JPH0841293A - Epoxy resin composition for sealing and semiconductor device - Google Patents

Epoxy resin composition for sealing and semiconductor device

Info

Publication number
JPH0841293A
JPH0841293A JP17521194A JP17521194A JPH0841293A JP H0841293 A JPH0841293 A JP H0841293A JP 17521194 A JP17521194 A JP 17521194A JP 17521194 A JP17521194 A JP 17521194A JP H0841293 A JPH0841293 A JP H0841293A
Authority
JP
Japan
Prior art keywords
inorganic powder
epoxy resin
powder filler
resin composition
compression molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17521194A
Other languages
Japanese (ja)
Inventor
Yasuhisa Kishigami
泰久 岸上
Shinji Hashimoto
眞治 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP17521194A priority Critical patent/JPH0841293A/en
Publication of JPH0841293A publication Critical patent/JPH0841293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To provide resin composition containing an epoxy resin, a curing agent, a curing promoter and an inorganic filler satisfying specified conditions, excellent in fluidity and moldability, useful for a semiconductor device excellent in moisture-resistant reliability and having a high filler content. CONSTITUTION:This resin composition contains (A) an epoxy resin, (B) a curing agent, (C) a curing promoter and (D) an inorganic filler (preferably containing one or more kinds of substances selected from amorphous silica, crystalline silica and alumina) so that the content of the inorganic filter may be >=75vol.% based on the whole composition in terms of true specific gravity. The volume fraction (phi) which is the ratio of this inorganic filter to an apparent volume of a molding produced by conducting compression molding at a pressure (P) under which the average particle size before compression molding is kept after compression molding is >=78% and the gradient (K) in an approximate expression representing a relation between the common logarithm of P and phi in P, i.e., phi=KlogP+alpha is 1 to 5, preferably 3 to 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子等の電子部
品の封止に用いられる封止用エポキシ樹脂組成物及びそ
れを用いた半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an encapsulating epoxy resin composition used for encapsulating electronic parts such as semiconductor elements and a semiconductor device using the same.

【0002】[0002]

【従来の技術】従来、半導体素子を保護するために用い
られる、封止用エポキシ樹脂組成物はエポキシ樹脂、硬
化剤、硬化促進剤及び無機粉末充填材を主成分としてい
る。この場合の無機粉末充填材は成型体の熱膨張率低
減、熱伝導率向上等の目的で使用されているが、近年の
集積回路の集積度アップ、素子の大型化等の影響で、信
頼性を確保したうえで、上記特性のさらなる向上が望ま
れている。この要求に対応するには、それ自体の熱膨張
率が小さい非晶質シリカ等の含有率を上げて成型体の熱
膨張率を低減したり、また、それ自体の熱伝導率が高
い、結晶シリカ粉末、アルミナ粉末等の含有率を上げて
成型体の熱伝導率向上させたりすることが必要になって
きている。しかし、このように無機粉末充填材の含有率
を上げた、高充填の封止用エポキシ樹脂組成物では、成
型時の粘度が上昇し、流動性が低下して、成形性が損な
われ、その結果、半導体装置の耐湿信頼性等の信頼性が
損なわれるるという問題が生じやすい。また、一方では
封止用エポキシ樹脂組成物を成形する場合のバリの発生
という従来からの問題も依然残っている。
2. Description of the Related Art Conventionally, an epoxy resin composition for encapsulation, which is used for protecting a semiconductor element, contains an epoxy resin, a curing agent, a curing accelerator and an inorganic powder filler as main components. In this case, the inorganic powder filler is used for the purpose of reducing the coefficient of thermal expansion of the molded body, improving the thermal conductivity, etc., but due to the recent increase in the degree of integration of integrated circuits and the increase in size of elements, the reliability is improved. It is desired to further improve the above characteristics while ensuring the above. To meet this requirement, the content of amorphous silica or the like, which has a small coefficient of thermal expansion, can be increased to reduce the coefficient of thermal expansion of the molded body, or the thermal conductivity of the crystal itself is high. It has become necessary to increase the content of silica powder, alumina powder, etc. to improve the thermal conductivity of the molded body. However, in this way, the content of the inorganic powder filler is increased, in the highly filled epoxy resin composition for encapsulation, the viscosity at the time of molding increases, the fluidity decreases, the moldability is impaired, As a result, a problem that reliability such as humidity resistance reliability of the semiconductor device is deteriorated is likely to occur. On the other hand, the conventional problem of burrs occurring when molding the encapsulating epoxy resin composition still remains.

【0003】そこで、無機粉末充填材の含有率を上げて
も、エポキシ樹脂組成物の成型時の粘度が上昇しない技
術の開発が必要になってきている。この対応策として
は、無機粉末充填材の特性を改良する方法と粘度の低い
樹脂成分を使用する方法が考えられる。
Therefore, it is necessary to develop a technique in which the viscosity of the epoxy resin composition at the time of molding does not increase even if the content of the inorganic powder filler is increased. As a countermeasure for this, a method of improving the characteristics of the inorganic powder filler and a method of using a resin component having a low viscosity can be considered.

【0004】無機粉末充填材の特性を改良する技術とし
ては、これまでに、球状充填材を使用したり、連続粒度
分布で最密充填状態を与えるフューラー(Fuller)やアン
ドレーゼン(Andreasen) などの経験式を基本に粒度分布
関数のパラメータに着目して粒度分布の幅を広くした
り、無機粉末充填材の圧密性に着目し圧密体積分率の大
きな充填材の使用したりしたものがあるが(具体的に
は、特開平5−170967号)、理論から期待される
ほどの効果は得られていず、いまだ無機粉末充填材の含
有率が高くて、かつ、流動性、成形性が良好に保たれる
エポキシ樹脂組成物は得られていないのが現状である。
As a technique for improving the characteristics of the inorganic powder filler, hitherto, a spherical filler has been used or a filler such as Fuller or Andreasen which gives a close packed state in a continuous particle size distribution. Based on the empirical formula, there are those that focus on the parameters of the particle size distribution function to widen the width of the particle size distribution, or focus on the compactness of the inorganic powder filler and use a filler with a large compaction volume fraction. (Specifically, JP-A-5-170967), the effect as expected from the theory has not been obtained, the content of the inorganic powder filler is still high, and the fluidity and moldability are good. At present, no epoxy resin composition that can be retained has been obtained.

【0005】上記のような理論に基づいて、高充填可能
な無機粉末充填材を得るには、0.1μm以下の超微粒
子の使用がかなりの量必要となってくる。しかし、超微
粒子は一般に非常に凝集性が強く、使用時にはかなりの
凝集体となって存在していることが多い。これら凝集体
の影響により、無機粉末充填材の充填性の向上は期待さ
れるほどは得られず、またエポキシ樹脂組成物をトラン
スファー成形する際の金型内での狭部充填性及び成形性
が損なわれるという問題も生じている。一方、バリ特性
についても微粒子等の添加により組成物のチクソ性を向
上させる等の手法が試みられてきたが、流動性の低下も
合わせて生じてしまい、無機粉末充填材が高充填され
て、かつ、バリ特性、流動性とも良好な組成物は得られ
ていない。
Based on the above theory, a considerable amount of ultrafine particles of 0.1 μm or less must be used in order to obtain a highly-fillable inorganic powder filler. However, ultrafine particles generally have a very strong cohesive property, and often exist as a considerable aggregate when used. Due to the influence of these agglomerates, the improvement of the filling property of the inorganic powder filler is not obtained as expected, and the narrow part filling property and moldability in the mold at the time of transfer molding of the epoxy resin composition are not improved. There is also the problem of being damaged. On the other hand, as for the burr characteristics, methods such as improving the thixotropy of the composition by adding fine particles have been attempted, but a decrease in fluidity also occurs, and the inorganic powder filler is highly filled, Moreover, a composition having good burr characteristics and fluidity has not been obtained.

