JP2016079368A - Low thermal expandable resin composition and manufacturing method therefor - Google Patents
Low thermal expandable resin composition and manufacturing method therefor Download PDFInfo
- Publication number
- JP2016079368A JP2016079368A JP2014215512A JP2014215512A JP2016079368A JP 2016079368 A JP2016079368 A JP 2016079368A JP 2014215512 A JP2014215512 A JP 2014215512A JP 2014215512 A JP2014215512 A JP 2014215512A JP 2016079368 A JP2016079368 A JP 2016079368A
- Authority
- JP
- Japan
- Prior art keywords
- inorganic filler
- resin
- resin composition
- low thermal
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、低線膨張特性を有する種々の材料群の中で、有機樹脂と無機充填材の混合物によって低線膨張性を発現する材料に関するものである。 The present invention relates to a material that exhibits low linear expansion by a mixture of an organic resin and an inorganic filler among various materials having low linear expansion characteristics.
代表的な半導体装置であるダイオード、トランジスタ、IC、LSI等は、半導体チップや基板等の部材を熱硬化性樹脂からなる有機樹脂封止材によって封止することで、半導体装置として製造されている。成形加工性を発現させるための有機樹脂マトリックスと高温下でも熱変形性を無視できる大量の無機充填材との組み合わせによって、樹脂組成物全体としての低熱膨張化を企図したものである(例えば、特許文献1参照)。 Typical semiconductor devices such as diodes, transistors, ICs, LSIs, and the like are manufactured as semiconductor devices by sealing members such as semiconductor chips and substrates with an organic resin sealing material made of a thermosetting resin. . The combination of an organic resin matrix for expressing moldability and a large amount of inorganic filler that can ignore thermal deformation even at high temperatures is intended to reduce the thermal expansion of the entire resin composition (for example, patents) Reference 1).
しかし、このような低熱膨張性樹脂組成物であっても、より厳しい高温環境下に置かれた場合には熱膨張の大きさに起因する種々のトラブルを起こすことが分かっている。分かりやすい事例として、パワートランジスタに代表される大電流回路に組み込まれる半導体素子では、駆動時の発熱量も大きく、半導体装置全体が高温に曝される。そこで、封止材組成物には放熱性を上げる対策が求められる一方、発熱量と放熱量のアンバランスのため半導体装置そのものに蓄積されていく熱量による封止材の熱膨張変形を低減する対策も必要となる。実際には有機樹脂封止材中の有機樹脂マトリックスの熱膨張が主因である熱変形によって、半導体素子と有機樹脂マトリックス成分との界面に剥離やクラックが生じ、水分の影響を受けるなど封止の効果を減ずることになる。 However, even such a low thermal expansion resin composition has been found to cause various troubles due to the magnitude of thermal expansion when placed in a severer high temperature environment. As an easy-to-understand example, a semiconductor element incorporated in a large current circuit typified by a power transistor also generates a large amount of heat during driving, and the entire semiconductor device is exposed to high temperatures. Therefore, while measures to increase heat dissipation are required for the encapsulant composition, measures to reduce thermal expansion deformation of the encapsulant due to the amount of heat accumulated in the semiconductor device itself due to imbalance between the amount of heat generated and the amount of heat released. Is also required. In fact, due to thermal deformation, which is mainly caused by the thermal expansion of the organic resin matrix in the organic resin encapsulant, peeling or cracking occurs at the interface between the semiconductor element and the organic resin matrix component, and the effect of moisture The effect will be reduced.
高温環境下における熱膨張変形抑制には二つの考え方があり、樹脂マトリックス成分の化学構造をできるだけ剛直なものから選定すると同時に架橋密度を上げるもの(例えば、特許文献2参照)と、半導体装置の使用環境下における熱膨張率が極めて小さな無機成分を多量に充填するものである(例えば、特許文献3、4参照)。しかし前者の選定には、成形性や耐トラッキング性改善の両立など化学構造面からの対策が求められる他の特性も考慮しなければならない。一方で無機質充填に関しても、成形性その他の要因とのバランスから現状で充填量はほぼ上限にあり、低熱膨張性樹脂組成物の設計自由度は必ずしも高くはない。改質の方向性として無機ナノ粒子ポリマーコンポジット化による線膨張係数低減も報告されているが、ナノ粒子配合の効果としては限定的であり、更なる改善の余地が残っている(非特許文献1)。多様な樹脂マトリックス種の選定自由度を維持しつつ、より優れた低熱膨張特性を発現するための技術が求められている。 There are two ways to suppress thermal expansion deformation in a high temperature environment. The chemical structure of the resin matrix component is selected from the most rigid ones and at the same time the crosslink density is increased (for example, see Patent Document 2), and the use of semiconductor devices. A large amount of an inorganic component having an extremely low thermal expansion coefficient under the environment is filled (see, for example, Patent Documents 3 and 4). However, the selection of the former must also take into account other characteristics that require countermeasures from the chemical structural aspect, such as improving moldability and tracking resistance. On the other hand, as for inorganic filling, the filling amount is almost at the upper limit from the balance with moldability and other factors, and the degree of design freedom of the low thermal expansion resin composition is not necessarily high. Although the linear expansion coefficient reduction by the inorganic nanoparticle polymer composite is reported as the direction of modification, the effect of the nanoparticle combination is limited, and there is still room for further improvement (Non-patent Document 1). ). There is a need for a technique for expressing superior low thermal expansion characteristics while maintaining the flexibility of selection of various resin matrix species.
本発明は、上記した課題を解決するためになされたもので、特定の有機樹脂マトリックス種に依存せず、より優れた低熱膨張特性を有する樹脂組成物を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a resin composition having more excellent low thermal expansion characteristics without depending on a specific organic resin matrix species.
本発明者らは上記した課題を解決するために鋭意検討を進めた結果、従来のミクロンオーダーの無機粒子にナノオーダーの超微細無機充填材を共存させることにより低熱膨張特性を有する樹脂組成物を提供できることを見出した。
すなわち、本発明は、以下の技術的手段から構成される。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a resin composition having low thermal expansion characteristics by allowing nano-order ultrafine inorganic fillers to coexist with conventional micron-order inorganic particles. I found out that it can be provided.
That is, the present invention comprises the following technical means.
〔1〕 無機充填材と有機樹脂とからなる樹脂組成物であって、
硬化性樹脂(A1)または熱可塑性樹脂(A2)からなる有機樹脂マトリックス(A)中に、平均一次粒子径が1〜50nmである超微細無機充填材(B)がその一次粒子径レベルで均一分散されてなり、さらに、平均粒子径が0.3〜50μmである無機充填材(C)が分散されてなる有機樹脂組成物であって、超微細無機充填材(B)の配合量が樹脂マトリックス(A)に対して2〜30質量%であり、超微細無機充填材(B)と無機充填材(C)と合わせた無機成分の総計が、前記樹脂組成物の60〜95質量%であることを特徴とする低熱膨張性樹脂組成物。
〔2〕 前記超微細無機充填材(B)の一次粒子及び/又は無機充填材(C)が、有機樹脂マトリックス(A)を形成する硬化性樹脂(A1)または熱可塑性樹脂(A2)を構成する分子の化学構造と静電的相互作用、ファンデルワールス相互作用、水素結合性相互作用、π/πスタッキング相互作用、配位結合力、電荷移動相互作用及び疎水効果のいずれか一つ以上の相互作用を通して引力を生じうる表面処理部を有することを特徴とする請求項1に記載の低熱膨張性樹脂組成物。
〔3〕 溶媒に前記硬化性樹脂(A1)を形成するモノマーを溶解させた溶液中に、前記平均一次粒子径が1〜50nmである微細無機充填材(B)を混合し、均一分散させた後、溶媒を除去した固形物を粉砕して粉末状にした微細無機充填材含有有機樹脂マトリックスを生成し、前記微細無機充填材含有有機樹脂マトリックスに前記硬化性樹脂(A1)を形成するモノマー又は前記硬化性樹脂(A1)と種類の異なる硬化性樹脂を形成するモノマー、平均粒子径が3〜50μmである無機充填材(C)及び硬化触媒を加えて溶融混合して後、成形することを特徴とする低熱膨張性樹脂組成物の製造方法。
〔4〕 溶媒に前記熱可塑性樹脂(A2)を溶解させた溶液中に、前記平均一次粒子径が1〜50nmである微細無機充填材(B)を混合し、均一分散させた後、溶媒を除去した固形物を粉砕して粉末状にした微細無機充填材含有有機樹脂マトリックスを生成し、前記微細無機充填材含有有機樹脂マトリックスに前記平均粒子径が0.3〜50μmである無機充填材(C)および追加の前記熱可塑性樹脂(A2)を加え、溶融状態で混合した後、成形することを特徴とする低熱膨張性樹脂組成物の製造方法。
膨張性樹脂組成物の製造方法。
[1] A resin composition comprising an inorganic filler and an organic resin,
In the organic resin matrix (A) made of the curable resin (A1) or the thermoplastic resin (A2), the ultrafine inorganic filler (B) having an average primary particle size of 1 to 50 nm is uniform at the primary particle size level. An organic resin composition in which an inorganic filler (C) having an average particle size of 0.3 to 50 μm is dispersed, and the blending amount of the ultrafine inorganic filler (B) is a resin. It is 2-30 mass% with respect to a matrix (A), and the sum total of the inorganic component combined with the ultrafine inorganic filler (B) and the inorganic filler (C) is 60-95 mass% of the said resin composition. A low thermal expansion resin composition characterized by being.
[2] Primary particles of the ultrafine inorganic filler (B) and / or inorganic filler (C) constitute a curable resin (A1) or a thermoplastic resin (A2) that forms the organic resin matrix (A). One or more of chemical structure and electrostatic interaction, van der Waals interaction, hydrogen bonding interaction, π / π stacking interaction, coordination bond force, charge transfer interaction and hydrophobic effect The low thermal expansion resin composition according to claim 1, further comprising a surface treatment portion capable of generating an attractive force through interaction.
[3] The fine inorganic filler (B) having an average primary particle size of 1 to 50 nm is mixed and uniformly dispersed in a solution in which the monomer that forms the curable resin (A1) is dissolved in a solvent. Thereafter, a fine inorganic filler-containing organic resin matrix is obtained by pulverizing the solid material from which the solvent has been removed to form a powder, and the curable resin (A1) is formed on the fine inorganic filler-containing organic resin matrix. A monomer that forms a curable resin different in kind from the curable resin (A1), an inorganic filler (C) having an average particle diameter of 3 to 50 μm, and a curing catalyst are added, melt-mixed, and then molded. A method for producing a low thermal expansion resin composition.
[4] In a solution obtained by dissolving the thermoplastic resin (A2) in a solvent, the fine inorganic filler (B) having an average primary particle diameter of 1 to 50 nm is mixed and uniformly dispersed, and then the solvent is added. A fine inorganic filler-containing organic resin matrix is formed by pulverizing the removed solid material into a powder form, and the fine inorganic filler-containing organic resin matrix has an inorganic filler having an average particle diameter of 0.3 to 50 μm ( A method for producing a low thermal expansion resin composition, comprising adding C) and the additional thermoplastic resin (A2), mixing in a molten state, and then molding.
A method for producing an expandable resin composition.
大小2種類の平均粒子径を有する無機充填材を用い、それぞれに適切な表面処理を施した上で有機樹脂組成物を形成することで、成形加工後に熱膨張特性が極めて小さく、耐熱性に優れた封止材を得ることができる。このような性能が要求される用途、特に発熱量が多く高い耐熱性が要求されるパワー半導体の封止材はもちろん、樹脂封止型のダイオード、トランジスタ、IC、LSI、超LSI等のパッケージに好適に用いることができる。 By using an inorganic filler having two kinds of large and small average particle diameters and applying an appropriate surface treatment to each, the organic resin composition is formed, so that the thermal expansion characteristics are extremely small after molding, and the heat resistance is excellent. An encapsulant can be obtained. Applications that require such performance, especially power semiconductor encapsulants that require a large amount of heat and high heat resistance, as well as resin encapsulated diodes, transistors, ICs, LSIs, super LSIs, and other packages It can be used suitably.
以下、本発明の低熱膨張性樹脂組成物を詳細に説明する。 Hereinafter, the low thermal expansion resin composition of the present invention will be described in detail.
