JP2004352783A - Resin composition for sealing - Google Patents

Resin composition for sealing Download PDF

Info

Publication number
JP2004352783A
JP2004352783A JP2003149747A JP2003149747A JP2004352783A JP 2004352783 A JP2004352783 A JP 2004352783A JP 2003149747 A JP2003149747 A JP 2003149747A JP 2003149747 A JP2003149747 A JP 2003149747A JP 2004352783 A JP2004352783 A JP 2004352783A
Authority
JP
Japan
Prior art keywords
silica particles
silica
average particle
weight
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003149747A
Other languages
Japanese (ja)
Inventor
Naoki Ito
直樹 伊藤
Hiroyoshi Yoda
浩好 余田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003149747A priority Critical patent/JP2004352783A/en
Publication of JP2004352783A publication Critical patent/JP2004352783A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a resin composition for sealing, which has excellent moldability even in fine sealing and molding, in which the linear thermal expansion coefficient of a cured material is reduced, stress strain caused by difference in the linear thermal expansion coefficient between the cured material and a substrate is controlled and heat resistance of an electronic part of a semiconductor device, etc., is improved and which is suitably used for sealing a miniaturized electronic part, etc. <P>SOLUTION: The resin composition for sealing comprises a thermosetting resin and silica particles (A). The silica particles (A) have ≤15 μm maximum particle diameter and the ratio of the silica particles to the total of the composition of 70-95 wt.%. The silica particles (A) comprise silica particles (a1) having 2-4 μm average particle diameter and the ratio of the particles to the total of the silica particles (A) of 60-80 wt.% and silica particles (a2) having 1 nm-1 μm average particle diameter and the ratio of the particles to the total of the silica particles (A) of 20-40 wt.%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品等を封止成形する際に用いられる封止用樹脂組成物に関し、特に封止用樹脂組成物が封入される隙間が50μm以下程度の場合や、成形寸法が100μm以下程度などといった微細封止成形を行う場合であっても良好な成形性を有する封止用樹脂組成物に関するものである。
【0002】
【従来の技術】
封止用樹脂組成物としては、従来、基板と封止用樹脂組成物との熱線熱膨脹係数の差から生じる応力ひずみを低下させるために、シリカ粉末を代表とする無機充填材を配合して熱線熱膨脹係数が低減されたものが提供されている。
【0003】
ここで、従来の電子部品等の封止成形の際、例えば基板上に搭載した半導体チップ等の素子を封止する場合などには、基板と素子との間の隙間、すなわち封止用封止用樹脂組成物が封入される隙間は100μm以上程度であって、成形時の充填性が問題となることは少なかった。
【0004】
しかし、近年の電子機器の軽薄短小化の進展に伴い、半導体装置等の電子部品の小型化も求められるようになり、50μm以下の狭い隙間に封止用樹脂組成物を封入するような微細成形が可能な封止用樹脂組成物が求められるようになってきている。
【0005】
また封止樹脂の内部応力の低下を目的として封止樹脂中に粒径0.1μm以下のシリカ粒子を含有させるようにした技術も開発されているが(特許文献1参照)、液中の反応によりシリカ粒子を封止樹脂中に含有させるもので、充填量を増やすことが困難であり線膨張係数が大きいという問題があった。
【0006】
また、最近では電子部品の高集積化に伴って発熱量が増大するようになってきており、従来の封止用樹脂組成物は、このような発熱量の増大に対応できるほど熱線熱膨脹係数が低減されておらず、基板と封止用樹脂組成物との熱線熱膨脹係数の差による応力ひずみを防止することが困難となってきている。
【0007】
【特許文献1】
特開平5−63240号公報
【0008】
【発明が解決しようとする課題】
本発明は上記の点に鑑みて為されたものであり、微細な封止成形を行う場合であっても良好な成形性を有し、且つ硬化物の線熱膨張係数が低減されて基板との線熱膨張係数の差による応力ひずみを抑制して半導体装置等の電子部品の耐熱性を向上することができ、小型化した電子部品等を封止するために好適に用いることができる封止用樹脂組成物を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
請求項1に係る封止用樹脂組成物は、熱硬化性樹脂とシリカ粒子(A)とを含有し、前記シリカ粒子(A)が最大粒径15μm以下であり且つ組成物全量に対して固形分換算で70〜95重量%の割合で含有され、前記シリカ粒子(A)が、平均粒径2〜4μm且つシリカ粒子(A)全量に対する割合が60〜80重量%であるシリカ粒子(a1)と、平均粒径1nm〜1μm且つシリカ粒子(A)全量に対する割合が20〜40重量%であるシリカ粒子(a2)とからなるものであることを特徴とするものである。
【0010】
また請求項2の発明は、請求項1において、上記シリカ粒子(a2)が、平均粒径200nm〜1μm且つシリカ粒子(A)全量に対する割合が15〜25重量%であるシリカ粒子(a3)と、平均粒径1〜7nm且つシリカ粒子(A)全量に対する割合が2〜15重量%であるシリカ粒子(a4)とからなるものであることを特徴とするものである。
【0011】
また請求項3の発明は、請求項1において、上記シリカ粒子(a2)が、平均粒径200nm〜1μm且つシリカ粒子(A)全量に対する割合が15〜25重量%であるシリカ粒子(a3)と、平均粒径60〜100nm且つシリカ粒子(A)全量に対する割合が2〜15重量%であるシリカ粒子(a5)とからなるものであることを特徴とするものである。
【0012】
また請求項4の発明は、請求項1において、上記シリカ粒子(a2)が、平均粒径200nm〜1μm且つシリカ粒子(A)全量に対する割合が15〜25重量%のシリカ粒子(a3)と、平均粒径60〜100nm且つシリカ粒子(A)全量に対する割合が2〜10重量%のシリカ粒子(a5)と、平均粒径10〜30nm且つシリカ粒子(A)全量に対する割合が1〜6重量%のシリカ粒子(a6)とからなるものであることを特徴とするものである。
【0013】
請求項5に係る封止用樹脂組成物は、熱硬化性樹脂とシリカ粒子(A)とを含有し、前記シリカ粒子(A)が最大粒径15μm以下であり且つ組成物全量に対して固形分換算で70〜95重量%の割合で含有され、前記シリカ粒子(A)が、平均粒径200nm〜1μm且つシリカ粒子(A)全量に対する割合が60〜80重量%のシリカ粒子(a3)と、平均粒径1〜200nm且つシリカ粒子(A)全量に対する割合が20〜40重量%のシリカ粒子(a7)とからなるものであることを特徴とするものである。
【0014】