【0006】[0006]

【発明が解決しようとする課題】上記の事情に鑑み、本
発明が解決しようとする課題は、無機粉末充填材の含有
率を上げた、高充填の封止用エポキシ樹脂組成物におけ
る、成型時の粘度が上昇し、流動性が低下して、成形性
が損なわれるという問題を解決することである。すなわ
ち、本発明は、無機粉末充填材の含有率が高く、かつ、
流動性、成形性が良好に保たれている封止用エポキシ樹
脂組成物を提供することを目的とする。また、この高充
填化された封止用エポキシ樹脂組成物を用いることによ
り、耐湿信頼性が確保され、かつ、高充填化による性能
改善がされた半導体装置を提供することを目的とする。
In view of the above circumstances, the problem to be solved by the present invention is to provide a highly-filled epoxy resin composition for encapsulation in which the content of the inorganic powder filler is increased during molding. It is to solve the problem that the viscosity increases, the fluidity decreases, and the moldability is impaired. That is, the present invention has a high content of the inorganic powder filler, and,
An object of the present invention is to provide an epoxy resin composition for encapsulation, which has excellent fluidity and moldability. Further, another object of the present invention is to provide a semiconductor device in which moisture resistance reliability is ensured by using the highly filled epoxy resin composition for encapsulation and the performance is improved by the high filling.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に係る
封止用エポキシ樹脂組成物は、エポキシ樹脂、硬化剤、
硬化促進剤及び無機粉末充填材を含んでなる封止用エポ
キシ樹脂組成物において、無機粉末充填材として、圧縮
成形前の無機粉末充填材の平均粒径が圧縮成型後も保持
される圧力(P)で、無機粉末充填材を圧縮成型して得
られる成型体の見かけ体積に占める無機粉末充填材の体
積分率(φ)が78%以上であり、かつ、圧縮成形前の
無機粉末充填材の平均粒径が圧縮成型後も保持される圧
力(P)の常用対数とその圧力(P)での前記体積分率
(φ)の関係を近似する下記式の勾配(K)が1〜5
である無機粉末充填材を、真比重換算で封止用エポキシ
樹脂組成物全体に対して75体積%以上含んでいること
を特徴としている。
The epoxy resin composition for encapsulation according to claim 1 of the present invention is an epoxy resin, a curing agent,
In a sealing epoxy resin composition containing a curing accelerator and an inorganic powder filler, as the inorganic powder filler, the average particle size of the inorganic powder filler before compression molding is maintained at a pressure (P ), The volume fraction (φ) of the inorganic powder filler in the apparent volume of the molded body obtained by compression molding the inorganic powder filler is 78% or more, and the inorganic powder filler before compression molding The gradient (K) of the following formula that approximates the relationship between the common logarithm of the pressure (P) whose average particle size is retained even after compression molding and the volume fraction (φ) at that pressure (P) is 1 to 5
The inorganic powder filler is contained in an amount of 75% by volume or more in terms of true specific gravity with respect to the entire encapsulating epoxy resin composition.

【0008】 φ=KlogP+α −−−−−− (式中のαは定数を表す。) 本発明の請求項2に係る封止用エポキシ樹脂組成物は、
請求項1記載の封止用エポキシ樹脂組成物において、無
機粉末充填材が、前記式の勾配(K)が3〜5である
無機粉末充填材であることを特徴としている。
Φ = KlogP + α −−−−−− (α in the formula represents a constant.) The epoxy resin composition for encapsulation according to claim 2 of the present invention,
The epoxy resin composition for encapsulation according to claim 1, wherein the inorganic powder filler is an inorganic powder filler having a gradient (K) of the formula of 3 to 5.

【0009】本発明の請求項3に係る封止用エポキシ樹
脂組成物は、請求項1または請求項2記載の封止用エポ
キシ樹脂組成物において、無機粉末充填材が、非晶質シ
リカ、結晶シリカ、アルミナからなる群から選ばれた少
なくとも1種の材質の無機粉末を含むことを特徴として
いる。
The epoxy resin composition for encapsulation according to claim 3 of the present invention is the epoxy resin composition for encapsulation according to claim 1 or 2, wherein the inorganic powder filler is amorphous silica or crystal. It is characterized by containing an inorganic powder of at least one material selected from the group consisting of silica and alumina.

【0010】本発明の請求項4に係る封止用エポキシ樹
脂組成物は、請求項1、請求項2または請求項3記載の
封止用エポキシ樹脂組成物において、エポキシ樹脂と硬
化剤のみを配合した樹脂成分の150℃における粘度が
3ポイズ以下であることを特徴としている。
An encapsulating epoxy resin composition according to claim 4 of the present invention is the encapsulating epoxy resin composition according to claim 1, claim 2 or claim 3, in which only an epoxy resin and a curing agent are blended. The viscosity of the resin component at 150 ° C. is 3 poise or less.

【0011】本発明の請求項5に係る半導体装置は、請
求項1、請求項2、請求項3または請求項4記載の封止
用エポキシ樹脂組成物を用いて、リードフレームに搭載
された半導体素子を封止していることを特徴としてい
る。
A semiconductor device according to a fifth aspect of the present invention is a semiconductor device mounted on a lead frame using the epoxy resin composition for sealing according to the first, second, third or fourth aspect. The feature is that the element is sealed.

【0012】以下、本発明を詳しく説明する。本発明に
おける無機粉末充填材の圧縮成形については、無機粉末
充填材のみを圧縮成形するものであって、その圧力
(P)は圧縮成形前の無機粉末充填材の平均粒子径が圧
縮成形後も保持される圧力である。圧力が高すぎると、
無機粉末充填材の粒子が破壊され、圧縮成形後の無機粉
末充填材の平均粒子径は圧縮成形前の平均粒子径が保持
されなくなり、圧縮成形して得られる成形体中の無機粉
末充填材はスラリー(エポキシ樹脂組成物の溶融状態)
中に含有させる無機粉末充填材とは異なる状態になる。
そして、圧縮成形の時の圧力が極端に高い場合には、粒
子が破壊されて、得られる成形体中には空隙が含まれな
い状態、つまり成形体の見かけ体積に占める無機粉末充
填材の体積分率(φ)が100%に漸近するようにな
る。従って、本発明ではスラリー中に含有させる無機粉
末充填材と同じ状態で、圧縮成形して得られる成形体中
に無機粉末充填材が存在するように、圧縮成形時の圧力
(P)は圧縮成形前の無機粉末充填材の平均粒子径が圧
縮成形後も保持される圧力範囲で行うように限定してい
る。
The present invention will be described in detail below. Regarding the compression molding of the inorganic powder filler in the present invention, only the inorganic powder filler is compression molded, and the pressure (P) is such that the average particle diameter of the inorganic powder filler before compression molding is also after the compression molding. This is the pressure that is maintained. If the pressure is too high,
The particles of the inorganic powder filler are destroyed, the average particle size of the inorganic powder filler after compression molding does not hold the average particle size before compression molding, and the inorganic powder filler in the molded product obtained by compression molding is Slurry (molten state of epoxy resin composition)
The state is different from that of the inorganic powder filler contained therein.
And, when the pressure at the time of compression molding is extremely high, the particles are broken, and the obtained molded body does not contain voids, that is, the volume of the inorganic powder filler in the apparent volume of the molded body. The fraction (φ) becomes asymptotic to 100%. Therefore, in the present invention, the pressure (P) during compression molding is such that the inorganic powder filler is present in the molded body obtained by compression molding in the same state as the inorganic powder filler contained in the slurry. The average particle diameter of the previous inorganic powder filler is limited to the range of pressure that can be maintained even after compression molding.

