less than 1 μm is formed on the surface of the fine powder of the resin component, whereby the fine resin powder is prevented from aggregating or caking, and other than the resin component. When mixed with the components, the blended components are extremely finely and uniformly dispersed, and the residual amount of filler aggregates after kneading is reduced, whereby the fluidity of the epoxy resin composition is improved. It should be noted that when the spherical amorphous silica powder is added to the epoxy resin and / or the curing agent which are solid at room temperature and the mixture is pulverized, another resin component such as a curing accelerator may be simultaneously added and pulverized. Absent.

【0024】[0024]

【実施例】実施例、及び比較例で使用した原材料につい
て説明する。
EXAMPLES Raw materials used in Examples and Comparative Examples will be described.

【0025】エポキシ樹脂はビフェニル型エポキシ樹脂
〔油化シェルエポキシ(株)製、品番YX−4000
H、エポキシ当量190、溶融温度105℃〕を使用
し、硬化剤はナフトール・フェノール重合体〔日本化薬
(株)製、品番OCN−7000、水酸基当量140、
溶融温度120℃〕を使用し、硬化促進剤としてはトリ
フェニルフォスフィン〔北興化学工業(株)製、以降T
PPと表す〕を使用し、ワックスは天然カルナウバワッ
クスを使用し、カップリング剤はエポキシシラン系カッ
プリング剤〔日本ユニカー(株)製、品番A−187〕
を使用し、顔料はカーボンブラックを使用した。
The epoxy resin is a biphenyl type epoxy resin [Yukaka Shell Epoxy Co., Ltd., product number YX-4000.
H, epoxy equivalent 190, melting temperature 105 ° C.], and the curing agent is a naphthol-phenol polymer [manufactured by Nippon Kayaku Co., Ltd., product number OCN-7000, hydroxyl group equivalent 140,
Melting temperature 120 ° C.] is used, and triphenylphosphine [manufactured by Kitako Chemical Industry Co., Ltd., hereinafter T
PP) is used, the wax is natural carnauba wax, and the coupling agent is an epoxysilane coupling agent [manufactured by Nippon Unicar Co., Ltd., product number A-187].
Was used, and the pigment used was carbon black.

【0026】非晶質シリカ粉(A)としては下記のもの
を使用した。市販の非晶質シリカ粉である品番FB74
〔電気化学工業(株)製、平均粒径26μm、比表面積
2.6m2 /g〕を空気分級して得られた下記の2種類
のフィラー。 平均粒径36μm、比表面積1.6m2 /g、真比重
2.2────以降AS1と表す。 平均粒径9μm、比表面積2.9m2 /g、真比重
2.2────以降AS2と表す。
The following were used as the amorphous silica powder (A). Part number FB74, which is a commercially available amorphous silica powder
The following two types of fillers obtained by air classification of [Electrochemical Industry Co., Ltd., average particle size 26 μm, specific surface area 2.6 m 2 / g]. The average particle size is 36 μm, the specific surface area is 1.6 m 2 / g, and the true specific gravity is 2.2. The average particle size is 9 μm, the specific surface area is 2.9 m 2 / g, and the true specific gravity is 2.2.

【0027】また、下記の2種類のフィラーを非晶質シ
リカ粉(A)として使用した。 (株)龍森製の球状非晶質シリカ、品番SOC2、平
均粒径0.5μm、比表面積12m2 /g、真比重2.
2────以降SOC2と表す。 電気化学工業(株)製の球状非晶質シリカ、品番FB
01、平均粒径0.1μm、比表面積35m2 /g、真
比重2.2────以降FB01と表す。
Further, the following two kinds of fillers were used as the amorphous silica powder (A). Spherical amorphous silica manufactured by Tatsumori, product number SOC2, average particle size 0.5 μm, specific surface area 12 m 2 / g, true specific gravity 2.
2 ──── Hereinafter referred to as SOC2. Spherical amorphous silica manufactured by Denki Kagaku Co., Ltd., product number FB
No. 01, average particle diameter 0.1 μm, specific surface area 35 m 2 / g, true specific gravity 2.2 ───hereinafter referred to as FB01.

【0028】非晶質シリカよりも線膨張率の大きな無機
粉(B)として下記の3種類のものを使用した。 (株)龍森製の結晶シリカ、品番3K、平均粒径27
μm、比表面積2m2 /g、真比重2.6────以降
3Kと表す。 東芝バロティーニ(株)製の球状Eガラス粉(ガラス
ビーズ)、品番GB731、平均粒径30μm、真比重
2.6────以降GB731と表す。 東芝バロティーニ(株)製の中空ガラス粉(ボロシリ
ケートガラスバルーン)、品番HSC110、平均粒径
10μm、真比重1.1────以降HSC110と表
す。
The following three types of inorganic powder (B) having a linear expansion coefficient larger than that of amorphous silica were used. Tatsumori Co., Ltd. crystalline silica, product number 3K, average particle size 27
μm, specific surface area 2 m 2 / g, true specific gravity 2.6 ─── and 3K thereafter. Spherical E glass powder (glass beads) manufactured by Toshiba Ballotini Co., Ltd., product number GB731, average particle size 30 μm, true specific gravity 2.6 ── henceforth GB731. Hollow glass powder (borosilicate glass balloon) manufactured by Toshiba Ballotini Co., Ltd., product number HSC110, average particle diameter 10 μm, true specific gravity 1.1 ──hereinafter referred to as HSC110.