[有機樹脂マトリックス(A)(硬化性樹脂あるいは熱可塑性樹脂)]
本発明に用いる硬化性樹脂(A1)は特に限定されるものではない。熱、光等の外部トリガーによって重合を開始し、分子量が増大し樹脂が形成されるものであればよい。例えば、アクリル樹脂やメタクリル樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリウレタン樹脂、エポキシ樹脂等を例示できる。
有機樹脂マトリックスとして、これらの中で半導体分野での使用実績が多いエポキシ樹脂が本発明として好適であるといえる。
エポキシ樹脂としては、例えば、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールアルカン型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェニエル骨格含有アラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、多官能型エポキシ樹脂、複素環型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂等が挙げられ、これらのうちの一種または二種以上を併用してもよい。
[Organic resin matrix (A) (curable resin or thermoplastic resin)]
The curable resin (A1) used in the present invention is not particularly limited. What is necessary is that polymerization is started by an external trigger such as heat and light, the molecular weight is increased, and a resin is formed. For example, acrylic resin, methacrylic resin, phenol resin, urea resin, melamine resin, polyurethane resin, epoxy resin and the like can be exemplified.
As the organic resin matrix, an epoxy resin having a great track record in the semiconductor field among these can be said to be suitable for the present invention.
Examples of the epoxy resin include novolak type epoxy resin, cresol novolak type epoxy resin, triphenolalkane type epoxy resin, aralkyl type epoxy resin, biphenyl skeleton-containing aralkyl type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, Multifunctional epoxy resin, heterocyclic epoxy resin, naphthalene ring-containing epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, stilbene type epoxy resin, etc. are used, and one or more of these are used in combination May be.
有機樹脂マトリックス(A)として硬化性樹脂(A1)を用いる場合は、硬化剤が必要な場合がある。硬化剤は、硬化性樹脂に通常用いられるそれぞれの硬化剤を用いればよい。
エポキシ樹脂と組み合わせる硬化剤を例示すれば、例えば、フェノールノボラック樹脂、ナフタレン環含有フェノール樹脂、フェノールアラルキル型フェノール樹脂、アラルキル型フェノール樹脂、ビフェニル骨格含有アラルキル型フェノール樹脂、ビフェニル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、脂環式フェノール樹脂、複素環型フェノール樹脂、ナフタレン環含有フェノール樹脂、ビスフェノールA、ビスフェノールF等のフェノール樹脂、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルハイミックス酸等の酸無水物等が挙げられ、これらのうちの一種または二種以上を併用してもよい。
エポキシ樹脂と硬化剤との配合割合については特に制限はないが、エポキシ樹脂中に含まれるエポキシ基1モルに対して、硬化剤中に含まれるフェノール性水酸基または酸無水物基のモル比が0.5〜1.5、好ましくは0.8〜1.2の範囲となることが望ましい。さらに適宜、硬化促進剤を添加してもよい。
When the curable resin (A1) is used as the organic resin matrix (A), a curing agent may be necessary. What is necessary is just to use each hardening | curing agent normally used for curable resin as a hardening | curing agent.
Examples of curing agents combined with epoxy resins include phenol novolac resins, naphthalene ring-containing phenol resins, phenol aralkyl type phenol resins, aralkyl type phenol resins, biphenyl skeleton-containing aralkyl type phenol resins, biphenyl type phenol resins, dicyclopentadiene. Type phenol resin, alicyclic phenol resin, heterocyclic phenol resin, phenol resin containing naphthalene ring, phenol resin such as bisphenol A, bisphenol F, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, Examples include acid anhydrides such as methylhymic anhydride, and one or more of these may be used in combination.
Although there is no restriction | limiting in particular about the compounding ratio of an epoxy resin and a hardening | curing agent, The molar ratio of the phenolic hydroxyl group or acid anhydride group contained in a hardening | curing agent is 0 with respect to 1 mol of epoxy groups contained in an epoxy resin. It is desirable to be in the range of .5 to 1.5, preferably 0.8 to 1.2. Furthermore, you may add a hardening accelerator suitably.
本発明に用いる熱可塑性樹脂(A2)は特に限定されるものではないが、溶融加工温度が使用目的(例えば半導体封止材であれば、半導体素子そのものやリード線等の構造や特性)に及ぼす影響も考慮し適宜最適なものを選ぶ必要がある。具体例としては、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリカーボネート系樹脂、ポリエーテル系樹脂等を挙げることができる。後述の超微細無機充填材(C)との均一混合性を考慮し、熱可塑性樹脂(A2)の分子量は適宜調節することが望ましい。 The thermoplastic resin (A2) used in the present invention is not particularly limited, but the melt processing temperature affects the purpose of use (for example, the structure and characteristics of the semiconductor element itself and the lead wire in the case of a semiconductor sealing material). It is necessary to select the most appropriate one in consideration of the influence. Specific examples include polyester resins, polyamide resins, polycarbonate resins, polycarbonate resins, polyether resins, and the like. It is desirable to appropriately adjust the molecular weight of the thermoplastic resin (A2) in consideration of uniform mixing with the ultrafine inorganic filler (C) described later.
[超微細無機充填材(B)]
本発明に用いる超微細無機充填材(B)は、特に限定されるものではないが、その一次粒子径が5〜50nmの範囲内にあることが必要であり、さらに5〜15nmであることが望ましい。一次粒子径とは粉体あるいは溶媒中に分散した超微細無機充填材(B)の幾何学的形態を構成する最小単位を意味し、例えば、本発明の低熱膨張性樹脂組成物成形品の任意の断面に対する透過型電子顕微鏡(TEM)観察での粒子像の直接測定あるいは動的光散乱に基づく粒度分布測定によるピークトップ値によって評価される。超微細無機充填材(B)の形状は球状や多面体であっても紡錘上、繊維状、鱗片状(シート状)等の異方性形態であってもよい。異方性形態の場合、本発明における一次粒子径とは観察面に露出した超微細無機充填材(B)の短軸径で表す。いずれの形状であっても観察面に露出した超微細無機充填材(B)100個の一次粒子径を読み取り、その相加平均でもって規定する。
[Ultra fine inorganic filler (B)]
Although the ultrafine inorganic filler (B) used for this invention is not specifically limited, The primary particle diameter needs to exist in the range of 5-50 nm, Furthermore, it is 5-15 nm. desirable. The primary particle diameter means the minimum unit constituting the geometric form of the ultrafine inorganic filler (B) dispersed in a powder or a solvent. For example, the arbitrary particle size of the low thermal expansion resin composition molded article of the present invention It is evaluated by a peak top value by direct measurement of a particle image in a transmission electron microscope (TEM) observation on a cross section of the particle size or measurement of particle size distribution based on dynamic light scattering. The ultrafine inorganic filler (B) may have a spherical shape or a polyhedron shape, or may have an anisotropic form such as a fiber shape or a scale shape (sheet shape) on a spindle. In the case of an anisotropic form, the primary particle diameter in the present invention is represented by the short axis diameter of the ultrafine inorganic filler (B) exposed on the observation surface. Regardless of the shape, the primary particle diameter of 100 ultrafine inorganic fillers (B) exposed on the observation surface is read and defined by the arithmetic average thereof.
係る超微細無機充填材(B)の具体例としては、シリカ、アルミナ、酸化亜鉛、イットリア、酸化スズ、チタニア、酸化鉄(ヘマタイト)、酸化銅、酸化コバルト、酸化セレン、酸化ビスマス(ビスマイト)等の合成的に微細粒子を形成しえる金属酸化物系材料を挙げることができる。入手性や粒径制御の観点からシリカ、アルミナが好適に用いられる。 Specific examples of the ultrafine inorganic filler (B) include silica, alumina, zinc oxide, yttria, tin oxide, titania, iron oxide (hematite), copper oxide, cobalt oxide, selenium oxide, bismuth oxide (bismite), and the like. There can be mentioned metal oxide materials which can form fine particles synthetically. Silica and alumina are preferably used from the viewpoint of availability and particle size control.
超微細無機充填(B)材は、本発明の低熱膨張性樹脂組成物の有機樹脂マトリックス(A)中に均一分散されていることが必要である。均一分散とは凝集体を形成することなく原料の一次粒子径を保持してマトリックス中に混合していることを意味し、本発明の効果を得るには一次粒子径で均一分散していることが必要である。係る状態であれば、超微細無機粒子(B)全体の表面積が極めて大きくなり、樹脂成分との界面接触面積が大きく一方で、平均の粒子間距離も短くなることから樹脂成分のセグメントレベルでの分子運動が拘束され、熱膨張性が大きく低減されることが期待できる。 The ultrafine inorganic filler (B) material needs to be uniformly dispersed in the organic resin matrix (A) of the low thermal expansion resin composition of the present invention. Uniform dispersion means that the raw material primary particle diameter is maintained and mixed in the matrix without forming an aggregate, and to obtain the effect of the present invention, the primary particle diameter is uniformly dispersed. is necessary. In such a state, the surface area of the entire ultrafine inorganic particles (B) becomes extremely large, and the interfacial contact area with the resin component is large, while the average interparticle distance is also shortened. It can be expected that molecular motion is restrained and thermal expansibility is greatly reduced.
超微細無機充填材(B)は、その表面に低熱膨張性樹脂組成物の有機樹脂マトリックス成分(A)と何らかの引力相互作用をもつ化学基が修飾されていることが好ましい。このような化学基の種類は限定されないが、樹脂マトリックス成分(A)を構成する硬化性樹脂(A1)あるいは熱可塑性樹脂(A2)を構成する分子の化学構造と、静電的相互作用、ファンデルワールス相互作用、水素結合性相互作用、π/πスタッキング相互作用、配位結合力、電荷移動相互作用あるいは疎水効果のいずれかの相互作用をする化学基であることが必要である。
具体的な相互作用基としては、アルキル基、分岐アルキル基、長鎖アルキル基、フェニル基、カルボニル基(カルボキシル基、エステル基、アルデヒド基、ケトン基)、アセタール基、ヒドロキシル基、アミノ基(アミド基)、イミノ基、ニトリル基、フェニル基、シクロヘキシル基、4級アンモニウム基、エポキシ基、酸無水物基、スルホン酸基、チオール基、スルフィド基、ニトリル基、アゾ基等を挙げることができ、これらを少なくとも一種以上有する化学基あるいは塩である。
The ultrafine inorganic filler (B) is preferably modified on the surface thereof with a chemical group having some attractive interaction with the organic resin matrix component (A) of the low thermal expansion resin composition. Although the kind of such chemical groups is not limited, the chemical structure of the molecule constituting the curable resin (A1) or the thermoplastic resin (A2) constituting the resin matrix component (A), electrostatic interaction, fan It is necessary to be a chemical group that interacts with any one of Delwals interaction, hydrogen bonding interaction, π / π stacking interaction, coordination bond force, charge transfer interaction, or hydrophobic effect.
Specific interactive groups include alkyl groups, branched alkyl groups, long chain alkyl groups, phenyl groups, carbonyl groups (carboxyl groups, ester groups, aldehyde groups, ketone groups), acetal groups, hydroxyl groups, amino groups (amides) Group), imino group, nitrile group, phenyl group, cyclohexyl group, quaternary ammonium group, epoxy group, acid anhydride group, sulfonic acid group, thiol group, sulfide group, nitrile group, azo group, etc. It is a chemical group or salt having at least one of these.
一方で、上記の相互作用基を超微細無機充填材(B)の表面に修飾させるには、有機樹脂マトリックス(A)との相互作用基と反対側に超微細無機充填材(B)の表面と結合できる化学構造を持っていることが必要である。このためにメトキシ基やエトキシ基を有するシランカップリング剤が好適に用いられる。シランカップリング剤による表面修飾を行う場合には、公知に種々の手順に従って超微細無機充填材(B)に反応させることになるが、一次粒子レベルでの反応が制御しやすいように、シランカップリング剤を予め十分に加水分解させた水溶液を調製し、充填材と混合後、十分に撹拌し被覆を行う方法が好ましい。その後、濾別してフィラーを回収し、可能ならば後述の低熱膨張性樹脂組成物の調製時に利用しやすいように、適切な溶媒を用いてゾル化しておくとよい。 On the other hand, in order to modify the interaction group on the surface of the ultrafine inorganic filler (B), the surface of the ultrafine inorganic filler (B) on the side opposite to the interaction group with the organic resin matrix (A). It is necessary to have a chemical structure that can be bound to. For this purpose, a silane coupling agent having a methoxy group or an ethoxy group is preferably used. When surface modification with a silane coupling agent is carried out, it is made to react with the ultrafine inorganic filler (B) according to various known procedures. In order to easily control the reaction at the primary particle level, the silane cup is used. A method in which an aqueous solution in which a ring agent is sufficiently hydrolyzed in advance is prepared and mixed with a filler, followed by sufficient stirring and coating is preferable. Thereafter, the filler is collected by filtration, and if possible, it may be made into a sol using an appropriate solvent so that it can be easily used when preparing the low thermal expansion resin composition described later.