【0013】次に、本発明における、無機粉末充填材を
圧縮成形して得られる成形体の見かけ体積に占める無機
粉末充填材の体積分率(φ)について説明する。無機粉
末充填材として使用するn種(nは1以上の整数)の無
機粉末のそれぞれの真比重をdi 、各無機粉末のそれぞ
れの配合重量をWi (i は1〜nの中の整数)とした場
合の無機粉末充填材全体の真比重dは下記式(A)で算
出される値となる。
Next, the volume fraction (φ) of the inorganic powder filler in the apparent volume of the molded product obtained by compression molding the inorganic powder filler in the present invention will be described. The true specific gravity of each of n kinds of inorganic powders (n is an integer of 1 or more) used as the inorganic powder filler is d i , and the blending weight of each inorganic powder is W i (i is an integer from 1 to n). The true specific gravity d of the whole inorganic powder filler in the case of) is a value calculated by the following formula (A).

【0014】 d=ΣWi /Σ(Wi /di ) −−−−(A) そして、圧縮成形して得られる成形体の見かけ体積に占
める無機粉末充填材の体積分率φ(%)は、無機粉末充
填材の重量をW(g)とし、これを圧縮して得られる成
型体の見かけ体積をV(cc)とした場合、下記式
(B)で算出される。
D = ΣW i / Σ (W i / d i )-(A) Then, the volume fraction φ (%) of the inorganic powder filler in the apparent volume of the compact obtained by compression molding. Is calculated by the following formula (B), where W (g) is the weight of the inorganic powder filler and V (cc) is the apparent volume of the molded body obtained by compressing the inorganic powder filler.

【0015】 φ=100(W/d)/V −−−−(B) そして、圧縮成形前の無機粉末充填材の平均粒子径が圧
縮成形後も保持される最大圧力(Pmax)未満で成型
した成型体の無機粉末充填材の体積分率φは前記の最大
圧力(Pmax)で成型した場合の成型体の無機粉末充
填材の体積分率(φmax)より常に小さい値となる。
Φ = 100 (W / d) / V --- (B) And, the average particle diameter of the inorganic powder filler before compression molding is less than the maximum pressure (Pmax) that is retained even after compression molding. The volume fraction φ of the inorganic powder filler of the molded body is always smaller than the volume fraction (φmax) of the inorganic powder filler of the molded body when molded at the maximum pressure (Pmax).

【0016】本発明では、上記の計算式(B)を用いて
得られる、成形体の見かけ体積に占める無機粉末充填材
の体積分率φ(%)が78%以上であることが重要であ
る。なぜならφが78%未満である無機粉末充填材を用
いた場合には、無機粉末充填材の含有率が高いエポキシ
樹脂組成物の溶融粘度が上昇し、流動性に問題が生じる
からである。
In the present invention, it is important that the volume fraction φ (%) of the inorganic powder filler in the apparent volume of the molded body, which is obtained by using the above calculation formula (B), is 78% or more. . This is because when an inorganic powder filler having φ of less than 78% is used, the melt viscosity of the epoxy resin composition having a high content of the inorganic powder filler is increased, which causes a problem in fluidity.

【0017】また、圧縮成形前の無機粉末充填材の平均
粒径が圧縮成型後も保持される圧力(P)の常用対数と
その圧力(P)での前記体積分率(φ)の関係を調べた
ところ、良好な直線関係が得られることが判明した。こ
の直線関係を示す近似式は前記式で示され、本発明で
はこの式の勾配(K)が1〜5であることが重要であ
る。なぜならば、勾配(K)が5を越えると、無機粉末
充填材の含有率が高いエポキシ樹脂組成物の溶融粘度が
上昇し、流動性に問題が生じ、また、勾配(K)が1未
満の無機粉末充填材は実用的に入手が困難なためであ
る。この式の勾配(K)のより好ましい範囲は3〜5
である。勾配(K)が3未満の場合には、流動性、成形
性については良好なエポキシ樹脂組成物が得られるが、
エポキシ樹脂組成物を成形する場合に金型に生じるバリ
が増大するという新たな問題が生じる。なお、式を求
めるための圧力範囲はできるだけ広い範囲が好ましい
が、具体的には60〜300kgf/cm2 程度の圧力
範囲で求めればよい。
Further, the relationship between the common logarithm of the pressure (P) at which the average particle diameter of the inorganic powder filler before compression molding is maintained even after compression molding and the volume fraction (φ) at that pressure (P) is shown. Upon investigation, it was found that a good linear relationship was obtained. An approximate expression showing this linear relationship is shown by the above expression, and in the present invention, it is important that the gradient (K) of this expression is 1 to 5. This is because when the gradient (K) exceeds 5, the melt viscosity of the epoxy resin composition having a high content of the inorganic powder filler increases, which causes a problem in fluidity, and when the gradient (K) is less than 1. This is because it is practically difficult to obtain the inorganic powder filler. The more preferable range of the gradient (K) in this equation is 3-5.
Is. When the gradient (K) is less than 3, an epoxy resin composition having good fluidity and moldability can be obtained.
A new problem arises in that when molding the epoxy resin composition, burrs generated in the mold increase. The pressure range for obtaining the equation is preferably as wide as possible, but specifically, it may be obtained in the pressure range of about 60 to 300 kgf / cm 2 .

【0018】そして、本発明は高充填化されたエポキシ
樹脂組成物における問題点を解決することを課題にして
おり、この高充填化されたエポキシ樹脂組成物とは、具
体的には無機粉末充填材が真比重換算でエポキシ樹脂組
成物全体に対して75体積%以上含まれているもののこ
とである。なぜなら、75体積%未満であると、得られ
る成型体の低熱膨張率化や高熱伝導率化等の高充填化効
果が充分に得られないからである。
The present invention is intended to solve the problems in the highly filled epoxy resin composition, and the highly filled epoxy resin composition is specifically an inorganic powder filling. The material contains 75% by volume or more of the total epoxy resin composition in terms of true specific gravity. This is because if it is less than 75% by volume, the effect of high filling such as low thermal expansion coefficient and high thermal conductivity of the obtained molded article cannot be sufficiently obtained.

【0019】本発明で用いる無機粉末充填材の材質とし
ては、特に限定はないが、非晶質シリカ、結晶シリカ、
アルミナ、窒化ケイ素、窒化アルミ、窒化ホウ素等が例
示できる。エポキシ樹脂組成物の成形体の熱膨張率を低
下させるためには、非晶質シリカを使用することが望ま
しく、また、熱伝導率を向上させるには結晶シリカまた
はアルミナを使用することが望ましい。なお、高熱伝導
率化を充分に達成するには、結晶シリカまたはアルミナ
が無機粉末充填材の全体に対し50体積%以上含まれて
いることが望ましい。
The material of the inorganic powder filler used in the present invention is not particularly limited, but amorphous silica, crystalline silica,
Alumina, silicon nitride, aluminum nitride, boron nitride and the like can be exemplified. In order to reduce the coefficient of thermal expansion of the molded product of the epoxy resin composition, it is desirable to use amorphous silica, and to improve the thermal conductivity, it is desirable to use crystalline silica or alumina. In order to sufficiently attain high thermal conductivity, it is desirable that crystalline silica or alumina is contained in an amount of 50% by volume or more based on the whole inorganic powder filler.

【0020】本発明で用いるエポキシ樹脂としては、特
に限定はないが、150℃における粘度が低粘度のもの
が好ましく、例えば、樹脂の基本骨格にビフェニル骨
格、ナフタレン骨格やp−tブチルベンゼン骨格を有す
る2官能型または3官能型のエポキシ樹脂を使用するこ
とができる。
The epoxy resin used in the present invention is not particularly limited, but one having a low viscosity at 150 ° C. is preferable. For example, a biphenyl skeleton, a naphthalene skeleton or a pt-butylbenzene skeleton is added to the basic skeleton of the resin. The bifunctional type or trifunctional type epoxy resin which has can be used.