また請求項6の発明は、請求項1乃至5のいずれかにおいて、上記シリカ粒子(A)を構成する粒子のうち、平均粒径1nm〜0.1μmの粒子が、コロイダルシリカであることを特徴とするものである。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0016】
熱硬化性樹脂としては、エポキシ樹脂等のように半導体装置等の電子部品の封止用途に用いられるものであれば適宜のものを用いることができる。
【0017】
熱硬化性樹脂としてエポキシ樹脂を用いる場合は、1分子中にエポキシ基を少なくとも2個以上有するものであれば何れでも使用することができ、具体的には、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、o−クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ブロム含有エポキシ樹脂などのハロゲン化エポキシ樹脂、ナフタレン環を有するエポキシ樹脂等を例示することができる。これらエポキシ樹脂は1種を単独で用いたりあるいは2種以上を併用したりすることができる。
【0018】
また、必要に応じて熱硬化性樹脂の硬化剤が用いられる。熱硬化性樹脂としてエポキシ樹脂を用いる場合は、硬化剤としては公知のフェノール樹脂やアミン系硬化剤や酸無水物系硬化剤を用いることができる。フェノール樹脂を用いる場合は、1分子中に2個以上のフェノール性水酸基を有するものであれば何れでも使用することができ、具体的には、フェノールノボラック樹脂やナフトール樹脂などを例示することができる。硬化剤の含有量は、組成物が良好な熱硬化性等を発揮するように適宜調整されるが、エポキシ樹脂1当量に対する硬化剤の化学量論上の当量比が0.9〜1.1の範囲となるようにすることが好ましい。
【0019】
また必要に応じて硬化促進剤が用いられる。硬化促進剤も公知公用のものを用いることができ、特に限定されるものではないが、イミダゾール骨格を持つ化合物、アミン類化合物、ジアザビシクロアルケン類等を挙げることができ、また硬化促進剤は一種のみを用いるほか、二種以上を併用することもできる。硬化促進剤の配合量は適宜調整されるが、エポキシ樹脂と硬化剤の総量に対して0.2〜2.0重量%が好ましい。
【0020】
また、更に必要に応じて、離型剤、難燃剤、着色剤等のような、封止用の樹脂組成物に用いられる適宜の添加剤を配合することもできる。
【0021】
シリカ粒子(A)としては、溶融シリカ、結晶シリカ、コロイダルシリカ等の各種の形態のものを用いることができる。このシリカ粒子(A)は、最大粒径15μm以下のものが用いられるものであり、これにより微細な成形を行う場合の充填性等の成形性が向上する。
【0022】
シリカ粒子(A)の組成物中の含有量は、組成物全量中で70〜95重量%の範囲とするものであり、これにより低線膨張率でボイドの発生のない成形品がえられることとなる。この含有量が70重量%に満たないと線膨張係数が大となり、95重量%を超えると、成形時の充填性が低下してボイドが発生するおそれがある。
上記のシリカ粒子(A)としては、平均粒径の異なる複数の粒子が併用される。具体的には、封止用樹脂組成物を調製するにあたって、平均粒径の異なるシリカ粒子を複数種類用い、これらを他の成分と混合することで、封止用樹脂組成物を調製するものである。
【0023】
シリカ粒子(A)の好ましい形態の一例としては、平均粒径が2〜4μmのシリカ粒子(a1)と、平均粒径が1nm〜1μmのシリカ粒子(a2)とを併用し、シリカ粒子(A)全量に対してシリカ粒子(a1)の割合が60〜80重量%、シリカ粒子(a2)の割合が20〜40重量%の範囲となるようにするものである。このようなシリカ粒子(a1)とシリカ粒子(a2)とでシリカ粒子(A)を構成すると、微細な封止成形を行う場合であっても成形性が向上し、封止用樹脂組成物が封入される隙間が50μm以下程度の場合や、成形寸法が100μm以下程度などといった微細な成形を行う場合でも未充填の発生等を防止して良好な成形性を発揮することができる。更に硬化物の線熱膨張係数が十分に低減することができ、基板との線熱膨張係数の差による応力ひずみを抑制して、半導体装置等の電子部品の耐熱性を向上することができる。また、硬化物のガラス転移点も向上することができ、これによっても耐熱性を向上することができるものである。
【0024】
ここで、シリカ粒子(A)全量に対するシリカ粒子(a1)の割合が60重量%に満たず且つシリカ粒子(a2)の割合が40重量%を超える場合や、シリカ粒子(A)全量に対するシリカ粒子(a1)の割合が80重量%を超え且つシリカ粒子(a2)の割合が20重量%に満たない場合は、成形時の充填性が低下して成形性が悪くなるおそれがある。
【0025】
また、上記のシリカ粒子(a1)やシリカ粒子(a2)としても、平均粒径の異なる複数の粒子を併用することができるが、特にシリカ粒子(a2)を、平均粒径が200nm〜1μmのシリカ粒子(a3)と、平均粒径が1〜7nmのシリカ粒子(a4)とで構成するようにし、更にシリカ粒子(A)全量に対してシリカ粒子(a3)の割合が15〜25重量%、シリカ粒子(a4)の割合が2〜15重量%の範囲となるようにすることが好ましい。このようにすれば、より高いガラス転移温度で、かつ低線膨張係数の特性が得られる。ここで、シリカ粒子(A)全量に対するシリカ粒子(a3)の割合が15重量%に満たない場合や、25重量%を超える場合、並びに、シリカ粒子(A)全量に対するシリカ粒子(a4)の割合が2重量%に満たない場合や15重量%を超える場合は、流動性が低下して成形性が悪くなるおそれがある。
【0026】
また、シリカ粒子(a2)を、平均粒径が200nm〜1μmのシリカ粒子(a3)と、平均粒径が60〜100nmのシリカ粒子(a5)とで構成するようにし、更にシリカ粒子(A)全量に対してシリカ粒子(a3)の割合が15〜25重量%、シリカ粒子(a5)の割合が2〜15重量%の範囲となるようにすることも好ましい。このようにすれば、より高いガラス転移温度且つ低線膨張係数の特性が得られる。ここで、シリカ粒子(A)全量に対するシリカ粒子(a3)の割合が15重量%に満たない場合や、25重量%を超える場合、並びに、シリカ粒子(A)全量に対するシリカ粒子(a5)の割合が2重量%に満たない場合や15重量%を超える場合は、流動性が低下して成形性が悪くなるおそれがある。
【0027】
また、シリカ粒子(a2)を、平均粒径が200nm〜1μmのシリカ粒子(a3)と、平均粒径が60〜100nmのシリカ粒子(a5)と、平均粒径が10〜30nmのシリカ(a6)とで構成するようにし、更にシリカ粒子(A)全量に対してシリカ粒子(a3)の割合が15〜25重量%、シリカ粒子(a5)の割合が2〜10重量%、シリカ(a6)の割合が1〜6重量%の範囲となるようにすることも好ましい。このようにすれば、より高いガラス転移温度且つ低線膨張係数の特性が得られる。ここで、シリカ粒子(A)全量に対するシリカ粒子(a3)の割合が15重量%に満たない場合や、25重量%を超える場合、並びに、シリカ粒子(A)全量に対するシリカ粒子(a5)の割合が2重量%に満たない場合や、10重量%を超える場合、並びに、シリカ粒子(A)全量に対するシリカ粒子(a6)の割合が1重量%に満たない場合や、6重量%を超える場合は、流動性が低下して成形性が悪くなるおそれがある。
【0028】
シリカ粒子(A)の別の好ましい形態の例としては、上記のシリカ粒子(A)として、平均粒径が200nm〜1μmのシリカ粒子(a3)と、平均粒径が1〜200nmのシリカ粒子(a7)とを併用し、シリカ粒子(A)全量に対するシリカ粒子(a3)の割合が60〜80重量%、シリカ粒子(a7)の割合が20〜40重量%の範囲となるようにすることが挙げられる。このようなシリカ粒子(a1)とシリカ粒子(a7)とでシリカ粒子(A)を構成する場合でも、微細な封止成形を行う場合であっても成形性が向上し、封止用樹脂組成物が封入される隙間が50μm以下程度の場合や、成形寸法が100μm以下程度などといった微細な成形を行う場合でも未充填の発生等を防止して良好な成形性を発揮することができる。更に硬化物の線熱膨張係数が十分に低減することができ、基板との線熱膨張係数の差による応力ひずみを抑制して、半導体装置等の電子部品の耐熱性を向上することができる。また、硬化物のガラス転移点も向上することができ、これによっても耐熱性を向上することができるものである。
【0029】
ここで、シリカ粒子(A)全量に対するシリカ粒子(a3)の割合が60重量%に満たず且つシリカ粒子(a7)の割合が40重量%を超える場合、並びに、シリカ粒子(A)全量に対するシリカ粒子(a3)の割合が80重量%を超え且つシリカ粒子(a7)の割合が20重量%に満たない場合は、流動性が低下して成形性が悪くなるおそれがある。
【0030】
また、上記のいずれの実施形態においても、上記シリカ粒子(A)を平均粒径の異なる複数の粒子にて構成する場合、このシリカ粒子(A)を構成する粒子のうち、平均粒径1nm〜0.1μmの粒子は、コロイダルシリカであることが好ましい。このようにすれば、樹脂組成物の流動性がより高まり、成形時の充填性が向上する。
【0031】