このような化学基による超微細無機充填材(B)の表面被覆は、化学基一層分の厚みで覆われていることが望ましく、それ以上の厚みとなると本発明の効果が発現しにくくなる。一方で被覆量が過度に少ないと、当該超微細無機充填剤(B)を樹脂マトリックス(A)中に一次粒子径で均一分散させることが困難になる。 The surface coating of the ultrafine inorganic filler (B) with such a chemical group is desirably covered with a thickness equivalent to one chemical group, and if the thickness is more than that, the effect of the present invention is hardly exhibited. On the other hand, when the coating amount is excessively small, it becomes difficult to uniformly disperse the ultrafine inorganic filler (B) in the resin matrix (A) with a primary particle size.
[無機充填材(C)]
本発明に用いる無機充填材(C)は、特に限定されるものではないが、その粒子径が0.3〜50μmの範囲内にあることが必要であり、さらに5〜15μmであることが望ましい。その形状は球状や多面体であっても紡錘上、繊維状、鱗片状(シート状)等の異方性形態であってもよい。原料粉体あるいはそのゾル中に存在する無機充填材(C)の幾何学的形状は、走査型電子顕微鏡(SEM)等によって直接観察することができる。本発明における平均粒子径とは、動的光散乱式の粒度分布測定における累積質量平均値(またはメジアン径)として測定できる値である。
[Inorganic filler (C)]
Although the inorganic filler (C) used for this invention is not specifically limited, The particle diameter needs to exist in the range of 0.3-50 micrometers, and it is desirable that it is 5-15 micrometers further. . The shape may be a spherical shape or a polyhedron, or may be an anisotropic form such as a fiber shape or a scale shape (sheet shape) on a spindle. The geometric shape of the raw material powder or the inorganic filler (C) present in the sol can be directly observed with a scanning electron microscope (SEM) or the like. The average particle diameter in the present invention is a value that can be measured as a cumulative mass average value (or median diameter) in the dynamic light scattering particle size distribution measurement.
係る無機充填材(C)の具体例としては、非晶シリカ、結晶シリカ等のシリカ類、アルミナ、窒化珪素、窒化アルミニウム、ボロンナイトライト、酸化チタン、ガラス繊維等が挙げられるが、入手性や粒径制御の観点からシリカ類、アルミナが好適に用いられる。
無機充填材(C)は、本発明の低熱膨張性樹脂組成物の有機樹脂マトリックス(A)と超微細無機充填材(B)とが均一分散されている組成物と均一に混合されることが必要である。均一混合とは凝集体を形成することなくマトリックスと混合していることを意味する。係る状態であれば、無機粒子成分比率が低熱膨張性樹脂組成物のいずれの部分であっても均質になり、無機粒子成分間に存在する有機樹脂マトリックス(A)成分の体積が小さくなることで、低熱膨張性樹脂組成物全体が均等に熱変形できるようになり、結果として、観測される全体の熱膨張性も低減される。
Specific examples of the inorganic filler (C) include silicas such as amorphous silica and crystalline silica, alumina, silicon nitride, aluminum nitride, boron nitrite, titanium oxide, glass fiber, and the like. Silicas and alumina are preferably used from the viewpoint of particle size control.
The inorganic filler (C) may be uniformly mixed with a composition in which the organic resin matrix (A) and the ultrafine inorganic filler (B) of the low thermal expansion resin composition of the present invention are uniformly dispersed. is necessary. Homogeneous mixing means mixing with the matrix without forming aggregates. In such a state, the inorganic particle component ratio is uniform regardless of the portion of the low thermal expansion resin composition, and the volume of the organic resin matrix (A) component existing between the inorganic particle components is reduced. The entire low thermal expansion resin composition can be uniformly thermally deformed, and as a result, the observed overall thermal expansion is also reduced.
無機充填材(C)は、その表面に低熱膨張性樹脂組成物の有機樹脂マトリックス(A)成分と何らかの引力相互作用をもつ化学基が修飾されていることが好ましい。このような化学基の種類は限定されないが、樹脂マトリックス成分(A)を構成する硬化性樹脂(A1)あるいは熱可塑性樹脂(A2)を構成する分子の化学構造と、静電的相互作用、ファンデルワールス相互作用、水素結合性相互作用、π/πスタッキング相互作用、配位結合力、電荷移動相互作用あるいは疎水効果のいずれかの相互作用をする化学基であることが必要である。
具体的な相互作用基としては、アルキル基、分岐アルキル基、長鎖アルキル基、フェニル基、カルボニル基(カルボキシル基、エステル基、アルデヒド基、ケトン基)、アセタール基、ヒドロキシル基、アミノ基(アミド基)、イミノ基、ニトリル基、フェニル基、シクロヘキシル基、4級アンモニウム基、エポキシ基、酸無水物基、スルホン酸基、チオール基、スルフィド基、ニトリル基、アゾ基等を挙げることができ、これらを少なくとも一種以上有する化学基あるいは塩である。
The inorganic filler (C) is preferably modified on its surface with a chemical group having some attractive interaction with the organic resin matrix (A) component of the low thermal expansion resin composition. Although the kind of such chemical groups is not limited, the chemical structure of the molecule constituting the curable resin (A1) or the thermoplastic resin (A2) constituting the resin matrix component (A), electrostatic interaction, fan It is necessary to be a chemical group that interacts with any one of Delwals interaction, hydrogen bonding interaction, π / π stacking interaction, coordination bond force, charge transfer interaction, or hydrophobic effect.
Specific interactive groups include alkyl groups, branched alkyl groups, long chain alkyl groups, phenyl groups, carbonyl groups (carboxyl groups, ester groups, aldehyde groups, ketone groups), acetal groups, hydroxyl groups, amino groups (amides) Group), imino group, nitrile group, phenyl group, cyclohexyl group, quaternary ammonium group, epoxy group, acid anhydride group, sulfonic acid group, thiol group, sulfide group, nitrile group, azo group, etc. It is a chemical group or salt having at least one of these.
必要に応じてなされる、上記相互作用基の無機充填材(C)の表面への修飾には、有機樹脂マトリックス(A)との相互作用基と反対側に無機充填材(C)の表面と結合できる化学構造を持つ化学基によってなされる。このためにメトキシ基やエトキシ基を有するシランカップリング剤が好適に用いられる。シランカップリング剤による表面修飾を行う場合には、公知に種々の手順に従って超微細無機充填材(B)に反応させることになるが、一次粒子レベルでの反応が制御しやすいように、シランカップリング剤を予め十分に加水分解させた水溶液を調製し、充填材と混合後、十分に撹拌し被覆を行う方法が好ましい。その後、濾別してフィラーを回収し、乾燥、粗粉砕を経て、後述の低熱膨張性樹脂組成物の調製時に用いる。 For modification of the surface of the inorganic filler (C) with the interaction group, which is performed as necessary, the surface of the inorganic filler (C) on the side opposite to the interaction group with the organic resin matrix (A) It is made by a chemical group with a chemical structure that can be bound. For this purpose, a silane coupling agent having a methoxy group or an ethoxy group is preferably used. When surface modification with a silane coupling agent is carried out, it is made to react with the ultrafine inorganic filler (B) according to various known procedures. In order to easily control the reaction at the primary particle level, the silane cup is used. A method in which an aqueous solution in which a ring agent is sufficiently hydrolyzed in advance is prepared and mixed with a filler, followed by sufficient stirring and coating is preferable. Thereafter, the filler is collected by filtration, dried, and coarsely pulverized, and used in the preparation of a low thermal expansion resin composition described below.
このような化学基による無機充填材(C)の表面被覆は、化学基一層分の厚みで覆われていることが望ましく、それ以上の厚みとなると本発明の効果が発現しにくくなる。一方で被覆量が過度に少ないと、当該無機充填剤(C)と樹脂マトリックス(A)との接着性が低下し、本発明の効果が発現しにくくなるので好ましくない。 The surface coating of the inorganic filler (C) with such a chemical group is desirably covered with a thickness equivalent to one chemical group, and if the thickness is larger than that, the effect of the present invention is hardly exhibited. On the other hand, when the coating amount is excessively small, the adhesiveness between the inorganic filler (C) and the resin matrix (A) is lowered, and the effects of the present invention are hardly exhibited.
[低熱膨張性樹脂組成物]
本発明の低熱膨張性樹脂組成物には、前記超微細無機充填材(B)が有機樹脂マトリックス(A)に対して2〜30質量%配合され、前記無機充填材(C)と合せた無機成分の総計が、前記樹脂組成物の60〜95質量%であることが必要である。超微細無機充填材(B)の配合量が2質量%未満であると超微細無機充填材(B)配合による低熱膨張化の効果が得られず、逆に30質量%を超えると無機充填材(C)との混合工程に支障を来すほど微細無機充填材含有有機樹脂マトリックス(A)成分の流動性が低下するため好ましくない。また無機充填材(C)も含めた無機成分の総計が60質量%未満であると低熱膨張性樹脂組成物全体の熱膨張低減効果が不十分となり、超微細無機充填材(B)を配合しない従来品との差異が乏しくなる。一方で95質量%を超えると、有機成分による成形性低下し、低熱膨張性樹脂組成物の成形品形成が困難になることから好ましくない。
[Low thermal expansion resin composition]
In the low thermal expansion resin composition of the present invention, the ultrafine inorganic filler (B) is blended in an amount of 2 to 30% by mass with respect to the organic resin matrix (A), and an inorganic material combined with the inorganic filler (C). It is necessary that the total amount of the components is 60 to 95% by mass of the resin composition. If the blending amount of the ultrafine inorganic filler (B) is less than 2% by mass, the effect of low thermal expansion cannot be obtained by blending the ultrafine inorganic filler (B). Since the fluidity | liquidity of a fine inorganic filler containing organic resin matrix (A) component falls so that the mixing process with (C) will be obstructed, it is unpreferable. Further, if the total amount of inorganic components including the inorganic filler (C) is less than 60% by mass, the effect of reducing the thermal expansion of the entire low thermal expansion resin composition becomes insufficient, and the ultrafine inorganic filler (B) is not blended. The difference with the conventional product becomes scarce. On the other hand, if it exceeds 95% by mass, the moldability due to the organic component is lowered, and it is not preferable because it becomes difficult to form a molded product of the low thermal expansion resin composition.
[その他の成分]
本発明の低線膨張性樹脂組成物には、その特性を損なわない範囲で必要に応じて添加剤を配合することができる。添加剤としては、酸化防止剤、紫外線吸収剤、安定剤、光安定剤、相溶化剤、接着助剤、流動性改質剤、滑材等を挙げることができる。
[Other ingredients]
In the low linear expansion resin composition of the present invention, additives can be blended as necessary within a range not impairing the characteristics. Examples of the additive include an antioxidant, an ultraviolet absorber, a stabilizer, a light stabilizer, a compatibilizer, an adhesion aid, a fluidity modifier, and a lubricant.