【0021】本発明で用いる硬化剤については、特に限
定はなく、フェノール系硬化剤、アミン系硬化剤、酸無
水物系硬化剤等を使用できるが、吸湿率が小さくて信頼
性の高いエポキシ樹脂組成物とするにはフェノール系水
酸基を分子内に2個以上含み、150℃における粘度が
低粘度であるフェノール系硬化剤を使用することが望ま
しい。そして、無機粉末充填材の含有率が真比重換算で
75体積%以上と高い本発明のエポキシ樹脂組成物の溶
融粘度を低く保持し、流動性を確保するには、エポキシ
樹脂と硬化剤のみを配合した樹脂成分の150℃におけ
る粘度が3ポイズ以下であることが望ましい。
The curing agent used in the present invention is not particularly limited, and a phenol type curing agent, an amine type curing agent, an acid anhydride type curing agent or the like can be used, but an epoxy resin having a low moisture absorption rate and high reliability. In order to form a composition, it is desirable to use a phenolic curing agent containing two or more phenolic hydroxyl groups in the molecule and having a low viscosity at 150 ° C. In order to maintain low melt viscosity and fluidity of the epoxy resin composition of the present invention having a high content of the inorganic powder filler of 75 vol% or more in terms of true specific gravity, only the epoxy resin and the curing agent are required. It is desirable that the viscosity of the blended resin component at 150 ° C. be 3 poises or less.

【0022】また、本発明のエポキシ樹脂組成物に使用
する硬化促進剤としては、例えばトリフェニルホスフィ
ン及びその誘導体、イミダゾール及びその誘導体等が挙
げられる。なお、本発明のエポキシ樹脂組成物には上記
の成分の他に必要に応じて離型剤、難燃剤、顔料、カッ
プリング剤等を添加するようにしてもかまわない。そし
て、カップリング剤を添加する場合で、予め無機充填材
のみをカップリング剤で表面処理したものを使用するこ
ともできる。
Examples of the curing accelerator used in the epoxy resin composition of the present invention include triphenylphosphine and its derivatives, imidazole and its derivatives, and the like. In addition to the above components, a releasing agent, a flame retardant, a pigment, a coupling agent, etc. may be added to the epoxy resin composition of the present invention, if necessary. Then, in the case of adding the coupling agent, it is also possible to use the one in which only the inorganic filler is surface-treated in advance with the coupling agent.

【0023】本発明の半導体装置は請求項1、請求項
2、請求項3または請求項4記載の封止用エポキシ樹脂
組成物を用いて、リードフレームに搭載された半導体素
子を封止しているものであり、無機粉末充填材の含有率
が真比重換算で75体積%以上と高く、かつ、流動性の
良好な封止用エポキシ樹脂組成物を用いているので、成
型体中にボイドが生じにくく、耐湿信頼性の高い半導体
装置となる。
The semiconductor device of the present invention is obtained by encapsulating a semiconductor element mounted on a lead frame using the encapsulating epoxy resin composition according to claim 1, claim 2, claim 3 or claim 4. Since the content of the inorganic powder filler is as high as 75% by volume or more in terms of true specific gravity and the epoxy resin composition for sealing having good fluidity is used, voids are formed in the molded body. A semiconductor device that is hard to generate and has high moisture resistance reliability.

【0024】[0024]

【作用】無機粉末充填材を圧縮成形して得られる成形体
における無機粉末充填材の密な充填状態は、流動可能な
状態にある封止用エポキシ樹脂組成物中の無機粉末充填
材の充填状態に近似している。従って、成形体における
無機粉末充填材の体積分率(φ)が大きいということ
は、封止用エポキシ樹脂組成物中の無機粉末充填材の含
有率を高くできる働きをする。
[Function] The dense packing state of the inorganic powder filler in the molded body obtained by compression molding of the inorganic powder filler is the filling state of the inorganic powder filler in the encapsulating epoxy resin composition in a fluid state. Is close to. Therefore, the fact that the volume fraction (φ) of the inorganic powder filler in the molded product is large serves to increase the content of the inorganic powder filler in the encapsulating epoxy resin composition.

【0025】そして、成形体における無機粉末充填材の
体積分率(φ)が大きいということは、成型体中の無機
粉末充填材の粒子間に残っている空隙が少ないことを意
味している。この空隙部分を液状成分で埋めた複合材を
考えると、液状成分の体積が空隙部分の体積と等しいか
又は小さい場合には、粒子同士の接触により複合材全体
の変形が妨げられ、全く流動しないものとなり、一方、
液状成分の体積が空隙部分の体積よりも大きい場合に
は、粒子は液状成分により隔てられるので、粒子はある
程度自由に動くことが可能であり、複合材全体としては
変形可能、つまり流動可能な状態となる。従って、無機
粉末充填材の含有率が等しい封止用エポキシ樹脂組成物
では、φが大きい無機粉末充填材ものを使用すること
は、封止用エポキシ樹脂組成物の流動性を良くし、流動
状態の粘度を低くする働きをする。従って、φが78%
以上の無機粉末充填材を真比重換算で75体積%以上含
む封止用エポキシ樹脂組成物は、高充填化されていて、
かつ、流動性も良好に保たれるものとなる。
The fact that the volume fraction (φ) of the inorganic powder filler in the molded product is large means that there are few voids remaining between the particles of the inorganic powder filler in the molded product. Considering a composite material in which the void portion is filled with a liquid component, when the volume of the liquid component is equal to or smaller than the volume of the void portion, the deformation of the entire composite material is hindered by the contact between particles, and the fluid does not flow at all. While, on the other hand,
When the volume of the liquid component is larger than the volume of the void portion, the particles are separated by the liquid component, so that the particles can move freely to some extent, and the composite as a whole can be deformed, that is, in a flowable state. Becomes Therefore, in the encapsulating epoxy resin composition having the same content of the inorganic powder filler, the use of the inorganic powder filler having a large φ improves the fluidity of the encapsulating epoxy resin composition and improves the fluidity. Acts to lower the viscosity of. Therefore, φ is 78%
The encapsulating epoxy resin composition containing 75% by volume or more of the above inorganic powder filler in terms of true specific gravity is highly filled,
At the same time, the fluidity is also kept good.

【0026】また、無機粉末充填材の成形体における無
機粉末充填材の体積分率(φ)に対する圧縮成形時の圧
力(P)の影響は、前記近似式で表される。この近似
式の勾配(K)が小さいということは、無機粉末充填
材に加わる圧力が大きくなってもφの増加が少ないこと
である。このことは、無機粉末充填材に圧力をかけてい
ない状態から、圧縮成形前の無機粉末充填材の平均粒径
が圧縮成型後も保持される最大圧力(Pmax)まで圧
縮成形する過程に着目すると、Pmaxでの体積分率
(φmax)に到達するまでの必要な仕事量が少ないと
言える。逆に、近似式の勾配(K)が大きいというこ
とは、Pmaxでの体積分率(φmax)に到達するま
でに多くの仕事量が必要であることを意味する。更に別
の捕らえ方をすれば、近似式の勾配(K)が小さな無
機粉末充填材は少ない仕事量で容易に粉体層内部の変形
が生じて高充填状態になり、勾配(K)が大きな無機粉
末充填材は少ない仕事量では、粉体層内部の変形が生じ
にくく高充填状態になりにくいということになる。勾配
(K)が大きな無機粉末充填材としては、粒子間付着力
が強く解砕するのに大きな仕事量を必要とする凝集粒子
等が例示される。
The influence of the pressure (P) at the time of compression molding on the volume fraction (φ) of the inorganic powder filler in the molded body of the inorganic powder filler is expressed by the above-mentioned approximate expression. The fact that the gradient (K) of this approximate expression is small means that the increase of φ is small even if the pressure applied to the inorganic powder filler is increased. This means that when the pressure is applied to the inorganic powder filler, the process of compression molding from the state in which the average particle size of the inorganic powder filler before compression molding is maintained to the maximum pressure (Pmax) that is maintained even after compression molding. , Pmax requires a small amount of work to reach the volume fraction (φmax). On the contrary, the fact that the gradient (K) of the approximate expression is large means that a large amount of work is required to reach the volume fraction (φmax) at Pmax. In another way, the inorganic powder filler with a small gradient (K) in the approximate expression is easily deformed inside the powder layer with a small amount of work to be in a highly packed state, and the gradient (K) is large. With a small amount of work, the inorganic powder filler is less likely to be deformed inside the powder layer and is unlikely to be in a highly filled state. Examples of the inorganic powder filler having a large gradient (K) include agglomerated particles which have a strong inter-particle adhesive force and require a large amount of work to disintegrate.