そして、本発明の封止用樹脂組成物を調製するにあたっては、例えば調製される組成物の性状が液体状である場合は各成分を所定量配合した後に溶解混合し、又はミキサー、ブレンダー等で均一に混合した後にニーダーやロール等で加熱混練して、液体状の樹脂組成物を得ることができる。また調製される樹脂組成物の性状が固体状である場合は各成分を所定量配合した後に溶解混合し、又はミキサー、ブレンダー等で均一に混合した後にニーダーやロール等で加熱混練したものを、冷却固化した後粉砕して粉末状の樹脂組成物を得るものであり、また更に必要に応じて粉末状の樹脂組成物をタブレット状に打錠することもできる。
【0032】
このようにして得られる封止用樹脂組成物は、上記のように電子部品の封止材料として好適に用いることができる。封止用樹脂組成物を半導体装置の封止材料として用いる場合を例として挙げる。
【0033】
半導体素子を封止するにあたっては、一般的な手法を適宜採用することができるが、例えば導体配線が形成された基板上に半導体素子を搭載した後、上記の封止用樹脂組成物を用いて半導体素子を樹脂封止する。
【0034】
ここで樹脂封止を行うにあたっては、封止用樹脂組成物が固体状である場合には粉末状又はタブレット状の封止用樹脂組成物をトランスファー成形等により金型成形することができ、封止用樹脂組成物が液体状である場合にはキャスティングやポッティング、印刷等の方法により注型、固化することができる。また必要に応じてアフターキュアーを施すようにしても良い。
【0035】
【実施例】
以下本発明を実施例によって具体的に説明する。
【0036】
〔実施例1〜10、比較例1〜4〕
エポキシ樹脂、硬化剤、硬化促進剤及びシリカ粒子を表1に示す配合量(単位は重量部)で配合し、ビーズミル(VMA Getzmann社製、「DISPERMAT SL−C」)を用いて分散した後、真空乾燥機で50℃で脱溶媒を行い、封止用樹脂組成物を調製した。
【0037】
尚、表1中に示された配合量のうち、シリカ粒子については、溶剤を含むものでは溶剤の重量を除いている。また各シリカ粒子の配合量については、シリカ粒子の全量に対する重量割合を括弧内に示している。
【0038】
次に、この封止用樹脂組成物を40mm×50mm×2mmの寸法の型に入れ、100℃で1時間加熱プレスした後、150℃で3時間加熱して、評価用のサンプルを作製した。
【0039】
このサンプルを10mm×3mm×2mmの寸法に切断し、これに対して、セイコーインスツルメント社製の「TNA/SS6100」を用い、昇温速度5℃/minの条件で線熱膨張係数とガラス転移温度とを測定した。このとき線熱膨張係数は、50℃と120℃の間の寸法変化に基づいて測定した。
【0040】
また、各封止用樹脂組成物を1g±1%の誤差で計り取り、測り取ったサンプルを離型紙の間に挟んだ後、100℃、981N(100kgf)の条件で1時間加熱加圧成形し、成形した成形品の直径を計り樹脂流れ性の評価とした。
【0041】
結果を表1に示す。
【0042】
【表1】

Figure 2004352783
【0043】
表中の各成分の詳細は、次の通りである。なお、下記に示したシリカ粒子は、平均粒径25μmのもの(「FB−600X」)を除き、いずれも、製造元による納入試験成績書の記載における、粒径12μm以上の粒子の比率が0%のものを用いた。
・エポキシ樹脂:ダイセル化学工業株式会社製、「CEL−2010」
・硬化剤:大日本インキ化学工業株式会社製、「エピクロンB−650」
・硬化促進剤:四国化成工業株式会社製、「2E4MZ」
・シリカ粒子(平均粒径3μm):電気化学工業株式会社製、「FB−3SDC」
・シリカ粒子(平均粒径0.5μm):株式会社アドマティック製、「アドマファインSO−C2」
・シリカ粒子(平均粒径80nm):日産化学工業株式会社製、コロイダルシリカ(2−プロパノールを70重量%含有)、「IPA−ST−ZL」
・シリカ粒子(平均粒径15nm):日産化学工業株式会社製、コロイダルシリカ(2−プロパノールを70重量%含有)、「IPA−ST」
・シリカ粒子(平均粒径3nm):ゾルゲル法により調製したコロイダルシリカ(2−プロパノールを70重量%含有)
・シリカ粒子(平均粒径25μm):電気化学工業株式会社製、「FB−600X」
上記の表1に示された結果によると、実施例1〜10では、いずれも線熱膨脹係数が低く、且つガラス転移点が高いものが得られた。これに対して、平均粒径が25μmという粒径の大きいシリカ粒子を用いた比較例1と、シリカ粒子(a1)に相当する平均粒径3μmのシリカ粒子のみを用いた比較例2とでは、線熱膨脹係数が高くなるか、またはガラス転移点が低くなっていた。また比較例3及び4ではシリカ粒子(a1)とシリカ粒子(a2)に相当するシリカ粒子が用いられているが、比較例3ではシリカ粒子(a1)の割合が低く、また比較例4ではシリカ粒子(a1)の割合が高いものであり、このいずれの場合でも、硬化物にはボイドが発生して実用に供することはできず、またこのため線熱膨脹係数及びガラス転移点の測定ができないものであった。
【0044】
【発明の効果】
上記のように請求項1に係る封止用樹脂組成物は、微細な封止成形を行う場合であっても成形性が向上し、封止用樹脂組成物が封入される隙間が50μm以下程度の場合や、成形寸法が100μm以下程度などといった微細な成形を行う場合でも未充填の発生等を防止して良好な成形性を発揮することができるものであり、また硬化物の線熱膨張係数を十分に低減することができて、基板との線熱膨張係数の差による応力ひずみを抑制し、半導体装置等の電子部品の耐熱性を向上することができるものであり、更に硬化物のガラス転移点も向上することができ、これによっても耐熱性を向上することができるものである。
【0045】
また請求項2の発明では、シリカ粒子を特に高充填することができ、封止品の線熱膨張係数をより低減することができるものである。
【0046】
また請求項3の発明では、シリカ粒子を特に高充填することができ、封止品の線熱膨張係数をより低減することができるものである。
【0047】
また請求項4の発明では、シリカ粒子を特に高充填することができ、封止品の線熱膨張係数をより低減することができるものである。
【0048】
請求項5に係る封止用樹脂組成物では、微細な封止成形を行う場合であっても成形性が向上し、封止用樹脂組成物が封入される隙間が50μm以下程度の場合や、成形寸法が100μm以下程度などといった微細な成形を行う場合でも未充填の発生等を防止して良好な成形性を発揮することができるものであり、また硬化物の線熱膨張係数を十分に低減することができて、基板との線熱膨張係数の差による応力ひずみを抑制し、半導体装置等の電子部品の耐熱性を向上することができるものであり、更に硬化物のガラス転移点も向上することができ、これによっても耐熱性を向上することができるものである。
【0049】
また請求項6の発明では、樹脂組成物の流動性がより高まり、成形時の充填性が向上するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sealing resin composition used when sealing and molding electronic components and the like, particularly when the gap in which the sealing resin composition is sealed is about 50 μm or less, or the molding dimension is about 100 μm or less. The present invention relates to a sealing resin composition having good moldability even when performing fine sealing molding such as.
[0002]
[Prior art]
Conventionally, as a sealing resin composition, an inorganic filler represented by silica powder is compounded to reduce stress strain caused by a difference in a thermal expansion coefficient between a substrate and a sealing resin composition. A reduced thermal expansion coefficient is provided.
[0003]
Here, at the time of conventional sealing molding of electronic components and the like, for example, when sealing an element such as a semiconductor chip mounted on a substrate, a gap between the substrate and the element, that is, sealing for sealing is used. The gap in which the resin composition for use was sealed was about 100 μm or more, and the filling property during molding rarely became a problem.
[0004]