本発明において好適に用いられる酸化防止剤としては、2,6−ジ−t−ブチル−4−メチルフェノール、n−オクタデシル−3−(3’,5’−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ブチリデンビス−(3−メチル−6−t−ブチルフェノール)、トリエチレングリコール−ビス−[3−(3−t−ブチル−4ヒドロキシ−5−メチルフェニル)プロピオネート]、3,9−ビス{2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4−4−チオビス−(2−t−ブチル−5−メチルフェノール)、2,2−メチレンビス−(6−t−ブチルメチルフェノール)、4,4−メチレンビス−(2,6−ジ−t−ブチルフェノール)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリスノニルフェニルホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、ジステアリルペンタエリストールホスファイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリストールホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリストールホスファイト、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ペンタエリストールテトラキス(3−ラウリルチオプロピオネート)、2,5,7,8−テトラメチル−2−(4,8,12−トリメチルデシル)クロマン−2−オール、5,7−ジ−t−ブチル−3−(3,4−ジメチルフェニル)−3H−ベンゾフラン−2−オン、2−[1−(2−ヒドロキシ−3,5−ジ−t−ペンチルフェニル)エチル]−4,6−ジペンチルフェニルアクリレート、2−t−ペンチルフェニル)エチル]−4,6−ジペンチルフェニルアクリレート、2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、テトラキス(メチレン)−3−(ドデシルチオプロピオネート)メタン等が挙げられる。 Examples of the antioxidant preferably used in the present invention include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3 ′, 5′-di-tert-butyl-4-hydroxy). Phenyl) propionate, tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 4,4′-butylidenebis- (3-methyl-6-tert-butylphenol), triethylene glycol-bis- [3- (3-tert-butyl-4hydroxy-5-methylphenyl) propionate], 3,9- Bis {2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl} -2, , 8,10-tetraoxaspiro [5,5] undecane, 4-4-thiobis- (2-tert-butyl-5-methylphenol), 2,2-methylenebis- (6-tert-butylmethylphenol), 4,4-methylenebis- (2,6-di-t-butylphenol), 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene , Trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, distearyl pentaerythritol phosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol phosphite, Bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4,6-di-t-butylphenol) L) Octyl phosphite, tetrakis (2,4-di-t-butylphenyl) -4,4'-biphenylenediphosphonite, dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thio Dipropionate, pentaerythritol tetrakis (3-laurylthiopropionate), 2,5,7,8-tetramethyl-2- (4,8,12-trimethyldecyl) chroman-2-ol, 5,7 -Di-t-butyl-3- (3,4-dimethylphenyl) -3H-benzofuran-2-one, 2- [1- (2-hydroxy-3,5-di-t-pentylphenyl) ethyl]- 4,6-dipentylphenyl acrylate, 2-t-pentylphenyl) ethyl] -4,6-dipentylphenyl acrylate, 2-t-butyl-6- (3-t-butyl 2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, tetrakis (methylene) -3- (dodecylthiopropionate) methane, and the like.
本発明において好適に用いられる安定剤としては、ステアリン酸リチウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸亜鉛、ラウリン酸カルシウム、ラウリン酸バリウム、ラウリン酸亜鉛、リノシール酸カルシウム、リシノール酸バリウム、リシノール酸亜鉛等の金属石鹸類、その他、ラウレート系、マレート系およびメルカプロ系の有機錫系安定剤、ステアリン酸鉛、三塩基性硫酸鉛等の鉛系安定剤、エポキシ化植物油等のエポキシ化合物、アルキルアリルホスファイト、トリアルキルホスファイト等のホスファイト化合物、ジベンゾイルメタン、デヒドロ酢酸等のβ−ジケトン化合物、ソルビトール、マンニトール、ペンタエリストール等のポリオール、ハイドロタルサイト類やゼオライト類を挙げることができる。 Stabilizers preferably used in the present invention include lithium stearate, magnesium stearate, calcium stearate, barium stearate, zinc stearate, calcium laurate, barium laurate, zinc laurate, calcium linoleate, barium ricinoleate, Metal soaps such as zinc ricinoleate, other organic tin stabilizers such as laurate, malate and mercapro, lead stabilizers such as lead stearate and tribasic lead sulfate, epoxy compounds such as epoxidized vegetable oil, Phosphite compounds such as alkyl allyl phosphites and trialkyl phosphites, β-diketone compounds such as dibenzoylmethane and dehydroacetic acid, polyols such as sorbitol, mannitol, pentaerythritol, hydrotalcites and zeora Mention may be made of a door class.
本発明においては接着助剤として、各種アルコキシシラン、シランカップリング剤、チタネート系カップリング剤等が好適に用いられる。また流動性改良剤としては、ケイ酸、炭酸カルシウム、酸化チタン、カーボンブラック、カオリンクレー、焼成クレー、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸カルシウム等を用いてもよい。
また本発明の硬化性樹脂(A1)としてエポキシ樹脂と硬化剤とからなる組合せを選んだ場合、硬化反応を促進させるため硬化促進剤を用いることが望ましい。硬化促進剤に特別の制限はないが、例えば、トリフェニルホスフィン、トリブチルホスフィン、トリ(p−メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィン、トリフェニルホスフィン・トリフェニルボラン、テトラフェニルホスフィン・テトラフェニルボレート等のリン系化合物、トリエチルアミン、ベンジルジメチルアミン、α−メチルベンジルジメチルアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等の第3級アミン化合物、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール化合物が好適に用いられる。
In the present invention, various alkoxysilanes, silane coupling agents, titanate coupling agents and the like are suitably used as the adhesion assistant. As the fluidity improver, silicic acid, calcium carbonate, titanium oxide, carbon black, kaolin clay, calcined clay, aluminum silicate, magnesium silicate, calcium silicate and the like may be used.
Moreover, when the combination which consists of an epoxy resin and a hardening | curing agent is selected as curable resin (A1) of this invention, in order to accelerate hardening reaction, it is desirable to use a hardening accelerator. There are no particular restrictions on the curing accelerator, but examples include triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, triphenylphosphine / triphenylborane, tetraphenylphosphine / tetraphenyl. Phosphorus compounds such as borate, tertiary amine compounds such as triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, 1,8-diazabicyclo (5,4,0) undecene-7, 2-methylimidazole, 2- Imidazole compounds such as phenylimidazole and 2-phenyl-4-methylimidazole are preferably used.
硬化促進剤の配合量は、触媒量でよいが、前記リン系化合物、第3級アミン化合物、イミダゾール化合物等のエポキシ樹脂と硬化剤(例えば、フェノール樹脂や酸無水物等)との硬化反応の場合、硬化促進剤としてはエポキシ樹脂と硬化剤の総計を100質量部とした場合に、0.1〜5質量部程度とすればよい。 The amount of the curing accelerator may be a catalytic amount, but the curing reaction of the phosphorus compound, tertiary amine compound, imidazole compound or the like epoxy resin with a curing agent (for example, phenol resin or acid anhydride). In this case, the curing accelerator may be about 0.1 to 5 parts by mass when the total amount of the epoxy resin and the curing agent is 100 parts by mass.
本発明の硬化性樹脂(A1)としてエポキシ樹脂と硬化剤とならなる組合せを選んだ場合には、必要に応じて、各種の添加剤を配合できる。例えば、熱可塑性樹脂、熱可塑性エラストマー、有機合成ゴム、シリコーン系等の低応力剤、カーボンブラック等の着色剤、ハロゲントラップ剤等の添加剤、また公知の離型剤も適宜利用できる。 When a combination of an epoxy resin and a curing agent is selected as the curable resin (A1) of the present invention, various additives can be blended as necessary. For example, a thermoplastic resin, a thermoplastic elastomer, an organic synthetic rubber, a silicone-based low stress agent, a colorant such as carbon black, an additive such as a halogen trap agent, and a known release agent can be used as appropriate.
[低熱膨張性樹脂組成物の調製]
本発明の低熱膨張性樹脂組成物を硬化性樹脂(A1)に対して調製する場合、2つの工程を経ることが望ましい。第1工程として、硬化性樹脂(A1)を構成する一種以上のモノマーから超微細無機充填材(B)と良好に均一分散液を形成するモノマー種を選び、当該モノマー種を予め溶媒の溶解後、低熱膨張性樹脂組成物に含まれる超微細無機充填材(B)の全部を分散させ、両者が共存する混合分散液を調製する。その後、溶媒を除去した固形物を粉砕して粉末状にした微細無機充填材含有有機樹脂マトリックスを得る。
[Preparation of low thermal expansion resin composition]
When preparing the low thermal expansion resin composition of this invention with respect to curable resin (A1), it is desirable to pass through two processes. As the first step, a monomer species that forms a uniform dispersion with the ultrafine inorganic filler (B) is selected from one or more monomers constituting the curable resin (A1), and the monomer species is previously dissolved in a solvent. Then, the entire ultrafine inorganic filler (B) contained in the low thermal expansion resin composition is dispersed to prepare a mixed dispersion in which both coexist. Thereafter, the solid material from which the solvent has been removed is pulverized to obtain a fine inorganic filler-containing organic resin matrix.
ここで、硬化性樹脂(A1)と混合する超微細無機充填材(B)の配合量は、超微細無機充填材含有有機樹脂マトリックスに対して2〜30質量%配合されており、5〜25質量%の範囲であれば、本工程の加工性や低熱膨張性樹脂組成物の性能の面で好ましい結果を与える。 Here, the compounding quantity of the ultrafine inorganic filler (B) mixed with curable resin (A1) is 2-30 mass% with respect to the ultrafine inorganic filler containing organic resin matrix, 5-25 If it is the range of the mass%, a favorable result is given in terms of the workability of this process and the performance of the low thermal expansion resin composition.
係る硬化性樹脂(A1)を構成するモノマーは、前述の通り、熱、光等の外部トリガーによって重合を開始し、分子量が増大し樹脂が形成されるものであればよい。例えば、アクリル樹脂やメタクリル樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリウレタン樹脂、エポキシ樹脂等を例示できる。これらの中で半導体分野での使用実績が多いエポキシ樹脂と硬化剤とからなる有機樹脂マトリックスが本発明として好適であるといえる。 As described above, the monomer constituting the curable resin (A1) is not particularly limited as long as the polymerization is started by an external trigger such as heat and light, the molecular weight is increased, and the resin is formed. For example, acrylic resin, methacrylic resin, phenol resin, urea resin, melamine resin, polyurethane resin, epoxy resin and the like can be exemplified. Among these, it can be said that an organic resin matrix composed of an epoxy resin and a curing agent, which have many uses in the semiconductor field, is suitable for the present invention.
本工程において用いられる溶媒としては特に制限を受けるものではないが、硬化性樹脂(A1)を構成するモノマーの少なくとも一種以上を良好に溶かすものであり、加えて超微細無機充填材(B)も良好に分散できるものであることが必要である。係る溶媒の例として、炭化水素類、ハロゲン化炭化水素類、アルコール類、フェノール類、エーテル類、アセタール類、ケトン類、脂肪酸、酸無水物、エステル類、窒素化合物、硫黄化合物、セロソルブ類等あるいは複数の官能基を持つ低融点化合物が挙げられ、溶解性や作業性を勘案して適宜選択すればよい。 Although it does not receive a restriction | limiting in particular as a solvent used in this process, At least 1 or more types of the monomer which comprises curable resin (A1) is melt | dissolved favorably, In addition, an ultrafine inorganic filler (B) is also included. It must be capable of being well dispersed. Examples of such solvents include hydrocarbons, halogenated hydrocarbons, alcohols, phenols, ethers, acetals, ketones, fatty acids, acid anhydrides, esters, nitrogen compounds, sulfur compounds, cellosolves, etc. A low-melting-point compound having a plurality of functional groups may be mentioned, and it may be appropriately selected in consideration of solubility and workability.
続く第2工程として、前述の微細無機充填材含有有機樹脂マトリックスに、前記硬化性樹脂を形成するモノマー、又は前記硬化性樹脂(A1)と種類の異なる硬化性樹脂を形成するモノマー、平均粒子径が3〜50μmである無機充填材(C)および硬化触媒を加えて溶融混合した後、熱ロール、ニーダー、エクストルーダー等による溶融混合処理を行い、次いで冷却固化させ、適当な大きさに粉砕して成形材料を得ることができる。
本発明の低熱膨張性樹脂組成物は、最終的に半導体装置のパッケージを成形する際の加熱成形工程における熱硬化反応によって重合され、所定の形状に成形される。
As a subsequent second step, a monomer that forms the curable resin, or a monomer that forms a different type of curable resin from the curable resin (A1), an average particle diameter, in the fine inorganic filler-containing organic resin matrix described above After adding the inorganic filler (C) having a particle diameter of 3 to 50 μm and a curing catalyst, the mixture is melt-mixed, and then melt-mixed with a hot roll, kneader, extruder, etc., then cooled and solidified, and pulverized to an appropriate size. Thus, a molding material can be obtained.
The low thermal expansion resin composition of the present invention is polymerized by a thermosetting reaction in a thermoforming step when finally molding a package of a semiconductor device, and is molded into a predetermined shape.
この工程において微細無機充填材含有有機樹脂マトリックスに混合する無機充填材(C)は、前記した超微細無機充填材(B)と合せた無機成分の総計が、本発明の低熱膨張性樹脂組成物の60〜95質量%となるように配合される必要があることから、30〜93質量%の範囲内で適宜選択する。好ましくは40〜80質量%であり、成形加工性と低熱膨張性樹脂組成物の性能の面で望ましい結果を与える。 In this process, the inorganic filler (C) mixed with the fine inorganic filler-containing organic resin matrix is composed of the total amount of inorganic components combined with the ultrafine inorganic filler (B) described above, and the low thermal expansion resin composition of the present invention. Since it is necessary to mix | blend so that it may become 60-95 mass%, it selects suitably in the range of 30-93 mass%. The content is preferably 40 to 80% by mass, and gives desirable results in terms of moldability and performance of the low thermal expansion resin composition.