【0027】エポキシ樹脂組成物のスラリーを作製する
には、無機粉末充填材と液状成分を混合し、無機粉末充
填材を分散しなければならず、無機粉末充填材の特性以
外の諸条件が同じならば、このスラリー作製過程での無
機粉末充填材が受ける仕事量は同程度である。無機粉末
充填材が受ける仕事量が同程度であれば、Kの小さな無
機粉末充填材は、Kの大きいものに比べて高充填状態に
なりやすく、スラリーの粘度は低くなる。その結果Kの
小さな無機粉末充填材を使用したものの流動性は向上
し、チクソ性も低下する。それに対し、Kの大きい無機
粉末充填材では凝集粒子が残存し、充填性は低い。その
結果Kの大きい無機粉末充填材を使用したものの流動性
は低下し、チクソ性も増大する。以上のことから、エポ
キシ樹脂組成物の流動性を良好に保つには、Kが5以下
である無機粉末充填材を使用することが重要である。
In order to prepare a slurry of the epoxy resin composition, it is necessary to mix the inorganic powder filler and the liquid component and disperse the inorganic powder filler, and the conditions other than the characteristics of the inorganic powder filler are the same. Then, the amount of work received by the inorganic powder filler during the slurry preparation process is about the same. If the amount of work received by the inorganic powder filler is about the same, the inorganic powder filler having a small K is more likely to be in a highly filled state and the viscosity of the slurry is lower than that of a filler having a large K. As a result, the flowability of the inorganic powder filler having a small K is improved and the thixotropy is lowered. On the other hand, in the case of the inorganic powder filler having a large K, aggregated particles remain and the filling property is low. As a result, the flowability of the inorganic powder filler having a large K is lowered and the thixotropy is also increased. From the above, in order to keep the fluidity of the epoxy resin composition good, it is important to use an inorganic powder filler having K of 5 or less.

【0028】一方でエポキシ樹脂組成物を成形する際の
バリ特性を考えた場合、バリはエポキシ樹脂組成物のチ
クソ性が高いと低減する性質を有する。よって、バリ特
性を良好に維持するには組成物にある程度のチクソ性を
付与する必要が生じる。近似式の勾配(K)が小さい
無機粉末充填材ほど、エポキシ樹脂組成物のチクソ性は
低下するので、式の勾配(K)を3〜5である無機粉
末充填材を使用することにより、バリ特性も良好に維持
される。
On the other hand, considering the burr characteristics when molding the epoxy resin composition, the burr has a property of reducing when the thixotropy of the epoxy resin composition is high. Therefore, it is necessary to impart a certain degree of thixotropy to the composition in order to maintain good burr characteristics. Since the thixotropy of the epoxy resin composition decreases as the inorganic powder filler having a smaller approximate expression gradient (K), the variability is improved by using an inorganic powder filler having an expression gradient (K) of 3 to 5. The characteristics are also maintained well.

【0029】また、非晶質シリカを無機粉末充填材に含
有させることは、エポキシ樹脂組成物の成型体の低熱膨
張率化の働きをし、結晶シリカまたはアルミナを無機粉
末充填材に含有させることは、エポキシ樹脂組成物の成
型体の高熱伝導率化の働きをする。
Incorporation of amorphous silica into the inorganic powder filler serves to lower the coefficient of thermal expansion of the epoxy resin composition molding, and crystalline silica or alumina is incorporated into the inorganic powder filler. Has the function of increasing the thermal conductivity of the molded body of the epoxy resin composition.

【0030】[0030]

【実施例】以下、本発明を実施例に基づき説明する。勿
論、本発明は下記の実施例に限定されるものではない。
EXAMPLES The present invention will be described below based on examples. Of course, the present invention is not limited to the examples below.

【0031】下記の各実施例及び各比較例では、エポキ
シ樹脂は、2官能ビフェニル型エポキシ樹脂である、油
化シェルエポキシ(株)製の品番YX−4000H(エ
ポキシ当量190、150℃での溶融粘度0.2ポイ
ズ、下記の表4、表5ではYXと表示)またはp−t−
ブチルベンゼン型エポキシ樹脂である、東都化成(株)
製の品番ZX−1257(エポキシ当量172、150
℃での溶融粘度0.04ポイズ、下記の表4ではZXと
表示)を使用し、硬化剤はナフトール・フェノール重合
体樹脂である日本化薬(株)製の品番OCN−7000
(水酸基当量172、150℃での溶融粘度8ポイズ)
を使用し、硬化促進剤としては北興化学工業(株)製の
トリフェニルホスフィン(以下TPPと略す)を使用
し、離型剤としては天然カルナバワックスを使用し、カ
ップリング剤としてはエポキシシラン系カップリング剤
である、日本ユニカー(株)製の品番A−187を使用
し、難燃剤としては三菱マテリアル(株)製の三酸化二
アンチモン(品番Sb2 3 −LS)を使用し、顔料と
しては三菱マテリアル(株)製のカーボンブラック(品
番750−B)を使用した。
In each of the following examples and comparative examples, the epoxy resin is a bifunctional biphenyl type epoxy resin, manufactured by Yuka Shell Epoxy Co., Ltd., product number YX-4000H (epoxy equivalent 190, melting at 150 ° C.). Viscosity 0.2 poise, indicated as YX in Tables 4 and 5 below) or pt-
Butylbenzene type epoxy resin, Tohto Kasei Co., Ltd.
Product number ZX-1257 (epoxy equivalent 172,150
Melt viscosity at 0 ° C. is 0.04 poise, indicated as ZX in Table 4 below), and the curing agent is a naphthol-phenol polymer resin manufactured by Nippon Kayaku Co., Ltd., product number OCN-7000.
(Hydroxyl equivalent 172, melt viscosity at 150 ° C 8 poise)
Triphenylphosphine (hereinafter abbreviated as TPP) manufactured by Hokuko Kagaku Kogyo Co., Ltd. is used as a curing accelerator, natural carnauba wax is used as a releasing agent, and an epoxysilane-based coupling agent is used. As a coupling agent, product number A-187 manufactured by Nippon Unicar Co., Ltd. is used, and as a flame retardant, diantimony trioxide (product number Sb 2 O 3 -LS) manufactured by Mitsubishi Materials Co., Ltd. is used. As the material, carbon black (product number 750-B) manufactured by Mitsubishi Materials Corp. was used.

【0032】また、下記の各実施例及び各比較例では、
無機粉末として下記の表1に示す無機粉末を使用した。
In each of the following Examples and Comparative Examples,
The inorganic powder shown in Table 1 below was used as the inorganic powder.