【0029】次に、各実施例及び各比較例で使用する混
合フィラーについて説明する。下記の表1及び表2に示
す重量でそれぞれの原料フィラーを採取し、回転型ミキ
サーで混合・分散処理を行い、混合フィラーを得た。得
られた混合フィラーについて圧縮して得られる成形体中
の混合フィラー体積分率Pを測定し、その結果を表1及
び表2に示した。なお、混合フィラーを圧縮して得られ
る成形体中の混合フィラー体積分率Pは次のようにして
求めた。重量がWグラムである混合フィラーを圧縮圧力
300kg/cm2 で単軸加圧し、円筒状の成形体を
得、得られた成形体の直径と厚みから算出される成型体
の見かけ体積Vと前記の重量W及びフィラー全体の真比
重dから、すでに述べた式(D)で算出して、成形体中
の混合フィラー体積分率Pを求めた。そして、得られた
成型体を解砕して圧縮成形後の混合フィラーの平均粒径
を測定し、成形に供した混合フィラーの成型前の平均粒
径と比較し、得られた成型体でも平均粒径が維持されて
いるかを調べた。その結果、各実施例及び比較例で使用
した混合フィラーでは、得られた成型体でも平均粒径が
維持されていて、圧縮圧力300kg/cm2 では圧縮
成形による粒子の破壊は生じていないことが確認され
た。
Next, the mixed filler used in each example and each comparative example will be described. Raw material fillers were sampled in the weights shown in Tables 1 and 2 below, and mixed and dispersed by a rotary mixer to obtain mixed fillers. The mixed filler volume fraction P in the molded body obtained by compressing the obtained mixed filler was measured, and the results are shown in Tables 1 and 2. The mixed filler volume fraction P in the molded body obtained by compressing the mixed filler was determined as follows. The mixed filler having a weight of W grams was uniaxially pressed at a compression pressure of 300 kg / cm 2 to obtain a cylindrical molded body, and the apparent volume V of the molded body calculated from the diameter and thickness of the obtained molded body and the above The mixed filler volume fraction P in the molded body was calculated from the weight W of the above and the true specific gravity d of the entire filler by the above-mentioned formula (D). Then, the average particle size of the mixed filler after compression molding by crushing the obtained molded body is measured, and compared with the average particle size of the mixed filler before molding, which is used for molding, and the obtained molded body is also averaged. It was investigated whether the particle size was maintained. As a result, with the mixed filler used in each of the examples and comparative examples, the average particle size was maintained even in the obtained molded bodies, and it was found that the particles were not broken by compression molding at a compression pressure of 300 kg / cm 2. confirmed.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】(実施例1〜8及び比較例1〜7)表1及
び表2に示した混合フィラー(F1〜F13)を使用し
て、実施例1〜8及び比較例1〜7の封止材用エポキシ
樹脂組成物を作製した。なお、エポキシ樹脂組成物の配
合割合は表3、表4及び表5に示す通りとし、カップリ
ング剤は混合フィラー(F1〜F13)に必要量をスプ
レーし、ミキサーで予め分散混合し、その後他の原材料
と混合した。また各原材料の配合物の混練は、90℃の
ミキシングロールで6分間行い、得られたシートを室温
まで冷却後粉砕し、封止材用エポキシ樹脂組成物を得る
ようにした。
(Examples 1 to 8 and Comparative Examples 1 to 7) The mixed fillers (F1 to F13) shown in Tables 1 and 2 were used to seal Examples 1 to 8 and Comparative Examples 1 to 7. An epoxy resin composition for wood was prepared. The mixing ratio of the epoxy resin composition is as shown in Tables 3, 4 and 5, and the coupling agent is sprayed with a required amount on the mixed fillers (F1 to F13) and dispersed and mixed in advance with a mixer, and then other components. Mixed with the ingredients. Moreover, the kneading of the blend of each raw material was performed for 6 minutes with a mixing roll at 90 ° C., and the obtained sheet was cooled to room temperature and then pulverized to obtain an epoxy resin composition for a sealing material.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】得られた封止材用エポキシ樹脂組成物及び
このエポキシ樹脂組成物を用いて得られた硬化物及び半
導体装置についての各種性能を次のようにして評価し
た。 (1)ゲルタイム:(株)オリエンテック製キュラスト
メータV型を用いて、175℃における各エポキシ樹脂
組成物のゲルタイムを測定した。 (2)硬化物の線膨張率:専用金型を用い、175℃の
トランスファー成形により5mmφ×20mmの円柱状
の成形品を得、次いで、175℃6時間のアフターキュ
アーを行い、その後、研磨により底面及び頂面の平行出
しを行い、線膨張率測定用テストピースを作製した。こ
のテストピースについて、理学電機(株)製TAS20
0型TMA装置により、50℃〜100℃の間の線膨張
率(α1 )を測定した。 (3)吸湿耐半田性:4×12×0.4mmのCMOS
素子を銅合金〔三菱電機(株)製、品番MF202〕製
リードフレームに銀ペーストで実装し、金ワイヤーでボ
ンディングした後、封止材用エポキシ樹脂組成物を使用
し、外形寸法8.9×17.4×2.7mmの26SO
Pパッケージ用の金型でトランスファー成形した。成形
条件は、温度175℃、注入時間12秒、加圧時間90
秒、注入圧力70kg/cm2 で行なった。得られた成
形品について175℃6時間のアフターキュアーを行
い、性能評価用26SOP(半導体装置)を得た。得ら
れた半導体装置を温度85℃、相対湿度85%の雰囲気