これら2つの工程における硬化性樹脂(A1)または前記硬化性樹脂(A1)と種類の異なる硬化性樹脂を形成するモノマーの配分比率には特に制限はないが、1種類のモノマーのみから硬化性樹脂(A1)が形成される場合であれば、重量比で1:1を基準に適宜調節すればよい。また二種類以上のモノマーから硬化性樹脂が形成される場合であれば、第1工程で溶媒に溶解可能な硬化性樹脂(A1)のモノマーを全量用い、第2工程で残りのモノマーの全量と混合するようにすればよい。これら2種類のモノマーの配合比率は、当モル反応を基準に硬化性を考慮して適宜増減すればよい。 There are no particular restrictions on the distribution ratio of the monomers that form the curable resin (A1) or the curable resin (A1) different in kind from these two steps, but the curable resin is composed of only one type of monomer. If (A1) is formed, the weight ratio may be adjusted as appropriate based on 1: 1. In the case where the curable resin is formed from two or more types of monomers, the entire amount of the curable resin (A1) monomer that can be dissolved in the solvent in the first step is used, and the remaining amount of the monomer is determined in the second step. What is necessary is just to make it mix. The blending ratio of these two types of monomers may be appropriately increased or decreased in consideration of curability based on the equimolar reaction.
一方で、本発明の低熱膨張性樹脂組成物を熱可塑性樹脂(A2)に対して調製する場合も、2つの工程を経ることが望ましい。第1工程として、超微細無機充填材(B)の全量と熱可塑性樹脂(A2)の一部とを溶媒中で混合して均一分散液を調製後、溶媒を留去して、乾燥、粉砕して熱可塑性樹脂(A2)と超微細無機充填材が均一に混合してなる超微細無機粒子含有有機樹脂マトリックスを得る。 On the other hand, also when preparing the low thermal expansion resin composition of this invention with respect to a thermoplastic resin (A2), it is desirable to pass through two processes. As the first step, the entire amount of the ultrafine inorganic filler (B) and a part of the thermoplastic resin (A2) are mixed in a solvent to prepare a uniform dispersion, and then the solvent is distilled off, followed by drying and grinding. Thus, an organic resin matrix containing ultrafine inorganic particles obtained by uniformly mixing the thermoplastic resin (A2) and the ultrafine inorganic filler is obtained.
ここで、熱可塑性樹脂(A2)と混合する超微細無機充填材(B)の配合量は、超微細無機充填材含有有機樹脂マトリックスに対して2〜30質量%配合されており、5〜25質量%の範囲であれば、本工程の加工性や低熱膨張性樹脂組成物の性能の面で好ましい結果を与える。 Here, the compounding quantity of the ultrafine inorganic filler (B) mixed with the thermoplastic resin (A2) is 2-30 mass% with respect to the ultrafine inorganic filler-containing organic resin matrix, and 5-25 If it is the range of the mass%, a favorable result is given in terms of the workability of this process and the performance of the low thermal expansion resin composition.
係る熱可塑性樹脂(A2)は特に限定されるものではないが、溶融加工温度が使用目的(例えば半導体封止材であれば、半導体素子そのものやリード線等の構造や特性)に及ぼす影響も考慮し適宜最適なものを選ぶ必要がある。具体例としては、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリカーボネート系樹脂、ポリエーテル系樹脂等を挙げることができる。 The thermoplastic resin (A2) is not particularly limited, but the influence of the melt processing temperature on the intended use (for example, the structure and characteristics of the semiconductor element itself and the lead wire in the case of a semiconductor sealing material) is also considered. It is necessary to select the most appropriate one as appropriate. Specific examples include polyester resins, polyamide resins, polycarbonate resins, polycarbonate resins, polyether resins, and the like.
本工程において用いられる溶媒としては特に制限を受けるものではないが、熱可塑性樹脂(A2)を良好に溶かすものであり、加えて超微細無機充填材(B)も良好に分散できるものであることが必要である。係る溶媒の例として、炭化水素類、ハロゲン化炭化水素類、アルコール類、フェノール類、エーテル類、アセタール類、ケトン類、脂肪酸、酸無水物、エステル類、窒素化合物、硫黄化合物、セロソルブ類等あるいは複数の官能基を持つ低融点化合物が挙げられ、溶解性や作業性を勘案して適宜選択すればよい。 Although it does not receive a restriction | limiting in particular as a solvent used in this process, It should melt | dissolve a thermoplastic resin (A2) satisfactorily and can also disperse | distribute a super fine inorganic filler (B) favorably. is necessary. Examples of such solvents include hydrocarbons, halogenated hydrocarbons, alcohols, phenols, ethers, acetals, ketones, fatty acids, acid anhydrides, esters, nitrogen compounds, sulfur compounds, cellosolves, etc. A low-melting-point compound having a plurality of functional groups may be mentioned, and it may be appropriately selected in consideration of solubility and workability.
続く第2工程として、前述の微細無機充填材含有有機樹脂マトリックスに、熱可塑性樹脂(A2)の残り全部、無機充填材(C)の全部と合せて所定の組成比で配合し、これをミキサー等によって十分均一に混合した後、熱ロール、ニーダー、エクストルーダー等による溶融混合処理を行い、次いで冷却固化させ、適当な大きさに粉砕して成形材料を得ることができる。 In the subsequent second step, the above-mentioned fine inorganic filler-containing organic resin matrix is blended with the remaining thermoplastic resin (A2) and all of the inorganic filler (C) at a predetermined composition ratio, and this is blended. After sufficiently uniformly mixing, etc., a melt mixing process using a hot roll, a kneader, an extruder or the like is performed, then cooled and solidified, and pulverized to an appropriate size to obtain a molding material.
この工程において微細無機充填材含有有機樹脂マトリックスに混合する無機充填材(C)は、前記した超微細無機充填材(B)と合せた無機成分の総計が、本発明の低熱膨張性樹脂組成物の60〜95質量%となるように配合される必要があることから、30〜93質量%の範囲内で適宜選択する。好ましくは40〜80質量%であり、成形加工性と低熱膨張性樹脂組成物の性能の面で望ましい結果を与える。 In this process, the inorganic filler (C) mixed with the fine inorganic filler-containing organic resin matrix is composed of the total amount of inorganic components combined with the ultrafine inorganic filler (B) described above, and the low thermal expansion resin composition of the present invention. Since it is necessary to mix | blend so that it may become 60-95 mass%, it selects suitably in the range of 30-93 mass%. The content is preferably 40 to 80% by mass, and gives desirable results in terms of moldability and performance of the low thermal expansion resin composition.
このようにして得られる低熱膨張性樹脂組成物は、硬化性樹脂(A1)に対して調製された成形材料であれば、トランスファー成形によって好適に成形できる。一方熱可塑性樹脂(A2)に対して調製された成形材料であれば、射出成形、押出成形等によって好適に成形される。 The low thermal expansion resin composition thus obtained can be suitably molded by transfer molding as long as it is a molding material prepared for the curable resin (A1). On the other hand, if it is the molding material prepared with respect to the thermoplastic resin (A2), it will be suitably shape | molded by injection molding, extrusion molding, etc.
本発明の低熱膨張性樹脂組成物は、その優れた寸法安定性において、半導体封止材や層間絶縁膜等の半導体分野におけるアプリケーション、ギヤなどの産業機械分野におけるアプリケーション等に有効である。 The low thermal expansion resin composition of the present invention is effective for applications in the semiconductor field such as a semiconductor encapsulating material and an interlayer insulating film, applications in the industrial machine field such as gears, etc. because of its excellent dimensional stability.
以下、本発明を実施例によって具体的に説明する。
(実施例1)
有機樹脂マトリックスを形成する熱硬化性樹脂には、エポキシ樹脂としてビフェニル型エポキシ樹脂である三菱化学社製YX4000(エポキシ当量eq=180−192、中心値として186を採用、融点105℃)、硬化剤としてフェノールノボラック樹脂である群栄化学社製PSM4261(エポキシ当量eq=105、軟化点80〜84℃)を用い、それぞれ当量分を秤量した。
このうちPSM4261について予め、秤量したPSM4261の全量を室温でメチルエチルケトンに溶解させ(20質量%)、さらにYX4000とPSM4261の全量の15質量%分に相当する超微細無機充填材としてナノシリカ分散液である日産化学工業社製オルガノシリカゾルMEK−AC−2140Z(表面改質グレード、粒径10〜15nm、分散溶媒メチルエチルケトン、シリカ固形分濃度30%)の所定量を滴下させて、均一液を調製した。
その後、メチルエチルケトンを除去するためにロータリーエバポレータ(40℃)による溶媒留去後、真空乾燥(40℃、24時間)を行った。回収したPSM4261とナノシリカの混合物は容易に粉砕可能で、乳鉢で粉砕後、PSM4261/シリカ混合粉体として利用した。
次に、既に秤量したYX4000とPSM4261/ナノシリカ混合粉体全量を120℃に予熱したニーダーに投入して混練した。さらに有機樹脂マトリックス成分に対してシリカ成分全量が60質量%となるように配合量を調節した、平均粒子径が0.3〜50μmである無機充填材(ミクロンシリカ)である新日鉄住金マテリアルズ社マイクロンカンパニー製「HS203」(球状シリカ、トップカットグレード、d50粒子径10.5μm)を加え、これらを二軸ロールを用いて120℃で加熱混練後、最後に硬化促進剤としてトリフェニルフォスフィン(TPP)を1重量%分配合し、直ちに混合物を回収、冷却し、小型粉砕機(ワンダーブレンダ―WB−1)を用いて粉砕して、本発明の低熱膨張性樹脂組成物(未硬化粉体)を調製した。
さらに低熱膨張性樹脂組成物(未硬化粉体)は、厚さ500μm、50mm×50mmのキャビティを設けたステンレス製の金型内に所定量を配置し、ホットプレス成形した。成形には、真空プレス機(テスター産業製 真空チャンバー付高精度ホットプレス機SA−401A)を用い、減圧下、175℃で1時間5MPa加圧下に硬化を行い、その後175℃のオーブンに移して5時間硬化を継続して、低熱膨張性樹脂組成物のシート成形体を得た。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
The thermosetting resin forming the organic resin matrix is YX4000 (Epoxy equivalent eq = 180-192, center value 186, melting point 105 ° C.), which is a biphenyl type epoxy resin as an epoxy resin, a curing agent. As the above, PSM4261 (epoxy equivalent eq = 105, softening point 80 to 84 ° C.) made by Gunei Chemical Co., which is a phenol novolac resin, was weighed.
Among these, the total amount of PSM 4261 weighed in advance for PSM 4261 was dissolved in methyl ethyl ketone at room temperature (20% by mass), and nanosilica dispersion as an ultrafine inorganic filler corresponding to 15% by mass of the total amount of YX4000 and PSM 4261. A uniform liquid was prepared by dropping a predetermined amount of organosilica sol MEK-AC-2140Z (surface modified grade, particle size 10 to 15 nm, dispersion solvent methyl ethyl ketone, silica solid content concentration 30%) manufactured by Kagaku Kogyo Co., Ltd.
Thereafter, in order to remove methyl ethyl ketone, the solvent was distilled off by a rotary evaporator (40 ° C.), followed by vacuum drying (40 ° C., 24 hours). The collected mixture of PSM4261 and nanosilica can be easily pulverized. After pulverization in a mortar, the mixture was used as a PSM4261 / silica mixed powder.
Next, the entire weighed amount of YX4000 and PSM4261 / nanosilica mixed powder was put into a kneader preheated to 120 ° C. and kneaded. Furthermore, Nippon Steel & Sumikin Materials Co., Ltd., an inorganic filler (micron silica) with an average particle size of 0.3 to 50 μm, whose blending amount was adjusted so that the total amount of silica component was 60% by mass relative to the organic resin matrix component “HS203” (spherical silica, top cut grade, d50 particle size 10.5 μm) manufactured by Micron Company was added, and these were heated and kneaded at 120 ° C. using a biaxial roll, and finally triphenylphosphine ( 1 wt% of TPP) was mixed, and the mixture was immediately recovered, cooled, and pulverized using a small pulverizer (Wonder Blender-WB-1), and the low thermal expansion resin composition of the present invention (uncured powder) ) Was prepared.