【0033】[0033]

【表1】 [Table 1]

【0034】以下の実施例及び比較例では、無機粉末充
填材の圧縮成形は60kgf/cm 2 、120kgf/
cm2 、180kgf/cm2 、240kgf/c
2 、300kgf/cm2 と圧力水準を変えて単軸加
圧により行って、円筒状の成型体を得た。圧力が300
kgf/cm2 のときの成形体を解砕して得られる粉末
の平均粒径を測定した結果、成形に供した粉末の平均粒
径の測定結果と同じであったので、この圧力までは粒子
の破壊は生じていないと言える。なお、以下の実施例及
び比較例での、成形体の見かけ体積に占める無機粉末充
填材の体積分率(φ)は、成型体の直径と厚みから算出
される成型体の見かけ体積Vと重量W及び無機粉末充填
材の真比重dから前述の式(B)で算出した値である。
そして、以下では、圧力300kgf/cm2 で測定し
たφをφ300 と記している。
In the following examples and comparative examples, the inorganic powder was charged.
Compression molding of filler is 60 kgf / cm 2, 120kgf /
cm2, 180kgf / cm2, 240kgf / c
m2, 300 kgf / cm2And single-axis application by changing the pressure level
This was carried out by pressure to obtain a cylindrical molded body. Pressure is 300
kgf / cm2Powder obtained by crushing the molded product at
As a result of measuring the average particle size of
Since it was the same as the diameter measurement result, particles up to this pressure
It can be said that no destruction has occurred. The following examples and
In the comparative example and the inorganic powder filling in the apparent volume of the compact,
The volume fraction (φ) of the filler is calculated from the diameter and thickness of the molded body
Apparent volume V and weight W of molded product and inorganic powder filling
It is a value calculated by the above-mentioned formula (B) from the true specific gravity d of the material.
And in the following, the pressure is 300 kgf / cm.2Measured with
Φ to φ300Is written.

【0035】また、圧縮成形前の無機粉末充填材の平均
粒径が圧縮成型後も保持される圧力(P)の常用対数と
その圧力(P)での前記体積分率(φ)の関係を近似す
る式の勾配(K)は、60kgf/cm2 、120k
gf/cm2 、180kgf/cm2 、240kgf/
cm2 、300kgf/cm2 の各圧力(P)で測定し
た各φを、横軸をPの常用対数、縦軸をφとして図上に
プロットし、最小自乗法により直線の傾きを算出して求
めた。この勾配(K)を求めた図の代表例として、図1
に実施例1で勾配(K)を求めた図を示す。図1中には
測定したデータをプロットした点及び、それらのデータ
を用いて最小自乗法により算出した直線を示していて、
この直線の傾きがKである。
The relationship between the common logarithm of the pressure (P) at which the average particle diameter of the inorganic powder filler before compression molding is maintained even after compression molding and the volume fraction (φ) at that pressure (P) is shown. The gradient (K) of the approximate expression is 60 kgf / cm 2 , 120 k
gf / cm 2 , 180 kgf / cm 2 , 240 kgf /
Each φ measured at each pressure (P) of cm 2 and 300 kgf / cm 2 is plotted on the diagram with the horizontal axis being the common logarithm of P and the vertical axis being φ, and the slope of the straight line is calculated by the least square method. I asked. As a representative example of the figure in which the gradient (K) is obtained, FIG.
The figure which calculated | required the gradient (K) in Example 1 is shown in FIG. In FIG. 1, the plotted points of the measured data and the straight line calculated by the least square method using these data are shown.
The slope of this straight line is K.

【0036】(実施例1〜実施例8及び比較例1〜比較
例7)表1に示すシリカ粉末S1、S2、S3,S4及
びアルミナ粉末A1を表2、表3に示す配合量で混合
し、得られた混合粉末(無機粉末充填材)を圧縮成形し
て、φ300 と勾配(K)を測定し、得られた結果を表
2、表3に示した。
(Examples 1 to 8 and Comparative Examples 1 to 7) Silica powders S1, S2, S3, S4 and alumina powder A1 shown in Table 1 were mixed at the compounding amounts shown in Tables 2 and 3. The obtained mixed powder (inorganic powder filler) was compression-molded, φ 300 and the gradient (K) were measured, and the obtained results are shown in Tables 2 and 3.

【0037】次いで、表4、表5に示す配合量の混合粉
末(圧縮成形していないもの)に対して、カップリング
剤を表4、表5に示す処理量だけ噴霧して混合し、混合
粉末の表面処理をした。次に、表面処理した混合粉末、
エポキシ樹脂、硬化剤、硬化促進剤、難燃剤、離型剤及
び顔料を表4、表5に示す配合量だけ配合し、得られた
配合物を90℃のミキシングロールで6分間混練後、室
温まで冷却し、粉砕してエポキシ樹脂組成物(成形材
料)を得た。
Next, the coupling agent was sprayed and mixed with the mixed powders having the blending amounts shown in Tables 4 and 5 (those not subjected to compression molding) by the treatment amounts shown in Tables 4 and 5, and mixed. The powder was surface-treated. Next, the surface-treated mixed powder,
The epoxy resin, the curing agent, the curing accelerator, the flame retardant, the release agent and the pigment were mixed in the amounts shown in Tables 4 and 5, and the resulting mixture was kneaded with a mixing roll at 90 ° C. for 6 minutes and then at room temperature. The mixture was cooled to 0 and pulverized to obtain an epoxy resin composition (molding material).

【0038】得られたエポキシ樹脂組成物及びその成型
体の性能評価ならびに各エポキシ樹脂組成物を使用して
作製した半導体装置の性能評価は下記の方法で行い、評
価結果を表6、表7に示した。
The performance evaluation of the obtained epoxy resin composition and its molded product and the performance evaluation of the semiconductor device produced by using each epoxy resin composition were carried out by the following method, and the evaluation results are shown in Tables 6 and 7. Indicated.

【0039】(エポキシ樹脂組成物のゲルタイム):
(株)オリエンテック製キュラストメーターV型を用
い、175℃で測定した。 (エポキシ樹脂組成物の溶融粘度):(株)島津製作所
製フローテスターCFT500A型を用い、温度175
℃、荷重10kgf、ノズルサイズ1mm(直径)×1
0mmで、最低溶融粘度を求めた。 (エポキシ樹脂組成物のスパイラルフロー):EMMI
標準に準拠し、スパイラルフロー専用金型を用い、17
5℃のトランスファー成型時の試料の流れ長さを測定し
た。 (エポキシ樹脂組成物のバリ特性):バリフロー測定用
の専用金型で175℃、90秒のトランスファー成形を
行い、前記金型に備わる厚みが20μmのスリットでの
試料の流れ長さを測定した。
(Gel time of epoxy resin composition):
It was measured at 175 ° C. using a Curalastometer V type manufactured by Orientec Co., Ltd. (Melt viscosity of epoxy resin composition): Flow tester CFT500A type manufactured by Shimadzu Corporation was used, and temperature was 175.
° C, load 10 kgf, nozzle size 1 mm (diameter) x 1
The minimum melt viscosity was determined at 0 mm. (Spiral flow of epoxy resin composition): EMMI
In compliance with the standard, using a spiral flow dedicated mold, 17
The flow length of the sample during transfer molding at 5 ° C was measured. (Burr characteristics of epoxy resin composition): Transfer molding was performed at 175 ° C. for 90 seconds with a dedicated mold for measuring variflow, and the flow length of the sample was measured at a slit having a thickness of 20 μm provided in the mold.