However, as electronic devices have become lighter, thinner and smaller in recent years, the size of electronic components such as semiconductor devices has also been required to be reduced, and fine molding such as encapsulating a sealing resin composition in a narrow gap of 50 μm or less has been required. There is a growing demand for a sealing resin composition that is capable of performing the following.
[0005]
Further, a technique has been developed in which silica particles having a particle size of 0.1 μm or less are contained in the sealing resin for the purpose of reducing the internal stress of the sealing resin (see Patent Document 1). Therefore, silica particles are contained in the sealing resin, and it is difficult to increase the filling amount, and there is a problem that the coefficient of linear expansion is large.
[0006]
In recent years, the amount of heat generated has increased along with the high integration of electronic components, and the conventional encapsulating resin composition has a heat ray thermal expansion coefficient enough to cope with such an increase in the amount of heat generated. It has not been reduced, and it has become difficult to prevent stress distortion due to the difference in the thermal expansion coefficient between the substrate and the sealing resin composition.
[0007]
[Patent Document 1]
JP-A-5-63240
[Problems to be solved by the invention]
The present invention has been made in view of the above points, has good moldability even when performing fine encapsulation molding, and has a reduced linear thermal expansion coefficient of the cured product and the substrate Sealing which can be used to seal downsized electronic components and the like by suppressing the stress strain due to the difference in linear thermal expansion coefficient of the semiconductor devices and improving the heat resistance of electronic components such as semiconductor devices. An object of the present invention is to provide a resin composition for use.
[0009]
[Means for Solving the Problems]
The resin composition for sealing according to claim 1 contains a thermosetting resin and silica particles (A), and the silica particles (A) have a maximum particle size of 15 μm or less and are solid based on the total amount of the composition. Silica particles (a1) which are contained at a ratio of 70 to 95% by weight in terms of minutes, and wherein the silica particles (A) have an average particle diameter of 2 to 4 μm and a ratio to the total amount of the silica particles (A) of 60 to 80% by weight. And silica particles (a2) having an average particle diameter of 1 nm to 1 μm and a ratio to the total amount of the silica particles (A) of 20 to 40% by weight.
[0010]
The invention of claim 2 is the invention according to claim 1, wherein the silica particles (a2) have an average particle diameter of 200 nm to 1 μm and a ratio of 15 to 25% by weight based on the total amount of the silica particles (A). And silica particles (a4) having an average particle size of 1 to 7 nm and a ratio of 2 to 15% by weight based on the total amount of the silica particles (A).
[0011]
In a third aspect of the present invention, in the first aspect, the silica particles (a2) have an average particle diameter of 200 nm to 1 μm and a ratio of 15 to 25% by weight based on the total amount of the silica particles (A). And silica particles (a5) having an average particle size of 60 to 100 nm and a ratio of 2 to 15% by weight based on the total amount of the silica particles (A).
[0012]
The invention according to claim 4 is the method according to claim 1, wherein the silica particles (a2) have an average particle diameter of 200 nm to 1 μm and a ratio of 15 to 25% by weight with respect to the total amount of the silica particles (A); Silica particles (a5) having an average particle size of 60 to 100 nm and a ratio of 2 to 10% by weight based on the total amount of silica particles (A), and an average particle size of 10 to 30 nm and a ratio of 1 to 6% by weight based on the total amount of silica particles (A) And silica particles (a6).