Furthermore, a predetermined amount of the low thermal expansion resin composition (uncured powder) was placed in a stainless steel mold having a thickness of 500 μm and a 50 mm × 50 mm cavity, and hot press molded. For molding, using a vacuum press machine (high precision hot press machine SA-401A with a vacuum chamber manufactured by Tester Sangyo), curing is performed under reduced pressure at 175 ° C. for 1 hour under 5 MPa pressure, and then transferred to an oven at 175 ° C. Curing was continued for 5 hours to obtain a sheet molded body of the low thermal expansion resin composition.
(実施例2)
実施例1と同様にしてYX4000とPSM4261/ナノシリカ(15質量部相当)混合粉体を調製し、ニーダーに投入して混練した。一方で、信越シリコーン社製KBM−903(3−アミノプロピルトリメトキシシラン)の1質量%水溶液に対して、所定量の無機充填材(ミクロンシリカ)HS203を加え、60分間撹拌後に濾過して固形分を回収し、120℃で2時間熱風乾燥、乳鉢で粉砕したアミノ処理無機充填材を、前記した有機樹脂マトリックス成分に対してシリカ成分全量が80質量%となるように調節して加え、二軸ロールで混練後、TPPを加えた後に回収粉砕し、本発明の低熱膨張性樹脂組成物(未硬化粉体)を調製した。引き続く成形、硬化工程も実施例1と同様にして行い、低熱膨張性樹脂組成物のシート成形体を得た。
(Example 2)
In the same manner as in Example 1, a mixed powder of YX4000 and PSM4261 / nanosilica (corresponding to 15 parts by mass) was prepared, put into a kneader and kneaded. On the other hand, a predetermined amount of inorganic filler (micron silica) HS203 is added to 1% by weight aqueous solution of KBM-903 (3-aminopropyltrimethoxysilane) manufactured by Shin-Etsu Silicone Co., Ltd. The amino-treated inorganic filler, which was recovered from the organic resin matrix component, was adjusted so that the total amount of the silica component was 80% by mass with respect to the organic resin matrix component, After kneading with a shaft roll, TPP was added and recovered and pulverized to prepare a low thermal expansion resin composition (uncured powder) of the present invention. Subsequent molding and curing steps were performed in the same manner as in Example 1 to obtain a sheet molded body of the low thermal expansion resin composition.
(実施例3)
実施例1と同様にしてYX4000とPSM4261/ナノシリカ(15質量部相当)混合粉体を調製し、ニーダーに投入して混練した。その後、有機樹脂マトリックス成分に対してシリカ成分全量が80質量%となるように配合量を調節した、実施例2に準拠して調製したアミノ処理無機充填材を加え、二軸ロールで混練後、TPPを加えた後に回収粉砕し、本発明の低熱膨張性樹脂組成物(未硬化粉体)を調製した。引き続く成形、硬化工程も実施例1と同様にして行い、低熱膨張性樹脂組成物のシート成形体を得た。
(Example 3)
In the same manner as in Example 1, a mixed powder of YX4000 and PSM4261 / nanosilica (corresponding to 15 parts by mass) was prepared, put into a kneader and kneaded. Then, the amino-treated inorganic filler prepared according to Example 2 was adjusted so that the amount of silica component was 80% by mass with respect to the organic resin matrix component, and after kneading with a biaxial roll, After adding TPP, it was recovered and ground to prepare a low thermal expansion resin composition (uncured powder) of the present invention. Subsequent molding and curing steps were performed in the same manner as in Example 1 to obtain a sheet molded body of the low thermal expansion resin composition.
(実施例4)
予めPSM4261のメチルエチルケトン溶液に分散させる超微細無機充填材(ナノシリカ)量を、YX4000とPSM4261の全量の20質量%に変更した以外は、実施例1と同様にしてYX4000とPSM4261/ナノシリカ混合粉体を調製し、ニーダーに投入して混練した。
次に、有機樹脂マトリックス成分に対してシリカ成分全量が60質量%となるように配合量を調節した、無機充填材(ミクロンシリカ)HS203を加え、二軸ロールで混練後、TPPを加えた後に回収粉砕し、本発明の低熱膨張性樹脂組成物(未硬化粉体)を調製した。引き続く成形、硬化工程も実施例1と同様にして行い、低熱膨張性樹脂組成物のシート成形体を得た。
Example 4
The YX4000 and PSM4261 / nanosilica mixed powder was prepared in the same manner as in Example 1 except that the amount of ultrafine inorganic filler (nanosilica) dispersed in the methyl ethyl ketone solution of PSM4261 in advance was changed to 20% by mass of the total amount of YX4000 and PSM4261. Prepared, put into a kneader and kneaded.
Next, after adding inorganic filler (micron silica) HS203, the blending amount of which was adjusted so that the total amount of silica component was 60% by mass with respect to the organic resin matrix component, kneading with a biaxial roll, and then adding TPP The recovered and pulverized product was prepared to prepare a low thermal expansion resin composition (uncured powder) of the present invention. Subsequent molding and curing steps were performed in the same manner as in Example 1 to obtain a sheet molded body of the low thermal expansion resin composition.
(実施例5)
実施例3と同様にしてYX4000とPSM4261/ナノシリカ(20質量部相当)混合粉体を調製し、ニーダーに投入して混練した。その後、有機樹脂マトリックス成分に対してシリカ成分全量が80質量%となるように配合量を調節した、無機充填材(ミクロンシリカ)HS203を加え、二軸ロールで混練後、TPPを加えた後に回収粉砕し、本発明の低熱膨張性樹脂組成物(未硬化粉体)を調製した。引き続く成形、硬化工程も実施例1と同様にして行い、低熱膨張性樹脂組成物のシート成形体を得た。
(Example 5)
In the same manner as in Example 3, a mixed powder of YX4000 and PSM4261 / nanosilica (corresponding to 20 parts by mass) was prepared, put into a kneader and kneaded. Then, inorganic filler (micron silica) HS203, which was adjusted in the blending amount so that the total amount of silica component is 80% by mass with respect to the organic resin matrix component, was added, kneaded with a biaxial roll, and recovered after adding TPP. The mixture was pulverized to prepare a low thermal expansion resin composition (uncured powder) of the present invention. Subsequent molding and curing steps were performed in the same manner as in Example 1 to obtain a sheet molded body of the low thermal expansion resin composition.
(実施例6)
有機樹脂マトリックスとなる熱可塑性樹脂には、メタクリル樹脂として住友化学社製スミペックスLG21を用いた。
予めスミペックスLG21の50質量部をメチルエチルケトンに溶かし(20wt%)、さらにスミペックスLG21の100部に対して10質量%分に相当する超微細無機充填材(ナノシリカ)を含むMEK−AC−2140Zの所定量を滴下させて、均一液を調製した。
その後、メチルエチルケトンを除去するためにロータリーエバポレータ(40℃)による溶媒留去後、真空乾燥(40℃、24時間)を行った。回収したスミペックスLG21とナノシリカの混合物を乳鉢で粉砕後、スミペックスLG21/ナノシリカ混合粉体として利用した。
次に、既に秤量した残り50質量部のスミペックスLG21に、メタクリル樹脂100質量部に対してシリカ成分全量が60質量%となるように配合量を調節した無機充填材(ミクロンシリカ)HS203を加え、二軸混練機(東洋精機製作所製ラボプラストミル)を用いて260℃で加熱混練後、前記したスミペックスLG21/ナノシリカ混合粉体の全量を加えて混練後、直ちに混合物を回収、冷却し、小型粉砕機(ワンダーブレンダ―WB−1)を用いて粉砕し、本発明の低熱膨張性樹脂組成物を調製した。
さらに低熱膨張性樹脂組成物は、厚さ500μm、50mm×50mmのキャビティを設けたステンレス製の金型内に所定量を配置し、ホットプレス成形した。成形には、真空プレス機(テスター産業製 真空チャンバー付高精度ホットプレス機SA−401A)を用い、減圧下、260℃で30分間加圧し、冷却後に金型から取り出して、低熱膨張性樹脂組成物のシート成形体を得た。
(Example 6)
Sumitex LG21 manufactured by Sumitomo Chemical Co., Ltd. was used as the methacrylic resin for the thermoplastic resin serving as the organic resin matrix.
A predetermined amount of MEK-AC-2140Z containing 50 parts by mass of Sumipex LG21 in methyl ethyl ketone (20 wt%) and further containing an ultrafine inorganic filler (nanosilica) corresponding to 10% by mass with respect to 100 parts of Sumipex LG21 Was dropped to prepare a uniform solution.
Thereafter, in order to remove methyl ethyl ketone, the solvent was distilled off by a rotary evaporator (40 ° C.), followed by vacuum drying (40 ° C., 24 hours). The collected mixture of Sumipex LG21 and nanosilica was pulverized in a mortar and then used as a Sumipex LG21 / nanosilica mixed powder.
Next, to the remaining 50 parts by mass of Sumipex LG21 that has already been weighed, an inorganic filler (micron silica) HS203 whose blending amount is adjusted so that the total amount of silica components is 60% by mass with respect to 100 parts by mass of methacrylic resin, After heat-kneading at 260 ° C. using a twin-screw kneader (Toyo Seiki Seisakusho Lab Plast Mill), add the entire amount of the Sumipex LG21 / Nanosilica mixed powder and knead and immediately collect, cool, and pulverize the mixture. A low thermal expansion resin composition of the present invention was prepared by pulverization using a machine (Wonder Blender-WB-1).
Furthermore, a predetermined amount of the low thermal expansion resin composition was placed in a stainless steel mold having a thickness of 500 μm and a cavity of 50 mm × 50 mm, and hot press molded. For molding, using a vacuum press machine (high precision hot press machine SA-401A with a vacuum chamber manufactured by Tester Sangyo), pressurizing at 260 ° C. for 30 minutes under reduced pressure, taking out from the mold after cooling, and having a low thermal expansion resin composition A sheet molded product of the product was obtained.
(比較例1)
実施例1に用いたエポキシ樹脂YX4000および硬化剤であるフェノールノボラック樹脂PSM4261を当量ずつ秤量し、硬化触媒TPPを1質量%混合し、ガラスビーカーに入れて120℃に加熱し、全ての有機成分が溶融した後にガラス棒でかき混ぜ、その後徐冷した。室温に戻った硬化樹脂を取り出し、小型粉砕機(ワンダーブレンダ―WB−1)を用いて粉砕して、硬化樹脂(未硬化粉体)を調製した。
さらに硬化樹脂(未硬化粉体)は、厚さ500μm、50mm×50mmのキャビティを設けたステンレス製の金型内に所定量を配置し、ホットプレス成形した。成形には、真空プレス機(テスター産業製 真空チャンバー付高精度ホットプレス機SA−401A)を用い、減圧下、175℃で1時間5MPa加圧下に硬化を行い、その後175℃のオーブンに移して5時間硬化を継続して、硬化樹脂シート成形体を得た。
(Comparative Example 1)
The epoxy resin YX4000 used in Example 1 and the phenol novolac resin PSM4261 which is a curing agent are weighed in an equivalent amount, 1% by mass of the curing catalyst TPP is mixed, put in a glass beaker and heated to 120 ° C., and all organic components are After melting, the mixture was stirred with a glass rod and then gradually cooled. The cured resin returned to room temperature was taken out and pulverized using a small pulverizer (Wonder Blender-WB-1) to prepare a cured resin (uncured powder).
Furthermore, a predetermined amount of the cured resin (uncured powder) was placed in a stainless steel mold having a thickness of 500 μm and a 50 mm × 50 mm cavity, and hot press molded. For molding, using a vacuum press machine (high precision hot press machine SA-401A with a vacuum chamber manufactured by Tester Sangyo), curing is performed under reduced pressure at 175 ° C. for 1 hour under 5 MPa pressure, and then transferred to an oven at 175 ° C. Curing was continued for 5 hours to obtain a cured resin sheet molded body.
(比較例2)
予めPSM4261のメチルエチルケトン溶液に分散させる超微細無機充填材(ナノシリカ)量を、YX4000とPSM4261の全量の60質量%に変更した以外は、実施例1と同様にしてYX4000とPSM4261/ナノシリカ混合粉体を調製し、ニーダーに投入して混練を試みた。しかし、混合粉体を順次ニーダーに投入していく過程でニーダーが停止し、全ての混合粉体を処理することができなかった。
本発明の低熱膨張性樹脂組成物(未硬化粉体)が得られなかったことで、比較例2の検討を中断した。
(Comparative Example 2)
The YX4000 and PSM4261 / nanosilica mixed powder was prepared in the same manner as in Example 1 except that the amount of the ultrafine inorganic filler (nanosilica) dispersed in the methyl ethyl ketone solution of PSM4261 in advance was changed to 60% by mass of the total amount of YX4000 and PSM4261. It was prepared and put into a kneader to try kneading. However, the kneader stopped in the process of sequentially feeding the mixed powder into the kneader, and it was not possible to process all the mixed powder.