【0040】(成型体の熱膨張率):JISテストピー
ス作製用の専用金型で175℃、90秒のトランスファ
ー成形を行った後、175℃で6時間のアフターキュア
ーを行ってテストピースを作製した。このテストピース
について、TMA装置(理学電機製)を使用し、1gの
圧縮荷重下で、5℃/分の昇温速度で、50〜100℃
の温度域での熱膨張率(α1 )を測定した。 (成型体の熱伝導率):専用金型で175℃、90秒の
トランスファー成形を行った後、175℃で6時間のア
フターキュアーを行って熱伝動率測定用テストピースを
作製した。このテストピースについて、非定常プローブ
法のQTM−D3(京都電子工業(株)製)を用いて測
定した。 (成型体の成形性):成形性の評価は、評価用パッケー
ジ内のボイド数により行った。評価用パッケージは、外
形寸法8.9×17.4×2.7mmの26SOPパッ
ケージが得られる専用金型を用いて、エポキシ樹脂組成
物をトランスファー成形して作製した。成形条件は、温
度175℃、注入時間12秒、加圧時間90秒、注入圧
力70kgf/cm2 とした。パッケージ内のボイド数
は、評価用パッケージの表裏両面から、超音波探査装置
((株)キャノン製、M−700II)で観察し、得たチ
ャート中の直径1mm以上のボイドの像の数とした。 (半導体装置の耐湿信頼性):外形寸法8.9×17.
4×2.7mmの26SOPパッケージが得られる専用
金型を用いて、リードフレームに装着した、3μmのア
ルミ配線を施したTEG(試験用半導体素子)をトラン
スファー成形により封止成形して、評価用26SOPパ
ッケージを得た。なお、成形条件は、温度175℃、注
入時間12秒、加圧時間90秒、注入圧力70kgf/
cm2 とし、その後175℃で6時間のアフターキュア
ーをして評価用パッケージとした。得られた評価用26
SOPパッケージを130℃、85%、30Vの条件下
で放置し、TEGのアルミ配線に不良が発生するまでの
経過時間を調べ、耐湿信頼性を評価した。
(Coefficient of thermal expansion of molded body): Transfer molding was performed at 175 ° C. for 90 seconds using a dedicated mold for producing JIS test pieces, and after-curing was performed at 175 ° C. for 6 hours to prepare a test piece. did. About this test piece, using a TMA device (manufactured by Rigaku Denki Co., Ltd.), under a compressive load of 1 g, at a temperature rising rate of 5 ° C./min, at 50 to 100 ° C.
The coefficient of thermal expansion (α 1 ) in the temperature range was measured. (Thermal conductivity of the molded body): Transfer molding was performed at 175 ° C. for 90 seconds with a dedicated mold, and after-curing was performed at 175 ° C. for 6 hours to prepare a test piece for measuring thermal conductivity. This test piece was measured using a non-stationary probe method QTM-D3 (manufactured by Kyoto Electronics Manufacturing Co., Ltd.). (Moldability of molded product): The moldability was evaluated by the number of voids in the evaluation package. The evaluation package was produced by transfer molding of the epoxy resin composition using a dedicated mold capable of obtaining a 26SOP package having outer dimensions of 8.9 × 17.4 × 2.7 mm. The molding conditions were a temperature of 175 ° C., an injection time of 12 seconds, a pressurization time of 90 seconds, and an injection pressure of 70 kgf / cm 2 . The number of voids in the package was observed from both front and back sides of the evaluation package with an ultrasonic probe (manufactured by Canon Inc., M-700II) and used as the number of void images with a diameter of 1 mm or more in the obtained chart. . (Moisture resistance reliability of semiconductor device): External dimensions 8.9 × 17.
For evaluation, TEG (test semiconductor device) with 3 μm aluminum wiring attached to the lead frame is molded by transfer molding using a dedicated mold that can obtain a 4 × 2.7 mm 26SOP package. A 26SOP package was obtained. The molding conditions are a temperature of 175 ° C., an injection time of 12 seconds, a pressurization time of 90 seconds, and an injection pressure of 70 kgf /.
cm 2 and then after-cured at 175 ° C. for 6 hours to obtain an evaluation package. The obtained 26 for evaluation
The SOP package was left under the conditions of 130 ° C., 85%, and 30 V, and the elapsed time until a defect occurred in the aluminum wiring of the TEG was examined to evaluate the moisture resistance reliability.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【表5】 [Table 5]

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【表7】 [Table 7]

【0047】評価結果を示す表6、表7で明らかなよう
に、本発明の実施例のエポキシ樹脂組成物は、無機粉末
充填材の含有率が真比重換算で75体積%以上と高く、
かつ、流動性(溶融粘度及びスパイラルフロー)が良好
であり、その結果、得られた成型体の成形性は良好であ
り、かつ、得られた半導体装置の耐湿信頼性も良好であ
ることが確認された。また、実施例1と実施例2の比較
で明らかなように、Kの値が3.1である実施例2は、
上記の効果に加えて、バリフローも改善されていること
が確認された。さらに、実施例3と比較例3の比較で明
らかなように、無機粉末充填材の含有率が真比重換算で
75体積%未満の比較例3では、実施例3と同種の非晶
質シリカ粉末を充填材としていても、含有率が低いため
に、熱膨張率及び熱伝導率の点で劣っていることがわか
る。また、非晶質シリカを無機粉末充填材に含有させる
ことは、エポキシ樹脂組成物の成型体の低熱膨張率化の
働きをし、結晶シリカまたはアルミナを無機粉末充填材
に含有させることは、エポキシ樹脂組成物の成型体の高
熱伝導率化の働きをすることも、表6、表7の結果から
確認された。
As is clear from Tables 6 and 7 showing the evaluation results, in the epoxy resin compositions of the examples of the present invention, the content of the inorganic powder filler is as high as 75% by volume or more in terms of true specific gravity,
Moreover, it was confirmed that the fluidity (melt viscosity and spiral flow) was good, and as a result, the moldability of the obtained molded product was good, and the moisture resistance reliability of the obtained semiconductor device was also good. Was done. Further, as is clear from the comparison between Example 1 and Example 2, Example 2 in which the value of K is 3.1 is
In addition to the above effects, it was confirmed that the variflow was also improved. Further, as is clear from the comparison between Example 3 and Comparative Example 3, in Comparative Example 3 in which the content of the inorganic powder filler is less than 75% by volume in terms of true specific gravity, the amorphous silica powder of the same type as Example 3 is used. It can be seen that even when the above is used as the filler, it is inferior in terms of thermal expansion coefficient and thermal conductivity because of its low content rate. Further, the inclusion of amorphous silica in the inorganic powder filler serves to lower the coefficient of thermal expansion of the molded body of the epoxy resin composition, and the inclusion of crystalline silica or alumina in the inorganic powder filler results in epoxy resin. It was also confirmed from the results of Tables 6 and 7 that the molded body of the resin composition also has a function of increasing the thermal conductivity.

【0048】[0048]

【発明の効果】本発明の請求項1〜請求項3に係る封止
用エポキシ樹脂組成物によれば、無機粉末充填材の含有
率が75体積%以上と高く、かつ、流動性が良好なエポ
キシ樹脂組成物が得られる。従って、本発明の封止用エ
ポキシ樹脂組成物を用いることにより、ボイドの発生の
少ない(成形性の良い)成型体が得られるので、耐湿信
頼性が確保され、かつ、高充填化による性能改善がされ
た半導体装置を得ることができる。
According to the epoxy resin composition for encapsulation according to claims 1 to 3 of the present invention, the content of the inorganic powder filler is as high as 75% by volume or more and the fluidity is good. An epoxy resin composition is obtained. Therefore, by using the encapsulating epoxy resin composition of the present invention, it is possible to obtain a molded body with few voids (having good moldability), so that the moisture resistance reliability is ensured and the performance is improved by the high filling. It is possible to obtain a semiconductor device that has been damaged.

【0049】本発明の請求項4に係る封止用エポキシ樹
脂組成物によれば、上記の効果に加えて、バリフローも
改善されている封止用エポキシ樹脂組成物を得ることが
できる。
According to the encapsulating epoxy resin composition of the fourth aspect of the present invention, it is possible to obtain an encapsulating epoxy resin composition having improved variflow in addition to the above effects.

【0050】また、本発明の請求項5に係る半導体装置
によれば、耐湿信頼性が確保され、かつ、高充填化によ
る性能改善がされた半導体装置を得ることができる。
Further, according to the semiconductor device of the fifth aspect of the present invention, it is possible to obtain a semiconductor device in which the moisture resistance reliability is ensured and the performance is improved by the high filling.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例1の無機粉末充填材についての、
圧力(P)の常用対数とその圧力(P)で無機粉末充填
材を圧縮成型して得られる成型体の見かけ体積に占める
充填材体積分率(φ)との関係を示すグラフである。
FIG. 1 is a graph of an inorganic powder filler of Example 1,
6 is a graph showing the relationship between the common logarithm of pressure (P) and the filler volume fraction (φ) in the apparent volume of a molded body obtained by compression molding an inorganic powder filler at the pressure (P).