[0013]
The sealing resin composition according to claim 5, comprising a thermosetting resin and silica particles (A), wherein the silica particles (A) have a maximum particle size of 15 µm or less and are solid based on the total amount of the composition. A silica particle (a3) having an average particle diameter of 200 nm to 1 μm and a ratio of 60 to 80% by weight with respect to the total amount of the silica particles (A). And silica particles (a7) having an average particle diameter of 1 to 200 nm and a ratio of 20 to 40% by weight based on the total amount of the silica particles (A).
[0014]
According to a sixth aspect of the present invention, in any one of the first to fifth aspects, among the particles constituting the silica particles (A), particles having an average particle diameter of 1 nm to 0.1 μm are colloidal silica. It is assumed that.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0016]
As the thermosetting resin, an appropriate resin such as an epoxy resin can be used as long as the resin is used for sealing an electronic component such as a semiconductor device.
[0017]
When an epoxy resin is used as the thermosetting resin, any resin having at least two epoxy groups in one molecule can be used. Specifically, bisphenol A type epoxy resin, phenol novolak type Epoxy resins, halogenated epoxy resins such as o-cresol novolak type epoxy resin, triphenylmethane type epoxy resin, and bromo-containing epoxy resin, and epoxy resins having a naphthalene ring can be exemplified. One of these epoxy resins can be used alone, or two or more can be used in combination.
[0018]
In addition, a curing agent for a thermosetting resin is used as needed. When an epoxy resin is used as the thermosetting resin, a known phenol resin, amine-based curing agent, or acid anhydride-based curing agent can be used as the curing agent. When a phenol resin is used, any one having two or more phenolic hydroxyl groups in one molecule can be used, and specific examples thereof include a phenol novolak resin and a naphthol resin. . The content of the curing agent is appropriately adjusted so that the composition exhibits good thermosetting properties and the like, but the stoichiometric equivalent ratio of the curing agent to 1 equivalent of the epoxy resin is 0.9 to 1.1. It is preferable to be within the range.
[0019]
A curing accelerator is used as needed. As the curing accelerator, known and publicly-known ones can be used, and it is not particularly limited. Examples thereof include a compound having an imidazole skeleton, an amine compound, and a diazabicycloalkene. In addition to using only one kind, two or more kinds can be used in combination. The amount of the curing accelerator is appropriately adjusted, but is preferably 0.2 to 2.0% by weight based on the total amount of the epoxy resin and the curing agent.
[0020]
Further, if necessary, appropriate additives used in the sealing resin composition, such as a release agent, a flame retardant, a colorant, and the like, can be blended.
[0021]
As the silica particles (A), various forms such as fused silica, crystalline silica, and colloidal silica can be used. As the silica particles (A), those having a maximum particle size of 15 μm or less are used, thereby improving the moldability such as the filling property when performing fine molding.
[0022]
The content of the silica particles (A) in the composition is in the range of 70 to 95% by weight based on the total amount of the composition, whereby a molded article having a low coefficient of linear expansion and having no voids can be obtained. It becomes. If the content is less than 70% by weight, the coefficient of linear expansion becomes large, and if it exceeds 95% by weight, the filling property at the time of molding is reduced and voids may be generated.
As the silica particles (A), a plurality of particles having different average particle sizes are used in combination. Specifically, in preparing a sealing resin composition, a plurality of types of silica particles having different average particle diameters are used, and these are mixed with other components to prepare a sealing resin composition. is there.
[0023]
As an example of a preferred embodiment of the silica particles (A), a silica particle (a1) having an average particle diameter of 2 to 4 μm and a silica particle (a2) having an average particle diameter of 1 nm to 1 μm are used in combination. ) The proportion of the silica particles (a1) is in the range of 60 to 80% by weight, and the proportion of the silica particles (a2) is in the range of 20 to 40% by weight, based on the total amount. When the silica particles (A) are composed of the silica particles (a1) and the silica particles (a2), the moldability is improved even when fine sealing molding is performed, and the sealing resin composition is obtained. Even when the gap to be enclosed is about 50 μm or less, or when a fine molding such as a molding dimension of about 100 μm or less is performed, the occurrence of unfilling can be prevented and good moldability can be exhibited. Further, the coefficient of linear thermal expansion of the cured product can be sufficiently reduced, and the stress distortion due to the difference in the coefficient of linear thermal expansion with the substrate can be suppressed, so that the heat resistance of electronic components such as semiconductor devices can be improved. In addition, the glass transition point of the cured product can be improved, and thereby the heat resistance can be improved.
[0024]
Here, the ratio of the silica particles (a1) to the total amount of the silica particles (A) is less than 60% by weight and the ratio of the silica particles (a2) exceeds 40% by weight, When the proportion of (a1) exceeds 80% by weight and the proportion of silica particles (a2) is less than 20% by weight, the filling property at the time of molding may be reduced and the moldability may be deteriorated.
[0025]
Also, as the silica particles (a1) and the silica particles (a2), a plurality of particles having different average particle sizes can be used in combination. In particular, the silica particles (a2) having an average particle size of 200 nm to 1 μm are used. The silica particles (a3) and the silica particles (a4) having an average particle diameter of 1 to 7 nm, and the ratio of the silica particles (a3) to the total amount of the silica particles (A) is 15 to 25% by weight. Preferably, the ratio of the silica particles (a4) is in the range of 2 to 15% by weight. In this case, a characteristic having a higher glass transition temperature and a low linear expansion coefficient can be obtained. Here, when the ratio of the silica particles (a3) to the total amount of the silica particles (A) is less than 15% by weight or exceeds 25% by weight, and the ratio of the silica particles (a4) to the total amount of the silica particles (A) If the content is less than 2% by weight or more than 15% by weight, the fluidity may decrease and the moldability may deteriorate.
[0026]
Further, the silica particles (a2) are constituted by silica particles (a3) having an average particle diameter of 200 nm to 1 μm and silica particles (a5) having an average particle diameter of 60 to 100 nm, and the silica particles (A) It is also preferable that the ratio of the silica particles (a3) is in the range of 15 to 25% by weight and the ratio of the silica particles (a5) is in the range of 2 to 15% by weight based on the total amount. In this case, characteristics of a higher glass transition temperature and a lower linear expansion coefficient can be obtained. Here, when the ratio of the silica particles (a3) to the total amount of the silica particles (A) is less than 15% by weight or exceeds 25% by weight, and the ratio of the silica particles (a5) to the total amount of the silica particles (A) If the content is less than 2% by weight or more than 15% by weight, the fluidity may decrease and the moldability may deteriorate.