Since the low thermal expansion resin composition (uncured powder) of the present invention was not obtained, the study of Comparative Example 2 was interrupted.
(比較例3)
予めPSM4261のメチルエチルケトン溶液に分散させる超微細無機充填材(ナノシリカ)量を、YX4000とPSM4261の全量の1.5質量%に変更した以外は、実施例1と同様にしてYX4000とPSM4261/ナノシリカ混合粉体を調製し、ニーダーに投入して混練した。
次に、有機樹脂マトリックス成分に対してシリカ成分全量が60質量%となるように配合量を調節した、無機充填材(ミクロンシリカ)HS203を加え、二軸ロールで混練後、TPPを加えた後に回収粉砕し、本発明の低熱膨張性樹脂組成物(未硬化粉体)を調製した。引き続く成形、硬化工程も実施例1と同様にして行い、熱膨張性樹脂組成物のシート成形体を得た。
(Comparative Example 3)
A mixed powder of YX4000 and PSM4261 / nanosilica in the same manner as in Example 1 except that the amount of the ultrafine inorganic filler (nanosilica) dispersed in the methyl ethyl ketone solution of PSM4261 in advance was changed to 1.5% by mass of the total amount of YX4000 and PSM4261. The body was prepared, put into a kneader and kneaded.
Next, after adding inorganic filler (micron silica) HS203, the blending amount of which was adjusted so that the total amount of silica component was 60% by mass with respect to the organic resin matrix component, kneading with a biaxial roll, and then adding TPP The recovered and pulverized product was prepared to prepare a low thermal expansion resin composition (uncured powder) of the present invention. Subsequent molding and curing steps were performed in the same manner as in Example 1 to obtain a sheet-molded body of the thermally expandable resin composition.
(比較例4)
スミペックスLG21のペレットの所定量を、厚さ500μm、50mm×50mmのキャビティを設けたステンレス製の金型内に配置し、ホットプレス成形した。成形には、真空プレス機(テスター産業製 真空チャンバー付高精度ホットプレス機SA−401A)を用い、減圧下、260℃で30分間加圧し、冷却後に金型から取り出して、熱可塑性樹脂のシート成形体を得た。
(Comparative Example 4)
A predetermined amount of Sumipex LG21 pellets was placed in a stainless steel mold having a thickness of 500 μm and a 50 mm × 50 mm cavity, and hot press molded. For molding, using a vacuum press machine (high precision hot press machine SA-401A with a vacuum chamber manufactured by Tester Sangyo), pressurizing at 260 ° C. for 30 minutes under reduced pressure, taking out from the mold after cooling, a sheet of thermoplastic resin A molded body was obtained.
(比較例5)
予めスミペックスLG21の50質量部をメチルエチルケトンに溶かし(20wt%)、さらにスミペックスLG21の100部に対して1.5質量%分に相当する超微細無機充填材(ナノシリカ)を含むMEK−AC−2140Zの所定量を滴下させて、均一液を調製した。
その後、メチルエチルケトンを除去するためにロータリーエバポレータ(40℃)による溶媒留去後、真空乾燥(40℃、24時間)を行った。回収したスミペックスLG21とナノシリカの混合物を乳鉢で粉砕後、スミペックスLG21/ナノシリカ混合粉体として利用した。
次に、既に秤量した残り50質量部のスミペックスLG21に、メタクリル樹脂100質量部に対してシリカ成分全量が60質量%となるように配合量を調節した無機充填材(ミクロンシリカ)HS203を加え、二軸混練機(東洋精機製作所製ラボプラストミル)を用いて260℃で加熱混練後、前記したスミペックスLG21/ナノシリカ混合粉体の全量を加えて混練後、直ちに混合物を回収、冷却し、小型粉砕機(ワンダーブレンダ―WB−1)を用いて粉砕し、本発明の熱可塑性樹脂組成物を調製した。
さらに熱可塑性樹脂組成物を、厚さ500μm、50mm×50mmのキャビティを設けたステンレス製の金型内に所定量配置し、ホットプレス成形した。成形には、真空プレス機(テスター産業製 真空チャンバー付高精度ホットプレス機SA−401A)を用い、減圧下、260℃で30分間加圧し、冷却後に金型から取り出して、熱可塑性樹脂組成物のシート成形体を得た。
(Comparative Example 5)
50 parts by mass of Sumipex LG21 was previously dissolved in methyl ethyl ketone (20 wt%), and MEK-AC-2140Z containing an ultrafine inorganic filler (nanosilica) corresponding to 1.5% by mass with respect to 100 parts of Sumipex LG21. A predetermined amount was dropped to prepare a uniform solution.
Thereafter, in order to remove methyl ethyl ketone, the solvent was distilled off by a rotary evaporator (40 ° C.), followed by vacuum drying (40 ° C., 24 hours). The collected mixture of Sumipex LG21 and nanosilica was pulverized in a mortar and then used as a Sumipex LG21 / nanosilica mixed powder.
Next, to the remaining 50 parts by mass of Sumipex LG21 that has already been weighed, an inorganic filler (micron silica) HS203 whose blending amount is adjusted so that the total amount of silica components is 60% by mass with respect to 100 parts by mass of methacrylic resin, After heat-kneading at 260 ° C. using a twin-screw kneader (Toyo Seiki Seisakusho Lab Plast Mill), add the entire amount of the Sumipex LG21 / Nanosilica mixed powder and knead and immediately collect, cool, and pulverize the mixture. The thermoplastic resin composition of the present invention was prepared by pulverization using a machine (Wonder Blender-WB-1).
Further, a predetermined amount of the thermoplastic resin composition was placed in a stainless steel mold having a thickness of 500 μm and a 50 mm × 50 mm cavity, and hot press molded. For molding, using a vacuum press machine (high precision hot press machine SA-401A with a vacuum chamber manufactured by Tester Sangyo), pressurizing at 260 ° C. for 30 minutes under reduced pressure, taking out from the mold after cooling, a thermoplastic resin composition A sheet compact was obtained.
実施例1〜6、比較例1〜5における配合組成、樹脂組成物の物性等評価結果を表1、表2にまとめて示した。表1および表2には、無機微粒子と有機樹脂との間の相互作用の大小を○、△、×の3段階で区別した。本願発明の範囲内で最も相互作用が大きな組合せを○、相互作用が期待できない組合せを×とし、その中間を△とした。上記の各実施例および比較例で得られた各々の樹脂および樹脂組成物の成形シート物性は、下記に示す方法で評価した。 Tables 1 and 2 collectively show the results of evaluation of the blending compositions in Examples 1 to 6 and Comparative Examples 1 to 5 and the physical properties of the resin compositions. In Tables 1 and 2, the magnitude of the interaction between the inorganic fine particles and the organic resin is distinguished in three stages, ◯, Δ, and X. Within the scope of the present invention, the combination with the largest interaction is indicated by ◯, the combination at which no interaction can be expected is indicated by ×, and the middle thereof is indicated by △. The properties of the molded sheets of the resins and resin compositions obtained in the above Examples and Comparative Examples were evaluated by the methods shown below.
1.線膨張係数
シート成形体からそれぞれ幅5mm、長さ14mmに切り出したテストピースについてTMA装置(リガク社製 Thermo Plus8310型)を用いて昇温速度5.0℃/分の条件下で線膨張係数を測定した。その結果を表1に示した。
1. Linear expansion coefficient Test pieces cut into a width of 5 mm and a length of 14 mm, respectively, from the sheet molded body were subjected to a linear expansion coefficient under the condition of a heating rate of 5.0 ° C./min using a TMA apparatus (Thermo Plus Thermo Plus 8310 type). It was measured. The results are shown in Table 1.
2.成形性
シート成形体を作製するホットプレスにおいて、プレス条件(硬化系は175℃で1時間、熱可塑系は260℃で30分)における成形品のキャビティに対する占有状態を目視観察し、下記の判定基準で評価した。
○: キャビティが十分に樹脂あるいは樹脂組成物で満たされている。
△: キャビティの一部に樹脂あるいは樹脂組成物が充填されない部位がある。
×: 樹脂あるいは樹脂組成物の流動性が乏しく、充填されていない、もしくは樹脂あるいは樹脂組成物に流動性が見られない。
−: 比較例2における「−」は、樹脂組成物ができなかったことを意味する。
2. Formability In a hot press for producing a sheet compact, the occupied state of the molded product in the cavity under the press conditions (curing system is 175 ° C. for 1 hour, thermoplastic system is 260 ° C. for 30 minutes) is visually observed, and the following determination is made. Evaluated by criteria.
○: The cavity is sufficiently filled with the resin or the resin composition.
Δ: A part of the cavity is not filled with the resin or the resin composition.
X: The fluidity | liquidity of resin or a resin composition is scarce, it is not filled, or fluidity | liquidity is not seen in resin or a resin composition.
-: "-" In Comparative Example 2 means that the resin composition was not made.
表1に見られるように、硬化性樹脂を有機樹脂マトリックスとする実施例1〜5のものはいずれも線膨張係数が低かった。特にナノシリカ、ミクロンシリカ共に表面処理を施した原料を用いた場合に線膨張係数の低下が顕著であった。一方で、ナノシリカ配合量が多くなるとやや成形性に劣ってくる傾向となったが、作成したいずれの事例でも十分な成形性を有すると判断した。同様の挙動は熱可塑性樹脂組成物でも確認された。
一方で、ナノシリカを配合しない(比較例1)またはその配合量が少ない事例(比較例3)では、線膨張係数の低減が不十分となった。またナノシリカが多すぎる場合には、所望の硬化樹脂組成物を調製することができなかった。
同様の挙動は熱可塑性樹脂組成物でも確認され、有機樹脂マトリックスの性質によらず普遍的な挙動であると考えられた。
As can be seen from Table 1, all of Examples 1 to 5 having a curable resin as an organic resin matrix had a low coefficient of linear expansion. In particular, when the raw materials subjected to surface treatment for both nano silica and micro silica were used, the linear expansion coefficient was significantly reduced. On the other hand, when the amount of nanosilica added increased, the moldability tended to be slightly inferior, but it was judged that any of the prepared cases had sufficient moldability. Similar behavior was confirmed in the thermoplastic resin composition.
On the other hand, in the case where no nanosilica is blended (Comparative Example 1) or the blending amount is small (Comparative Example 3), the reduction of the linear expansion coefficient is insufficient. Moreover, when there was too much nano silica, the desired cured resin composition was not able to be prepared.
A similar behavior was confirmed in the thermoplastic resin composition, and it was considered to be a universal behavior regardless of the properties of the organic resin matrix.
本発明の有機無機複合材料は、熱硬化性樹脂や熱可塑性樹脂の線膨張係数を大きく低減できる一方で、十分な成形性を有しており、半導体装置等の有機樹脂封止材として好適に用いることができる。
While the organic-inorganic composite material of the present invention can greatly reduce the linear expansion coefficient of thermosetting resins and thermoplastic resins, it has sufficient moldability and is suitable as an organic resin sealing material for semiconductor devices and the like. Can be used.
Claims (4)
硬化性樹脂(A1)または熱可塑性樹脂(A2)からなる有機樹脂マトリックス(A)中に、平均一次粒子径が1〜50nmである超微細無機充填材(B)がその一次粒子径レベルで均一分散されてなり、さらに、平均粒子径が0.3〜50μmである無機充填材(C)が分散されてなる有機樹脂組成物であって、超微細無機充填材(B)の配合量が樹脂マトリックス(A)に対して2〜30質量%であり、超微細無機充填材(B)と無機充填材(C)と合わせた無機成分の総計が、前記樹脂組成物の60〜95質量%であることを特徴とする低熱膨張性樹脂組成物。 A resin composition comprising an inorganic filler and an organic resin,
In the organic resin matrix (A) made of the curable resin (A1) or the thermoplastic resin (A2), the ultrafine inorganic filler (B) having an average primary particle size of 1 to 50 nm is uniform at the primary particle size level. An organic resin composition in which an inorganic filler (C) having an average particle size of 0.3 to 50 μm is dispersed, and the blending amount of the ultrafine inorganic filler (B) is a resin. It is 2-30 mass% with respect to a matrix (A), and the sum total of the inorganic component combined with the ultrafine inorganic filler (B) and the inorganic filler (C) is 60-95 mass% of the said resin composition. A low thermal expansion resin composition characterized by being.