に72時間放置した後、260℃の半田槽に10秒間浸
漬し、半導体装置内部の銅合金製リードフレームのダイ
パッド部裏面と封止材の硬化物との界面の密着状態を超
音波探査装置〔(株)キャノン製、品番M−700II〕
で観察し、剥離モードの部分が発生しているものを不良
とした。また、半導体装置の外部を実体顕微鏡で観察
し、クラックの発生しているものを不良とした。 (4)耐ヒートショック性:吸湿耐半田性の場合と同様
にして、性能評価用26SOP(半導体装置)を得た。
この半導体装置を液相で−65℃5分間〜+150℃5
分間を1サイクルとするヒートショック試験を繰り返し
行い、表6、表7及び表8に示すサイクル数の試験終了
後に吸湿耐半田性の場合と同様にして、半導体装置内部
の銅合金製リードフレームのダイパッド部裏面と封止材
の硬化物との界面の密着状態及び半導体装置の外部クラ
ックの発生について評価した。 (5)成形不良率:吸湿耐半田性の場合と同様にして、
トランスファー成形により26SOPを成形した。同一
封止材用エポキシ樹脂組成物を使用して成形した26S
OPについて、全個数に対する、ボイドや欠けなどの充
填不良が発生している個数の割合(百分率)を成形不良
率とした。
Various performances of the obtained epoxy resin composition for encapsulant, cured products obtained by using the epoxy resin composition and semiconductor devices were evaluated as follows. (1) Gel time: The gel time of each epoxy resin composition at 175 ° C. was measured using a curast meter V type manufactured by Orientec Co., Ltd. (2) Linear expansion coefficient of the cured product: Using a dedicated mold, transfer molding at 175 ° C. to obtain a cylindrical molded product of 5 mmφ × 20 mm, followed by after-curing at 175 ° C. for 6 hours, and then polishing. The bottom surface and the top surface were parallelized to prepare a test piece for measuring linear expansion coefficient. About this test piece, TAS20 manufactured by Rigaku Denki Co., Ltd.
The linear expansion coefficient (α 1 ) between 50 ° C. and 100 ° C. was measured by a 0 type TMA device. (3) Moisture absorption soldering resistance: CMOS of 4 × 12 × 0.4 mm
The element is mounted on a lead frame made of a copper alloy [Mitsubishi Electric Corp., product number MF202] with silver paste and bonded with a gold wire, and then an epoxy resin composition for encapsulant is used. 17.4 x 2.7 mm 26SO
Transfer molding was performed with a die for P package. The molding conditions are a temperature of 175 ° C., an injection time of 12 seconds, and a pressurization time of 90.
Second, the injection pressure was 70 kg / cm 2 . The obtained molded product was subjected to after-curing at 175 ° C. for 6 hours to obtain 26SOP (semiconductor device) for performance evaluation. The obtained semiconductor device is left in an atmosphere having a temperature of 85 ° C. and a relative humidity of 85% for 72 hours, and then immersed in a solder bath at 260 ° C. for 10 seconds to seal the back surface of the die pad of the copper alloy lead frame inside the semiconductor device. Ultrasonic probe for the interface between the hardened material and the hardened material [Canon Co., Ltd., product number M-700II]
Observation was made, and the case where the peeling mode portion was generated was determined to be defective. In addition, the outside of the semiconductor device was observed with a stereoscopic microscope, and those having cracks were determined to be defective. (4) Heat shock resistance: 26SOP (semiconductor device) for performance evaluation was obtained in the same manner as in the case of moisture absorption solder resistance.
This semiconductor device is in a liquid phase at −65 ° C. for 5 minutes to + 150 ° C. 5
The heat shock test with 1 minute as a cycle is repeated, and after the test of the number of cycles shown in Table 6, Table 7 and Table 8 is completed, in the same manner as in the case of the moisture absorption solder resistance, the copper alloy lead frame in the semiconductor device is The adhesion state at the interface between the back surface of the die pad and the cured product of the sealing material and the occurrence of external cracks in the semiconductor device were evaluated. (5) Molding defect rate: in the same manner as in the case of moisture absorption and solder resistance,
26SOP was molded by transfer molding. 26S molded using the same epoxy resin composition for encapsulant
Regarding OP, the ratio (percentage) of the number of defective filling such as voids and chips to the total number of OP was defined as the defective molding rate.