[0027]
Further, the silica particles (a2) are a silica particle (a3) having an average particle size of 200 nm to 1 μm, a silica particle (a5) having an average particle size of 60 to 100 nm, and a silica (a6) having an average particle size of 10 to 30 nm. ), The ratio of the silica particles (a3) is 15 to 25% by weight, the ratio of the silica particles (a5) is 2 to 10% by weight, and the silica (a6) is based on the total amount of the silica particles (A). Is preferably in the range of 1 to 6% by weight. In this case, characteristics of a higher glass transition temperature and a lower linear expansion coefficient can be obtained. Here, when the ratio of the silica particles (a3) to the total amount of the silica particles (A) is less than 15% by weight or exceeds 25% by weight, and the ratio of the silica particles (a5) to the total amount of the silica particles (A) Is less than 2% by weight, more than 10% by weight, and when the ratio of the silica particles (a6) to the total amount of the silica particles (A) is less than 1% by weight or more than 6% by weight. However, there is a possibility that the fluidity is reduced and the moldability is deteriorated.
[0028]
As another preferable example of the silica particles (A), as the silica particles (A), silica particles (a3) having an average particle diameter of 200 nm to 1 μm and silica particles (a) having an average particle diameter of 1 to 200 nm ( a7) is used in combination so that the ratio of the silica particles (a3) to the total amount of the silica particles (A) is in the range of 60 to 80% by weight, and the ratio of the silica particles (a7) is in the range of 20 to 40% by weight. No. Even when silica particles (A) are composed of such silica particles (a1) and silica particles (a7), or when fine sealing molding is performed, moldability is improved, and the sealing resin composition is improved. Even in the case where the gap in which the object is enclosed is about 50 μm or less, or in the case of performing fine molding such as the molding dimension of about 100 μm or less, it is possible to prevent the occurrence of unfilling and exhibit good moldability. Further, the coefficient of linear thermal expansion of the cured product can be sufficiently reduced, and the stress distortion due to the difference in the coefficient of linear thermal expansion with the substrate can be suppressed, so that the heat resistance of electronic components such as semiconductor devices can be improved. In addition, the glass transition point of the cured product can be improved, and thereby the heat resistance can be improved.
[0029]
Here, when the ratio of the silica particles (a3) to the total amount of the silica particles (A) is less than 60% by weight and the ratio of the silica particles (a7) exceeds 40% by weight, If the proportion of the particles (a3) exceeds 80% by weight and the proportion of the silica particles (a7) is less than 20% by weight, the fluidity may decrease and the moldability may deteriorate.
[0030]
In any of the above embodiments, when the silica particles (A) are composed of a plurality of particles having different average particle diameters, among the particles constituting the silica particles (A), the average particle diameter is 1 nm to 1 nm. Preferably, the 0.1 μm particles are colloidal silica. By doing so, the fluidity of the resin composition is further increased, and the filling property during molding is improved.
[0031]
In preparing the encapsulating resin composition of the present invention, for example, when the properties of the composition to be prepared are liquid, the components are blended in a predetermined amount and then dissolved and mixed, or a mixer, a blender, or the like. After uniform mixing, the mixture is heated and kneaded with a kneader or a roll to obtain a liquid resin composition. When the properties of the resin composition to be prepared are solid, the components are dissolved and mixed after blending each component in a predetermined amount, or a mixer, a mixture kneaded with a kneader or a roll after uniformly mixed with a blender, etc., The resin composition is cooled and solidified and then pulverized to obtain a powdered resin composition. Further, if necessary, the powdered resin composition can be tableted into tablets.
[0032]
The sealing resin composition thus obtained can be suitably used as a sealing material for an electronic component as described above. A case where the sealing resin composition is used as a sealing material for a semiconductor device will be described as an example.
[0033]
In sealing the semiconductor element, a general method can be appropriately adopted.For example, after mounting the semiconductor element on the substrate on which the conductive wiring is formed, using the above sealing resin composition The semiconductor element is sealed with resin.
[0034]
When performing the resin encapsulation, when the encapsulating resin composition is solid, a powdery or tablet-shaped encapsulating resin composition can be molded by transfer molding or the like. When the stopping resin composition is in a liquid state, it can be cast and solidified by a method such as casting, potting, or printing. After-curing may be performed as necessary.
[0035]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
[0036]
[Examples 1 to 10, Comparative Examples 1 to 4]
An epoxy resin, a curing agent, a curing accelerator and silica particles were blended in the blending amounts (units by weight) shown in Table 1 and dispersed using a bead mill (VMS Getzmann, “DISPERMAT SL-C”). The solvent was removed at 50 ° C. using a vacuum drier to prepare a sealing resin composition.
[0037]
In addition, among the compounding amounts shown in Table 1, with respect to silica particles, those containing a solvent exclude the weight of the solvent. The weight ratio of each silica particle to the total amount of the silica particles is shown in parentheses.
[0038]
Next, the resin composition for sealing was put into a mold having a size of 40 mm × 50 mm × 2 mm, heated and pressed at 100 ° C. for 1 hour, and then heated at 150 ° C. for 3 hours to prepare a sample for evaluation.
[0039]
This sample was cut into a size of 10 mm × 3 mm × 2 mm. On the other hand, using “TNA / SS6100” manufactured by Seiko Instruments Inc., the linear thermal expansion coefficient and the glass were measured at a heating rate of 5 ° C./min. The transition temperature was measured. At this time, the coefficient of linear thermal expansion was measured based on a dimensional change between 50 ° C. and 120 ° C.
[0040]
Further, each sealing resin composition was measured with an error of 1 g ± 1%, and the measured sample was sandwiched between release papers, and then heated and pressed at 100 ° C. and 981 N (100 kgf) for 1 hour. Then, the diameter of the molded article was measured to evaluate the resin flowability.
[0041]
Table 1 shows the results.
[0042]
[Table 1]
Figure 2004352783
[0043]
Details of each component in the table are as follows. In addition, except for the silica particles shown below having an average particle diameter of 25 μm (“FB-600X”), the ratio of particles having a particle diameter of 12 μm or more in the description of the delivery test report by the manufacturer was 0%. Was used.
・ Epoxy resin: “CEL-2010” manufactured by Daicel Chemical Industries, Ltd.
・ Curing agent: manufactured by Dainippon Ink and Chemicals, Inc., “Epiclon B-650”
・ Curing accelerator: “2E4MZ” manufactured by Shikoku Chemicals Corporation
・ Silica particles (average particle size: 3 μm): “FB-3SDC” manufactured by Denki Kagaku Kogyo Co., Ltd.
・ Silica particles (average particle size: 0.5 μm): “Admafine SO-C2” manufactured by Admatic Co., Ltd.