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂、硬化剤、硬化促進剤及び
無機粉末充填材を含んでなる封止用エポキシ樹脂組成物
において、無機粉末充填材として、圧縮成形前の無機粉
末充填材の平均粒径が圧縮成型後も保持される圧力
(P)で、無機粉末充填材を圧縮成型して得られる成型
体の見かけ体積に占める無機粉末充填材の体積分率
(φ)が78%以上であり、かつ、圧縮成形前の無機粉
末充填材の平均粒径が圧縮成型後も保持される圧力
(P)の常用対数とその圧力(P)での前記体積分率
(φ)の関係を近似する下記式の勾配(K)が1〜5
である無機粉末充填材を、真比重換算で封止用エポキシ
樹脂組成物全体に対して75体積%以上含んでいること
を特徴とする封止用エポキシ樹脂組成物。 φ=KlogP+α −−−−−− (式中のαは定数を表す。)
1. An epoxy resin composition for encapsulation comprising an epoxy resin, a curing agent, a curing accelerator and an inorganic powder filler, wherein the inorganic powder filler is an average particle size of the inorganic powder filler before compression molding. Is a pressure (P) held even after compression molding, and the volume fraction (φ) of the inorganic powder filler in the apparent volume of the molded product obtained by compression molding the inorganic powder filler is 78% or more, Moreover, the average particle size of the inorganic powder filler before compression molding approximates the relationship between the common logarithm of the pressure (P) retained even after compression molding and the volume fraction (φ) at the pressure (P) below. The slope (K) of the formula is 1-5
The epoxy resin composition for encapsulation containing 75% by volume or more of the inorganic powder filler, which is calculated as true specific gravity, with respect to the entire epoxy resin composition for encapsulation. φ = KlogP + α −−−−−− (α in the formula represents a constant.)
【請求項2】 無機粉末充填材が、前記式の勾配
(K)が3〜5である無機粉末充填材であることを特徴
とする請求項1記載の封止用エポキシ樹脂組成物。
2. The epoxy resin composition for encapsulation according to claim 1, wherein the inorganic powder filler is an inorganic powder filler having a gradient (K) of the formula of 3 to 5.
【請求項3】 無機粉末充填材が、非晶質シリカ、結晶
シリカ、アルミナからなる群から選ばれた少なくとも1
種の材質の無機粉末を含むことを特徴とする請求項1ま
たは請求項2記載の封止用エポキシ樹脂組成物。
3. The inorganic powder filler is at least one selected from the group consisting of amorphous silica, crystalline silica and alumina.
The epoxy resin composition for encapsulation according to claim 1 or 2, which contains inorganic powders of various kinds of materials.
【請求項4】 エポキシ樹脂と硬化剤のみを配合した樹
脂成分の150℃における粘度が3ポイズ以下であるこ
とを特徴とする請求項1、請求項2または請求項3記載
の封止用エポキシ樹脂組成物。
4. The epoxy resin for encapsulation according to claim 1, 2 or 3, wherein the viscosity of the resin component containing only the epoxy resin and the curing agent at 150 ° C. is 3 poise or less. Composition.
【請求項5】 請求項1、請求項2、請求項3または請
求項4記載の封止用エポキシ樹脂組成物を用いて、リー
ドフレームに搭載された半導体素子を封止していること
を特徴とする半導体装置。
5. A semiconductor element mounted on a lead frame is encapsulated using the epoxy resin composition for encapsulation according to claim 1, claim 2, claim 3 or claim 4. Semiconductor device.
JP17521194A 1994-07-27 1994-07-27 Epoxy resin composition for sealing and semiconductor device Pending JPH0841293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17521194A JPH0841293A (en) 1994-07-27 1994-07-27 Epoxy resin composition for sealing and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17521194A JPH0841293A (en) 1994-07-27 1994-07-27 Epoxy resin composition for sealing and semiconductor device

Publications (1)

Publication Number Publication Date
JPH0841293A true JPH0841293A (en) 1996-02-13

Family

ID=15992244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17521194A Pending JPH0841293A (en) 1994-07-27 1994-07-27 Epoxy resin composition for sealing and semiconductor device

Country Status (1)

Country Link
JP (1) JPH0841293A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142065A1 (en) 2008-05-21 2009-11-26 ナガセケムテックス株式会社 Epoxy resin composition for encapsulating electronic part
US20160152821A1 (en) * 2014-12-02 2016-06-02 Shin-Etsu Chemical Co., Ltd. Resin composition for semiconductor encapsulation and semiconductor encapsulation method using same
EP3147329A1 (en) 2015-09-28 2017-03-29 Shin-Etsu Chemical Co., Ltd. Heat-curable silicone resin composition, optical semiconductor device and semiconductior package using molded product of same
WO2023032971A1 (en) * 2021-09-02 2023-03-09 株式会社レゾナック Epoxy resin composition for compression molding and electronic component device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142065A1 (en) 2008-05-21 2009-11-26 ナガセケムテックス株式会社 Epoxy resin composition for encapsulating electronic part
US20160152821A1 (en) * 2014-12-02 2016-06-02 Shin-Etsu Chemical Co., Ltd. Resin composition for semiconductor encapsulation and semiconductor encapsulation method using same
EP3029083A1 (en) 2014-12-02 2016-06-08 Shin-Etsu Chemical Co., Ltd. Resin composition for semiconductor encapsulation and semiconductor encapsulation method using same
KR20160066505A (en) 2014-12-02 2016-06-10 신에쓰 가가꾸 고교 가부시끼가이샤 Resin composition for sealing semiconductor and method for sealing semiconductor using said resin composition
EP3147329A1 (en) 2015-09-28 2017-03-29 Shin-Etsu Chemical Co., Ltd. Heat-curable silicone resin composition, optical semiconductor device and semiconductior package using molded product of same
WO2023032971A1 (en) * 2021-09-02 2023-03-09 株式会社レゾナック Epoxy resin composition for compression molding and electronic component device

Similar Documents

Publication Publication Date Title
JP3611066B2 (en) Inorganic filler and method for producing epoxy resin composition
JPH0375570B2 (en)
JP2853550B2 (en) Epoxy resin composition, method for producing the same, and semiconductor device using the same
JPH0841293A (en) Epoxy resin composition for sealing and semiconductor device
JP2004352783A (en) Resin composition for sealing
JPS6296568A (en) Semiconductor sealing resin composition
JPH1160914A (en) Epoxy resin composition and semiconductor device
JPH0366151A (en) Semiconductor device
JPH11335443A (en) Epoxy resin composition for sealing, semiconductor device, semiconductor chip module and semiconductor chip package using the composition
JP3375107B2 (en) Epoxy resin composition for semiconductor encapsulation
JP5275697B2 (en) Epoxy resin composition for sealing and method for producing the same
JPH10182947A (en) Epoxy resin composition for sealing and semiconductor device using the same
JP2725513B2 (en) Epoxy resin sealing material
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JPH0859791A (en) Method for producing epoxy resin composition for sealing
JP3757636B2 (en) Method for producing heat conductive silicone rubber composition for forming heat radiating sheet and heat conductive silicone rubber composition for forming heat radiating sheet
JP2658714B2 (en) Epoxy resin sealing material
JPH08311159A (en) Epoxy resin composition, its production and semiconductor device using the same
JP2000178414A (en) Spherical silica for semiconductor encapsulant
JP2000128960A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2586002B2 (en) Epoxy resin sealing material
JP2789088B2 (en) Method for producing particulate inorganic composite
JPH07216197A (en) Preparation of epoxy resin composition
JPH1160911A (en) Epoxy resin composition and semiconductor device
JP2005068330A (en) Thermosetting resin composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001114