【0037】前記の表3、表4及び表5に示す配合量で
得られた各実施例及び各比較例の封止材用エポキシ樹脂
組成物及びこのエポキシ樹脂組成物を用いて得られた硬
化物及び半導体装置についての各種性能を前述の方法で
評価した。得られた結果を表6、表7及び表8に示す。
Epoxy resin compositions for encapsulants of Examples and Comparative Examples obtained in the compounding amounts shown in Tables 3, 4 and 5 and curing obtained by using the epoxy resin compositions. Various properties of the product and the semiconductor device were evaluated by the above-mentioned methods. The obtained results are shown in Tables 6, 7, and 8.

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【表7】 [Table 7]

【0040】[0040]

【表8】 [Table 8]

【0041】表6、表7及び表8の結果から次の点が確
認された。比較例1は、非晶質シリカよりも線膨張率の
大きな無機粉(B)の全フィラーに対する比率が少ない
ので、エポキシ樹脂組成物の硬化物の線膨張率が銅合金
よりも小さくなり過ぎ、その結果半導体装置の耐ヒート
ショック性が悪い。
From the results shown in Tables 6, 7, and 8, the following points were confirmed. In Comparative Example 1, since the ratio of the inorganic powder (B) having a larger linear expansion coefficient than that of the amorphous silica to the total filler is small, the linear expansion coefficient of the cured product of the epoxy resin composition becomes too smaller than that of the copper alloy, As a result, the heat shock resistance of the semiconductor device is poor.

【0042】比較例2は、非晶質シリカよりも線膨張率
の大きな無機粉(B)の全フィラーに対する比率が多い
ので、エポキシ樹脂組成物の硬化物の線膨張率が大きく
なり過ぎ、その結果半導体装置の耐ヒートショック性が
悪い。
In Comparative Example 2, since the ratio of the inorganic powder (B) having a larger linear expansion coefficient than that of the amorphous silica to the total filler is large, the cured product of the epoxy resin composition has a too large linear expansion coefficient. As a result, the heat shock resistance of the semiconductor device is poor.

【0043】比較例2及び3では、使用している混合フ
ィラーの圧縮成形した成形体中のフィラー体積分率
(P)が78%よりも小さいため、エポキシ樹脂組成物
の溶融粘度が高くなるために流動性が悪く、成形不良が
発生している。
In Comparative Examples 2 and 3, since the filler volume fraction (P) in the compression-molded molded body of the mixed filler used was smaller than 78%, the melt viscosity of the epoxy resin composition was increased. In addition, the fluidity is poor and molding failure occurs.

【0044】比較例4では、重量平均粒子径が1μm未
満かつ比表面積が10〜30m2 /gの球状非晶質シリ
カ粉の全フィラーに占める割合が20%を越えているの
で、エポキシ樹脂組成物の溶融粘度が高くなり、その結
果流動性が悪く、成形不良が発生している。
In Comparative Example 4, since the ratio of the spherical amorphous silica powder having a weight average particle size of less than 1 μm and a specific surface area of 10 to 30 m 2 / g to the total filler exceeds 20%, an epoxy resin composition is obtained. The melt viscosity of the product is increased, resulting in poor fluidity and defective molding.

【0045】比較例5では、重量平均粒子径が1μm未
満かつ比表面積が10〜30m2 /gの球状非晶質シリ
カ粉の全フィラーに占める割合が5%未満なので、Pの
値が78%よりも小さくなって、エポキシ樹脂組成物の
溶融粘度が高くなるために流動性が悪く、成形不良が発
生している。
In Comparative Example 5, the spherical amorphous silica powder having a weight average particle size of less than 1 μm and a specific surface area of 10 to 30 m 2 / g accounts for less than 5% of the total filler, so that the P value is 78%. And the melt viscosity of the epoxy resin composition increases, resulting in poor fluidity and defective molding.