-Silica particles (average particle size: 80 nm): manufactured by Nissan Chemical Industries, Ltd., colloidal silica (containing 70% by weight of 2-propanol), "IPA-ST-ZL"
-Silica particles (average particle size: 15 nm): Colloidal silica (containing 70% by weight of 2-propanol), manufactured by Nissan Chemical Industries, Ltd., "IPA-ST"
-Silica particles (average particle size: 3 nm): colloidal silica prepared by a sol-gel method (containing 70% by weight of 2-propanol)
・ Silica particles (average particle size: 25 μm): “FB-600X” manufactured by Denki Kagaku Kogyo Co., Ltd.
According to the results shown in Table 1 above, in Examples 1 to 10, all had low linear thermal expansion coefficients and high glass transition points. On the other hand, Comparative Example 1 using silica particles having a large average particle diameter of 25 μm and Comparative Example 2 using only silica particles having an average particle diameter of 3 μm corresponding to the silica particles (a1) include: Either the linear thermal expansion coefficient was high or the glass transition point was low. In Comparative Examples 3 and 4, silica particles corresponding to the silica particles (a1) and the silica particles (a2) were used. In Comparative Example 3, the ratio of the silica particles (a1) was low. Particles having a high proportion of (a1). In any case, the cured product has voids and cannot be put to practical use. Therefore, the linear thermal expansion coefficient and the glass transition point cannot be measured. Met.
[0044]
【The invention's effect】
As described above, the encapsulating resin composition according to claim 1 has improved moldability even when performing fine encapsulation molding, and the gap in which the encapsulating resin composition is enclosed is about 50 μm or less. In the case of, or when performing a fine molding such as a molding dimension of about 100 μm or less, it is possible to prevent the occurrence of unfilling and exhibit good moldability, and to exhibit a linear thermal expansion coefficient of a cured product. Can be sufficiently reduced, the stress strain due to the difference in linear thermal expansion coefficient with the substrate can be suppressed, and the heat resistance of electronic components such as semiconductor devices can be improved. The transition point can be improved, and thereby the heat resistance can be improved.
[0045]
According to the second aspect of the present invention, the silica particles can be particularly highly filled, and the linear thermal expansion coefficient of the sealed product can be further reduced.
[0046]
According to the third aspect of the present invention, the silica particles can be particularly highly filled, and the linear thermal expansion coefficient of the sealed product can be further reduced.
[0047]
According to the fourth aspect of the present invention, the silica particles can be particularly highly filled, and the linear thermal expansion coefficient of the sealed product can be further reduced.
[0048]
In the encapsulating resin composition according to claim 5, the moldability is improved even when performing fine encapsulation molding, and the gap in which the encapsulating resin composition is encapsulated is about 50 μm or less, Even in the case of fine molding such as molding dimensions of about 100 μm or less, it is possible to prevent unfilling and to exhibit good moldability, and sufficiently reduce the coefficient of linear thermal expansion of the cured product. It can reduce stress and strain due to the difference in linear thermal expansion coefficient with the substrate, improve the heat resistance of electronic components such as semiconductor devices, and improve the glass transition point of the cured product. Thus, the heat resistance can also be improved.
[0049]
Further, in the invention of claim 6, the fluidity of the resin composition is further increased, and the filling property at the time of molding is improved.

Claims (6)

熱硬化性樹脂とシリカ粒子(A)とを含有し、前記シリカ粒子(A)が最大粒径15μm以下であり且つ組成物全量に対して固形分換算で70〜95重量%の割合で含有され、前記シリカ粒子(A)が、平均粒径2〜4μm且つシリカ粒子(A)全量に対する割合が60〜80重量%であるシリカ粒子(a1)と、平均粒径1nm〜1μm且つシリカ粒子(A)全量に対する割合が20〜40重量%であるシリカ粒子(a2)とからなるものであることを特徴とする封止用樹脂組成物。It contains a thermosetting resin and silica particles (A), and the silica particles (A) have a maximum particle size of 15 μm or less and are contained in a proportion of 70 to 95% by weight in terms of solid content with respect to the total amount of the composition. A silica particle (a1) in which the silica particles (A) have an average particle diameter of 2 to 4 μm and a ratio to the total amount of the silica particles (A) of 60 to 80% by weight, and a silica particle (A) having an average particle diameter of 1 nm to 1 μm. A) a silica resin (a2) whose ratio to the total amount is 20 to 40% by weight. 上記シリカ粒子(a2)が、平均粒径200nm〜1μm且つシリカ粒子(A)全量に対する割合が15〜25重量%であるシリカ粒子(a3)と、平均粒径1〜7nm且つシリカ粒子(A)全量に対する割合が2〜15重量%であるシリカ粒子(a4)とからなるものであることを特徴とする請求項1に記載の封止用樹脂組成物。A silica particle (a3) in which the silica particles (a2) have an average particle diameter of 200 nm to 1 μm and a ratio to the total amount of the silica particles (A) of 15 to 25% by weight; and a silica particle (A) having an average particle diameter of 1 to 7 nm. The sealing resin composition according to claim 1, comprising silica particles (a4) having a ratio of 2 to 15% by weight based on the total amount. 上記シリカ粒子(a2)が、平均粒径200nm〜1μm且つシリカ粒子(A)全量に対する割合が15〜25重量%であるシリカ粒子(a3)と、平均粒径60〜100nm且つシリカ粒子(A)全量に対する割合が2〜15重量%であるシリカ粒子(a5)とからなるものであることを特徴とする請求項1に記載の封止用樹脂組成物。A silica particle (a3) in which the silica particle (a2) has an average particle size of 200 nm to 1 μm and a ratio of 15 to 25% by weight based on the total amount of the silica particle (A); and a silica particle (A) having an average particle size of 60 to 100 nm. The encapsulating resin composition according to claim 1, comprising silica particles (a5) having a ratio of 2 to 15% by weight based on the total amount. 上記シリカ粒子(a2)が、平均粒径200nm〜1μm且つシリカ粒子(A)全量に対する割合が15〜25重量%のシリカ粒子(a3)と、平均粒径60〜100nm且つシリカ粒子(A)全量に対する割合が2〜10重量%のシリカ粒子(a5)と、平均粒径10〜30nm且つシリカ粒子(A)全量に対する割合が1〜6重量%のシリカ粒子(a6)とからなるものであることを特徴とする請求項1に記載の封止用樹脂組成物。The silica particles (a2) have an average particle diameter of 200 nm to 1 μm and a ratio of 15 to 25% by weight based on the total amount of the silica particles (A), and the silica particles (a3) have an average particle diameter of 60 to 100 nm and the total amount of the silica particles (A). Of silica particles (a5) having a ratio of 2 to 10% by weight with respect to silica particles (a6) having an average particle diameter of 10 to 30 nm and a ratio of 1 to 6% by weight with respect to the total amount of the silica particles (A). The resin composition for sealing according to claim 1, wherein: 熱硬化性樹脂とシリカ粒子(A)とを含有し、前記シリカ粒子(A)が最大粒径15μm以下であり且つ組成物全量に対して固形分換算で70〜95重量%の割合で含有され、前記シリカ粒子(A)が、平均粒径200nm〜1μm且つシリカ粒子(A)全量に対する割合が60〜80重量%のシリカ粒子(a3)と、平均粒径1〜200nm且つシリカ粒子(A)全量に対する割合が20〜40重量%のシリカ粒子(a7)とからなるものであることを特徴とする封止用樹脂組成物。It contains a thermosetting resin and silica particles (A), and the silica particles (A) have a maximum particle size of 15 μm or less and are contained in a proportion of 70 to 95% by weight in terms of solid content with respect to the total amount of the composition. A silica particle (a3) in which the silica particles (A) have an average particle diameter of 200 nm to 1 μm and a proportion of 60 to 80% by weight based on the total amount of the silica particles (A); and a silica particle (A) having an average particle diameter of 1 to 200 nm. A resin composition for sealing, characterized by comprising silica particles (a7) in a proportion of 20 to 40% by weight based on the total amount. 上記シリカ粒子(A)を構成する粒子のうち、平均粒径1nm〜0.1μmの粒子が、コロイダルシリカであることを特徴とする請求項1乃至5のいずれかに記載の封止用樹脂組成物。The resin composition for sealing according to any one of claims 1 to 5, wherein particles having an average particle diameter of 1 nm to 0.1 µm among particles constituting the silica particles (A) are colloidal silica. object.