【0046】比較例6では、重量平均粒子径が1μm未
満の球状非晶質シリカ粉の比表面積が30m2 /gを越
えているので、エポキシ樹脂組成物の溶融粘度が高くな
るために流動性が悪く、成形不良が発生している。
In Comparative Example 6, since the specific surface area of the spherical amorphous silica powder having a weight average particle size of less than 1 μm exceeds 30 m 2 / g, the melt viscosity of the epoxy resin composition is increased and the fluidity is increased. Is bad and molding failure has occurred.

【0047】比較例2から6では、上述した以外に半導
体装置の吸湿耐半田性あるいは耐ヒートショック性がや
や悪くなっているが、これは、溶融粘度が高く成形不良
を生じていることに起因するものと考えられる。
In Comparative Examples 2 to 6, the moisture absorption solder resistance or the heat shock resistance of the semiconductor device was slightly deteriorated, in addition to the above, because the melt viscosity was high and defective molding occurred. It is supposed to do.

【0048】比較例7では、エポキシ樹脂組成物に占め
るフィラーの体積分率が、70%未満なので、硬化物の
吸湿率が大きいためか半導体装置の吸湿耐半田性が著し
く悪く、またエポキシ樹脂組成物の硬化物の線膨張率
(α1 )が大きく、そのために半導体装置の耐ヒートシ
ョック性も悪い。
In Comparative Example 7, since the volume fraction of the filler in the epoxy resin composition is less than 70%, the moisture absorption resistance of the semiconductor device is remarkably poor, probably because the moisture absorption rate of the cured product is large, and the epoxy resin composition is also high. The cured product has a large linear expansion coefficient (α 1 ), and therefore the heat shock resistance of the semiconductor device is poor.

【0049】実施例1〜8では、本発明の請求範囲内で
あれば、エポキシ樹脂組成物は溶融粘度が低く、良好な
成形性を示している、さらに実施例1〜8では、吸湿耐
半田性と耐ヒートショック性が良好な半導体装置が得ら
れている。(実施例9)粒状のエポキシ樹脂YX400
0Hを378g、粒状の硬化剤のOCN7000を27
9g、球状非晶質シリカSOC2を13.1gを混合
し、パルベライザAP−1SH型〔ホソカワミクロン
(株)製〕にて200メッシュアンダーに粉砕して、混
合樹脂粉を得た。実施例1にける、エポキシ樹脂YX4
000H(37.8g)と硬化剤OCN7000(2
7.9g)の合計65.7gの替わりに上記200メッ
シュアンダーの混合樹脂粉を67.0g配合する。この
混合樹脂粉中にはSOC2が1.3g含まれているの
で、実施例1におけるフィラーF1(427.5g)に
代えて下記に示すF14のフィラーを426.2g配合
する。
In Examples 1 to 8, the epoxy resin composition had a low melt viscosity and showed good moldability within the scope of the claims of the present invention. A semiconductor device having excellent heat resistance and heat shock resistance has been obtained. (Example 9) Granular epoxy resin YX400
378 g of OH and 27 of granular hardening agent OCN7000
9 g and 13.1 g of spherical amorphous silica SOC2 were mixed, and pulverized to 200 mesh under with Pulverizer AP-1SH type (manufactured by Hosokawa Micron Co., Ltd.) to obtain a mixed resin powder. Epoxy resin YX4 in Example 1
000H (37.8g) and curing agent OCN7000 (2
67.0 g of the mixed resin powder of 200 mesh under is mixed in place of the total of 65.7 g of 7.9 g). Since 1.3 g of SOC2 is contained in this mixed resin powder, 426.2 g of the filler of F14 shown below is blended instead of the filler F1 (427.5 g) in Example 1.

【0050】F14のフィラー:表9に示す重量でぞれ
ぞれの原料フィラーを秤取し、回転型ミキサーで混合・
分散処理を行って作製した。
F14 filler: Each raw material filler having a weight shown in Table 9 was weighed and mixed with a rotary mixer.
It was manufactured by performing a dispersion treatment.

【0051】なお、実施例9における全フィラーは、混
合フィラーF14と樹脂を粉砕する際に加えられたSO
C2との合計であり、この全フィラー中の非晶質シリカ
よりも線膨張率の大きな無機粉(B)の体積分率、重量
平均粒子径が1μm未満かつ比表面積が10〜30m2
/gの球状非晶質シリカ粉の全フィラーに占める割合、
フィラー全体の真比重及び圧縮成形品中のフィラー体積
分率Pを表10に示した。
All the fillers in Example 9 were the same as the mixed filler F14 and the SO added when the resin was crushed.
C2, the volume fraction of the inorganic powder (B) having a larger linear expansion coefficient than the amorphous silica in all the fillers, the weight average particle diameter is less than 1 μm, and the specific surface area is 10 to 30 m 2.
% Of spherical amorphous silica powder in all fillers,
Table 10 shows the true specific gravity of the entire filler and the filler volume fraction P in the compression molded product.