JP2003149747A 2003-05-27 2003-05-27 Resin composition for sealing Withdrawn JP2004352783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149747A JP2004352783A (en) 2003-05-27 2003-05-27 Resin composition for sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003149747A JP2004352783A (en) 2003-05-27 2003-05-27 Resin composition for sealing

Publications (1)

Publication Number Publication Date
JP2004352783A true JP2004352783A (en) 2004-12-16

Family

ID=34045760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149747A Withdrawn JP2004352783A (en) 2003-05-27 2003-05-27 Resin composition for sealing

Country Status (1)

Country Link
JP (1) JP2004352783A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036916A (en) * 2004-07-27 2006-02-09 Admatechs Co Ltd Slurry composition, varnish composition, and insulating film and prepreg using the same
WO2008102822A1 (en) 2007-02-20 2008-08-28 Fujifilm Corporation Polymer material containing ultraviolet absorbent
WO2008123504A1 (en) 2007-03-30 2008-10-16 Fujifilm Corporation Ultraviolet ray absorber composition
WO2009022736A1 (en) 2007-08-16 2009-02-19 Fujifilm Corporation Heterocyclic compound, ultraviolet ray absorbent, and composition comprising the ultraviolet ray absorbent
WO2009123141A1 (en) 2008-03-31 2009-10-08 富士フイルム株式会社 Ultraviolet absorbent compositions
WO2009123142A1 (en) 2008-03-31 2009-10-08 富士フイルム株式会社 Ultraviolet absorbent compositions
WO2009136624A1 (en) 2008-05-09 2009-11-12 富士フイルム株式会社 Ultraviolet absorbent composition
JP2014088509A (en) * 2012-10-30 2014-05-15 Panasonic Corp Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board
JP2016079368A (en) * 2014-10-22 2016-05-16 株式会社Kri Low thermal expandable resin composition and manufacturing method therefor
KR101927632B1 (en) * 2017-08-01 2019-02-20 주식회사 케이씨씨 Epoxy resin composition and semiconductor device comprising the same
WO2021079677A1 (en) * 2019-10-24 2021-04-29 パナソニックIpマネジメント株式会社 Resin composition for sealing and semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036916A (en) * 2004-07-27 2006-02-09 Admatechs Co Ltd Slurry composition, varnish composition, and insulating film and prepreg using the same
WO2008102822A1 (en) 2007-02-20 2008-08-28 Fujifilm Corporation Polymer material containing ultraviolet absorbent
WO2008123504A1 (en) 2007-03-30 2008-10-16 Fujifilm Corporation Ultraviolet ray absorber composition
WO2009022736A1 (en) 2007-08-16 2009-02-19 Fujifilm Corporation Heterocyclic compound, ultraviolet ray absorbent, and composition comprising the ultraviolet ray absorbent
WO2009123141A1 (en) 2008-03-31 2009-10-08 富士フイルム株式会社 Ultraviolet absorbent compositions
WO2009123142A1 (en) 2008-03-31 2009-10-08 富士フイルム株式会社 Ultraviolet absorbent compositions
WO2009136624A1 (en) 2008-05-09 2009-11-12 富士フイルム株式会社 Ultraviolet absorbent composition
JP2014088509A (en) * 2012-10-30 2014-05-15 Panasonic Corp Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board
JP2016079368A (en) * 2014-10-22 2016-05-16 株式会社Kri Low thermal expandable resin composition and manufacturing method therefor
KR101927632B1 (en) * 2017-08-01 2019-02-20 주식회사 케이씨씨 Epoxy resin composition and semiconductor device comprising the same
WO2021079677A1 (en) * 2019-10-24 2021-04-29 パナソニックIpマネジメント株式会社 Resin composition for sealing and semiconductor device
CN114585684A (en) * 2019-10-24 2022-06-03 松下知识产权经营株式会社 Resin composition for sealing and semiconductor device

Similar Documents

Publication Publication Date Title
JP2011184650A (en) Resin composition for electronic component encapsulation and electronic component device using the same
JPH0329259B2 (en)
JP2004352783A (en) Resin composition for sealing
JP2004161900A (en) Basic silica powder, its preparation method, and resin composition
JP2005206768A (en) Resin composition for sealing semiconductor and semiconductor device using the same
JPS6326128B2 (en)
JP5275697B2 (en) Epoxy resin composition for sealing and method for producing the same
JPH0366151A (en) Semiconductor device
JP3413962B2 (en) Epoxy resin composition for molding
JP2593843B2 (en) Semiconductor device
JP2002012654A (en) Epoxy resin composition for sealing semiconductor
JP3880211B2 (en) Resin composition for sealing and semiconductor device
JP3375107B2 (en) Epoxy resin composition for semiconductor encapsulation
KR102643484B1 (en) Granule type resin composition for encapsulating a semiconductor device
JP2004115747A (en) Resin composition for forming heat sink and device for encapsulating electronic part
JPH0588904B2 (en)
JPH0820707A (en) Sealing epoxy resin composition
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JP4270059B2 (en) Semiconductor sealing resin composition and semiconductor device
JP2716962B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2523669B2 (en) Semiconductor device
JP2003176336A (en) Resin composition for ball-grid-array
JP2005068330A (en) Thermosetting resin composition
JPH05235211A (en) Plastic molded type semiconductor device
JPS63160255A (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801