【0052】上記のように、混合樹脂粉を予め作製して
使用し、かつ、実施例1におけるフィラーF1(42
7.5g)に代えてF14のフィラーを426.2g配
合するようにした以外については、実施例1と同様に配
合、混合・混練し、エポキシ樹脂組成物を得て、性能評
価を行なった。得られた結果を実施例1の結果と併せて
表11に示す。
As described above, the mixed resin powder was prepared in advance and used, and the filler F1 (42) in Example 1 was used.
The composition was mixed, mixed and kneaded in the same manner as in Example 1 except that 426.2 g of F14 filler was mixed instead of 7.5 g) to obtain an epoxy resin composition, and the performance was evaluated. The results obtained are shown in Table 11 together with the results of Example 1.

【0053】[0053]

【表9】 [Table 9]

【0054】[0054]

【表10】 [Table 10]

【0055】[0055]

【表11】 [Table 11]

【0056】表11の結果から明らかなように、常温で
固形のエポキシ樹脂を粉砕する際に、重量平均粒子径が
1μm未満かつ比表面積が10〜30m2 /gの球状非
晶質シリカ粉を樹脂に添加して粉砕し、その後、この混
合樹脂粉を他の原材料と混合・混練して製造された実施
例9のエポキシ樹脂組成物は溶融粘度が低下しており、
従って、更にフィラー含有率を高めることが可能になる
ことが確認された。
As is clear from the results shown in Table 11, when the solid epoxy resin is crushed at room temperature, spherical amorphous silica powder having a weight average particle size of less than 1 μm and a specific surface area of 10 to 30 m 2 / g is obtained. The epoxy resin composition of Example 9 produced by adding to a resin and pulverizing, and then mixing and kneading the mixed resin powder with other raw materials has a reduced melt viscosity,
Therefore, it was confirmed that the filler content could be further increased.

【0057】[0057]

【発明の効果】請求項1〜請求項5記載のエポキシ樹脂
組成物に係る発明によれば、成型時の流動性が良好であ
って、銅合金製リードフレームに搭載した半導体チップ
を封止した半導体装置の吸湿耐半田性及び耐ヒートショ
ック性が改善できるエポキシ樹脂組成物が得られる。
According to the invention relating to the epoxy resin composition of claims 1 to 5, the fluidity at the time of molding is good, and the semiconductor chip mounted on the copper alloy lead frame is sealed. An epoxy resin composition that can improve moisture absorption solder resistance and heat shock resistance of a semiconductor device can be obtained.

【0058】請求項6記載のエポキシ樹脂組成物の製造
方法に係る発明によれば、エポキシ樹脂組成物の溶融粘
度を低下することが可能となり、従って、成型時の流動
性を良好に維持したまま、更にフィラー含有率を高める
ことが可能になる。
According to the invention of the method for producing an epoxy resin composition of claim 6, the melt viscosity of the epoxy resin composition can be lowered, and therefore, the fluidity during molding can be kept good. Further, it becomes possible to further increase the filler content.

【0059】請求項7及び請求項8記載の半導体装置に
係る発明によれば、銅合金性リードフレームを用いる半
導体装置の吸湿耐半田性及び熱ストレスに対する耐性の
両方に優れる半導体装置を得ることができる。
According to the seventh and eighth aspects of the present invention, it is possible to obtain a semiconductor device which is excellent in both moisture absorption solder resistance and thermal stress resistance of a semiconductor device using a copper alloy lead frame. it can.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂、硬化剤、硬化促進剤及び
フィラーを含有するエポキシ樹脂組成物において、フィ
ラーとして、非晶質シリカ粉(A)と非晶質シリカより
も線膨張率の大きな1種類以上の無機粉(B)の混合粉
であるフィラーであり、全フィラー中に占める前記無機
粉(B)の割合が真比重換算で20〜60体積%である
フィラーであり、重量平均粒子径が1μm未満で、比表
面積が10〜30m2 /gの球状非晶質シリカ粉を全フ
ィラー中に真比重換算で5〜20体積%含むフィラーで
あり、さらに、その平均粒径が維持される圧力でフィラ
ーを圧縮して得られる成形体中のフィラーの体積分率が
78%以上であるフィラーを、使用していることを特徴
とするエポキシ樹脂組成物。
1. An epoxy resin composition containing an epoxy resin, a curing agent, a curing accelerator, and a filler, and as the filler, one kind having a larger linear expansion coefficient than the amorphous silica powder (A) and the amorphous silica. The filler is a mixed powder of the above inorganic powder (B), and the proportion of the inorganic powder (B) in the total filler is 20 to 60% by volume in terms of true specific gravity, and the weight average particle diameter is A filler containing spherical amorphous silica powder having a specific surface area of less than 1 μm and a specific surface area of 10 to 30 m 2 / g in an amount of 5 to 20% by volume in terms of true specific gravity in all fillers, and further, a pressure at which the average particle diameter is maintained. An epoxy resin composition, characterized in that a filler having a volume fraction of 78% or more in the molded body obtained by compressing the filler is used.
【請求項2】 無機粉(B)が結晶シリカである請求項
1記載のエポキシ樹脂組成物。
2. The epoxy resin composition according to claim 1, wherein the inorganic powder (B) is crystalline silica.
【請求項3】 無機粉(B)がガラス粉である請求項1
記載のエポキシ樹脂組成物。
3. The inorganic powder (B) is glass powder.
The epoxy resin composition described.
【請求項4】 無機粉(B)が中空のガラス粉である請
求項1記載のエポキシ樹脂組成物。
4. The epoxy resin composition according to claim 1, wherein the inorganic powder (B) is a hollow glass powder.
【請求項5】 エポキシ樹脂組成物中におけるフィラー
の割合が真比重換算で70体積%以上である請求項1か
ら請求項4までのいずれかに記載のエポキシ樹脂組成
物。
5. The epoxy resin composition according to claim 1, wherein the proportion of the filler in the epoxy resin composition is 70% by volume or more in terms of true specific gravity.
【請求項6】 含有するエポキシ樹脂及び/または硬化
剤が常温で固形である請求項1から請求項5までのいず
れかに記載のエポキシ樹脂組成物の製造方法において、
常温で固形のエポキシ樹脂及び/または硬化剤を、重量
平均粒子径が1μm未満で、比表面積が10〜30m2
/gの球状非晶質シリカ粉を添加した状態で粉砕し、次
いで他の原料と混合・混練することを特徴とするエポキ
シ樹脂組成物の製造方法。
6. The method for producing an epoxy resin composition according to any one of claims 1 to 5, wherein the contained epoxy resin and / or curing agent is solid at room temperature.
Epoxy resin and / or curing agent that are solid at room temperature have a weight average particle size of less than 1 μm and a specific surface area of 10 to 30 m 2.
/ G of spherical amorphous silica powder is added thereto, and the mixture is pulverized, and then mixed and kneaded with other raw materials, which is a method for producing an epoxy resin composition.
【請求項7】 請求項1から請求項5までのいずれかに
記載のエポキシ樹脂組成物を用いて、銅合金製リードフ
レームに搭載された半導体素子を封止してなる半導体装
置。
7. A semiconductor device obtained by encapsulating a semiconductor element mounted on a copper alloy lead frame using the epoxy resin composition according to any one of claims 1 to 5.
【請求項8】 エポキシ樹脂組成物の硬化物の線膨張率
が12〜17ppm/℃である請求項7記載の半導体装
置。
8. The semiconductor device according to claim 7, wherein a cured product of the epoxy resin composition has a coefficient of linear expansion of 12 to 17 ppm / ° C.
JP626894A 1994-01-25 1994-01-25 Epoxy resin composition, method for producing the same, and semiconductor device using the same Expired - Lifetime JP2853550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP626894A JP2853550B2 (en) 1994-01-25 1994-01-25 Epoxy resin composition, method for producing the same, and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP626894A JP2853550B2 (en) 1994-01-25 1994-01-25 Epoxy resin composition, method for producing the same, and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JPH07206983A true JPH07206983A (en) 1995-08-08
JP2853550B2 JP2853550B2 (en) 1999-02-03

Family

ID=11633695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP626894A Expired - Lifetime JP2853550B2 (en) 1994-01-25 1994-01-25 Epoxy resin composition, method for producing the same, and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2853550B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990036775A (en) * 1997-10-03 1999-05-25 이사오 우치가사키 Encapsulation material and lead-on-chip structure semiconductor device using the same
JP2002128991A (en) * 2000-10-27 2002-05-09 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002275355A (en) * 2001-03-22 2002-09-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2010512665A (en) * 2006-12-12 2010-04-22 インタープレックス,キューエルピー,インコーポレイテッド Plastic electronic device package
WO2011129355A1 (en) * 2010-04-13 2011-10-20 パナソニック電工株式会社 Curable composition and cured product for dental use
WO2011129356A1 (en) * 2010-04-13 2011-10-20 パナソニック電工株式会社 Curable composition and cured product for dental use
WO2011152413A1 (en) * 2010-05-31 2011-12-08 日立化成工業株式会社 Prepreg, metal-clad laminate, and printed circuit board
JPWO2013151151A1 (en) * 2012-04-05 2015-12-17 ジャパンコンポジット株式会社 Molding materials and molded products for lamp reflectors
KR20180111600A (en) * 2017-03-31 2018-10-11 다이요 잉키 세이조 가부시키가이샤 Curable composition, dry film, cured product and printed wiring board
JP2018172632A (en) * 2017-03-31 2018-11-08 太陽インキ製造株式会社 Curable composition, dry film, cured material and print circuit board
JP2019026715A (en) * 2017-07-28 2019-02-21 住友ベークライト株式会社 Epoxy resin composition for collectively sealing, electronic device and method for manufacturing the same
CN111909487A (en) * 2019-05-07 2020-11-10 长春人造树脂厂股份有限公司 Resin composition and use thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990036775A (en) * 1997-10-03 1999-05-25 이사오 우치가사키 Encapsulation material and lead-on-chip structure semiconductor device using the same
JP2002128991A (en) * 2000-10-27 2002-05-09 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002275355A (en) * 2001-03-22 2002-09-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2010512665A (en) * 2006-12-12 2010-04-22 インタープレックス,キューエルピー,インコーポレイテッド Plastic electronic device package
US9144475B2 (en) 2010-04-13 2015-09-29 Panasonic Healthcare Co., Ltd. Curable composition and cured product for dental use
WO2011129355A1 (en) * 2010-04-13 2011-10-20 パナソニック電工株式会社 Curable composition and cured product for dental use
WO2011129356A1 (en) * 2010-04-13 2011-10-20 パナソニック電工株式会社 Curable composition and cured product for dental use
US9351815B2 (en) 2010-04-13 2016-05-31 Panasonic Healthcare Co., Ltd. Curable composition and cured product for dental use
CN102844012A (en) * 2010-04-13 2012-12-26 松下电器产业株式会社 Curable composition and cured product for dental use
US8980424B2 (en) 2010-05-31 2015-03-17 Hitachi Chemical Company, Ltd. Prepreg, metal-clad laminate, and printed circuit board
WO2011152413A1 (en) * 2010-05-31 2011-12-08 日立化成工業株式会社 Prepreg, metal-clad laminate, and printed circuit board
JPWO2013151151A1 (en) * 2012-04-05 2015-12-17 ジャパンコンポジット株式会社 Molding materials and molded products for lamp reflectors
KR20180111600A (en) * 2017-03-31 2018-10-11 다이요 잉키 세이조 가부시키가이샤 Curable composition, dry film, cured product and printed wiring board
JP2018172632A (en) * 2017-03-31 2018-11-08 太陽インキ製造株式会社 Curable composition, dry film, cured material and print circuit board
KR20230038673A (en) * 2017-03-31 2023-03-21 다이요 잉키 세이조 가부시키가이샤 Curable composition, dry film, cured product and printed wiring board
JP2019026715A (en) * 2017-07-28 2019-02-21 住友ベークライト株式会社 Epoxy resin composition for collectively sealing, electronic device and method for manufacturing the same
CN111909487A (en) * 2019-05-07 2020-11-10 长春人造树脂厂股份有限公司 Resin composition and use thereof
JP2020200445A (en) * 2019-05-07 2020-12-17 長春人造樹脂廠股▲ふん▼有限公司 Resin composition and uses of the same

Also Published As

Publication number Publication date
JP2853550B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
EP0951070B1 (en) Semiconductor encapsulating epoxy resin compositions, and semiconductor devices encapsulated therewith
JP2853550B2 (en) Epoxy resin composition, method for producing the same, and semiconductor device using the same
JPS5829858A (en) Resin composition for sealing electronic component
JPS6259626A (en) Epoxy resin composition
JP4710200B2 (en) Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
JP2005105087A (en) Epoxy resin composition and semiconductor device
JPH08162573A (en) Semiconductor device
JPH0366151A (en) Semiconductor device
JPH0686515B2 (en) Epoxy resin composition for semiconductor device encapsulation
JP2002194058A (en) Semiconductor device
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JP2006225464A (en) Epoxy resin composition and semiconductor device
JPH0588904B2 (en)
JP2005154717A (en) Epoxy resin composition and semiconductor device
JP5067994B2 (en) Epoxy resin composition and semiconductor device
JPH0841293A (en) Epoxy resin composition for sealing and semiconductor device
JPH0859791A (en) Method for producing epoxy resin composition for sealing
JP3449242B2 (en) Epoxy resin composition and semiconductor device
JPH03115455A (en) Sealing resin composition and resin-sealed semiconductor device
JP2006143784A (en) Epoxy resin composition and semiconductor device
JP3239970B2 (en) Semiconductor device
JPH04188855A (en) Semiconductor device
JP2001253999A (en) Epoxy resin molding material and semiconductor device
JP2000226497A (en) Epoxy resin composition and semiconductor device
JP3967205B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081120

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091120

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111120

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 15

EXPY Cancellation because of completion of term