The solution obtained by dissolving the thermoplastic resin (A2) in a solvent is mixed with the fine inorganic filler (B) having an average primary particle diameter of 1 to 50 nm, uniformly dispersed, and then the solid from which the solvent is removed A fine inorganic filler-containing organic resin matrix that is pulverized to form a powder, and the inorganic inorganic filler (C) having an average particle size of 0.3 to 50 μm in the fine inorganic filler-containing organic resin matrix; A method for producing a low thermal expansion resin composition, wherein the additional thermoplastic resin (A2) is added, mixed in a molten state, and then molded.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014215512A JP2016079368A (en) | 2014-10-22 | 2014-10-22 | Low thermal expandable resin composition and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014215512A JP2016079368A (en) | 2014-10-22 | 2014-10-22 | Low thermal expandable resin composition and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016079368A true JP2016079368A (en) | 2016-05-16 |
Family
ID=55955883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014215512A Pending JP2016079368A (en) | 2014-10-22 | 2014-10-22 | Low thermal expandable resin composition and manufacturing method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016079368A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019245026A1 (en) * | 2018-06-21 | 2019-12-26 | 日立化成株式会社 | Thermosetting resin composition, prepreg, laminated sheet, printed-wiring board and semiconductor package, and method for producing thermosetting resin composition |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49130893A (en) * | 1973-04-23 | 1974-12-14 | ||
JP2003292570A (en) * | 2002-03-29 | 2003-10-15 | Mitsubishi Gas Chem Co Inc | Epoxy resin composition for laminated plate |
JP2004352783A (en) * | 2003-05-27 | 2004-12-16 | Matsushita Electric Works Ltd | Resin composition for sealing |
JP2005075990A (en) * | 2003-09-02 | 2005-03-24 | Sumitomo Seika Chem Co Ltd | Polyolefin-based resin composition |
JP2009256580A (en) * | 2008-03-27 | 2009-11-05 | Tokai Rubber Ind Ltd | Method for producing vibration-proof rubber composition, vibration-proof rubber composition obtained by the same and vibration-proof rubber |
JP2011006618A (en) * | 2009-06-26 | 2011-01-13 | Namics Corp | Liquid resin composition for sealing, flip chip-mounted body and method for producing the body |
JP2011178857A (en) * | 2010-02-26 | 2011-09-15 | Sekisui Chem Co Ltd | Resin composition and molding |
JP2012062422A (en) * | 2010-09-17 | 2012-03-29 | Sekisui Chem Co Ltd | Resin composition and molded body |
JP2012131946A (en) * | 2010-12-24 | 2012-07-12 | Sumitomo Bakelite Co Ltd | Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device |
US20120184646A1 (en) * | 2011-01-17 | 2012-07-19 | Shin-Etsu Chemical Co., Ltd. | Semiconductor-encapsulating liquid epoxy resin composition and semiconductor device |
JP2012153752A (en) * | 2011-01-24 | 2012-08-16 | Sumitomo Bakelite Co Ltd | Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device |
JP2012158666A (en) * | 2011-01-31 | 2012-08-23 | Toyo Tire & Rubber Co Ltd | Rubber composition and production method therefor, and pneumatic tire |
WO2012127728A1 (en) * | 2011-03-22 | 2012-09-27 | 東洋ゴム工業株式会社 | Unvulcanized rubber composition, process for producing same, and pneumatic tire |
JP2012184354A (en) * | 2011-03-07 | 2012-09-27 | Toyo Tire & Rubber Co Ltd | Unvulcanized rubber composition, manufacturing method thereof, and pneumatic tire |
JP2012211225A (en) * | 2011-03-30 | 2012-11-01 | Hitachi Chemical Co Ltd | Resin composition, resin sheet, prepreg, laminated board, metal substrate, and printed wiring board |
JP2012214566A (en) * | 2011-03-31 | 2012-11-08 | Toyo Tire & Rubber Co Ltd | Rubber composition, method of producing the rubber composition, and pneumatic tire |
JP2012214617A (en) * | 2011-03-31 | 2012-11-08 | Sumitomo Rubber Ind Ltd | Method of producing rubber composition for tire, rubber composition for tire, and pneumatic tire |
JP2012528466A (en) * | 2009-05-29 | 2012-11-12 | アーケマ・インコーポレイテッド | Aqueous polyvinylidene fluoride composition |
JP2013522439A (en) * | 2010-03-23 | 2013-06-13 | アルケマ フランス | Liquid batch composition, especially a masterbatch of carbon-based conductive fillers for lithium ion batteries |
JP2013136707A (en) * | 2011-12-28 | 2013-07-11 | Toyo Tire & Rubber Co Ltd | Method for producing rubber composition and rubber composition |
WO2013108436A1 (en) * | 2012-01-19 | 2013-07-25 | 東洋ゴム工業株式会社 | Method for producing rubber wet masterbatch, rubber wet masterbatch, and rubber composition including rubber wet masterbatch |
WO2014057705A1 (en) * | 2012-10-11 | 2014-04-17 | 東洋ゴム工業株式会社 | Rubber wet masterbatch |
WO2014073234A1 (en) * | 2012-11-08 | 2014-05-15 | 東洋ゴム工業株式会社 | Rubber wet master batch producing method, rubber wet master batch, and rubber composition containing rubber wet master batch |
JP2014091810A (en) * | 2012-11-06 | 2014-05-19 | Toyo Tire & Rubber Co Ltd | Rubber wet master batch and production method of the same, rubber composition, and pneumatic tire |
JP2014152189A (en) * | 2013-02-05 | 2014-08-25 | Kyocera Chemical Corp | Epoxy resin composition for sealing and semiconductor device using the same |
JP2015105304A (en) * | 2013-11-29 | 2015-06-08 | ナミックス株式会社 | Epoxy resin composition, semiconductor sealant and semiconductor device |
JP2016065182A (en) * | 2014-09-26 | 2016-04-28 | 東洋ゴム工業株式会社 | Manufacturing method of rubber wet master batch |
-
2014
- 2014-10-22 JP JP2014215512A patent/JP2016079368A/en active Pending
Patent Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49130893A (en) * | 1973-04-23 | 1974-12-14 | ||
JP2003292570A (en) * | 2002-03-29 | 2003-10-15 | Mitsubishi Gas Chem Co Inc | Epoxy resin composition for laminated plate |
JP2004352783A (en) * | 2003-05-27 | 2004-12-16 | Matsushita Electric Works Ltd | Resin composition for sealing |
JP2005075990A (en) * | 2003-09-02 | 2005-03-24 | Sumitomo Seika Chem Co Ltd | Polyolefin-based resin composition |
JP2009256580A (en) * | 2008-03-27 | 2009-11-05 | Tokai Rubber Ind Ltd | Method for producing vibration-proof rubber composition, vibration-proof rubber composition obtained by the same and vibration-proof rubber |
JP2012528466A (en) * | 2009-05-29 | 2012-11-12 | アーケマ・インコーポレイテッド | Aqueous polyvinylidene fluoride composition |
JP2011006618A (en) * | 2009-06-26 | 2011-01-13 | Namics Corp | Liquid resin composition for sealing, flip chip-mounted body and method for producing the body |
JP2011178857A (en) * | 2010-02-26 | 2011-09-15 | Sekisui Chem Co Ltd | Resin composition and molding |
JP2013522439A (en) * | 2010-03-23 | 2013-06-13 | アルケマ フランス | Liquid batch composition, especially a masterbatch of carbon-based conductive fillers for lithium ion batteries |
JP2012062422A (en) * | 2010-09-17 | 2012-03-29 | Sekisui Chem Co Ltd | Resin composition and molded body |
JP2012131946A (en) * | 2010-12-24 | 2012-07-12 | Sumitomo Bakelite Co Ltd | Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device |
JP2012149111A (en) * | 2011-01-17 | 2012-08-09 | Shin-Etsu Chemical Co Ltd | Liquid epoxy resin composition for sealing semiconductor, and semiconductor device |
US20120184646A1 (en) * | 2011-01-17 | 2012-07-19 | Shin-Etsu Chemical Co., Ltd. | Semiconductor-encapsulating liquid epoxy resin composition and semiconductor device |
JP2012153752A (en) * | 2011-01-24 | 2012-08-16 | Sumitomo Bakelite Co Ltd | Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device |
JP2012158666A (en) * | 2011-01-31 | 2012-08-23 | Toyo Tire & Rubber Co Ltd | Rubber composition and production method therefor, and pneumatic tire |
JP2012184354A (en) * | 2011-03-07 | 2012-09-27 | Toyo Tire & Rubber Co Ltd | Unvulcanized rubber composition, manufacturing method thereof, and pneumatic tire |
WO2012127728A1 (en) * | 2011-03-22 | 2012-09-27 | 東洋ゴム工業株式会社 | Unvulcanized rubber composition, process for producing same, and pneumatic tire |
JP2012197375A (en) * | 2011-03-22 | 2012-10-18 | Toyo Tire & Rubber Co Ltd | Unvulcanized rubber composition, method of producing the same, and pneumatic tire |
JP2012211225A (en) * | 2011-03-30 | 2012-11-01 | Hitachi Chemical Co Ltd | Resin composition, resin sheet, prepreg, laminated board, metal substrate, and printed wiring board |
JP2012214617A (en) * | 2011-03-31 | 2012-11-08 | Sumitomo Rubber Ind Ltd | Method of producing rubber composition for tire, rubber composition for tire, and pneumatic tire |
JP2012214566A (en) * | 2011-03-31 | 2012-11-08 | Toyo Tire & Rubber Co Ltd | Rubber composition, method of producing the rubber composition, and pneumatic tire |
JP2013136707A (en) * | 2011-12-28 | 2013-07-11 | Toyo Tire & Rubber Co Ltd | Method for producing rubber composition and rubber composition |
WO2013108436A1 (en) * | 2012-01-19 | 2013-07-25 | 東洋ゴム工業株式会社 | Method for producing rubber wet masterbatch, rubber wet masterbatch, and rubber composition including rubber wet masterbatch |
JP2013147574A (en) * | 2012-01-19 | 2013-08-01 | Toyo Tire & Rubber Co Ltd | Method for producing rubber wet masterbatch, rubber wet masterbatch, and rubber composition including rubber wet masterbatch |
JP2014077083A (en) * | 2012-10-11 | 2014-05-01 | Toyo Tire & Rubber Co Ltd | Rubber wet master batch |
WO2014057705A1 (en) * | 2012-10-11 | 2014-04-17 | 東洋ゴム工業株式会社 | Rubber wet masterbatch |
JP2014091810A (en) * | 2012-11-06 | 2014-05-19 | Toyo Tire & Rubber Co Ltd | Rubber wet master batch and production method of the same, rubber composition, and pneumatic tire |
WO2014073234A1 (en) * | 2012-11-08 | 2014-05-15 | 東洋ゴム工業株式会社 | Rubber wet master batch producing method, rubber wet master batch, and rubber composition containing rubber wet master batch |
JP2014095022A (en) * | 2012-11-08 | 2014-05-22 | Toyo Tire & Rubber Co Ltd | Production method of rubber wet master batch and rubber wet master batch, and rubber composition including rubber wet master batch |
JP2014152189A (en) * | 2013-02-05 | 2014-08-25 | Kyocera Chemical Corp | Epoxy resin composition for sealing and semiconductor device using the same |
JP2015105304A (en) * | 2013-11-29 | 2015-06-08 | ナミックス株式会社 | Epoxy resin composition, semiconductor sealant and semiconductor device |
JP2016065182A (en) * | 2014-09-26 | 2016-04-28 | 東洋ゴム工業株式会社 | Manufacturing method of rubber wet master batch |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019245026A1 (en) * | 2018-06-21 | 2019-12-26 | 日立化成株式会社 | Thermosetting resin composition, prepreg, laminated sheet, printed-wiring board and semiconductor package, and method for producing thermosetting resin composition |
JPWO2019245026A1 (en) * | 2018-06-21 | 2021-08-02 | 昭和電工マテリアルズ株式会社 | Method for manufacturing thermosetting resin composition, prepreg, laminated board, printed wiring board and semiconductor package, and thermosetting resin composition |
JP7420071B2 (en) | 2018-06-21 | 2024-01-23 | 株式会社レゾナック | Thermosetting resin composition, prepreg, laminate, printed wiring board, semiconductor package, and method for producing thermosetting resin composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200948843A (en) | Modified epoxy resin, epoxy resin compositions and cured articles | |
KR20190132240A (en) | Heat-curable maleimide resin composition for semiconductor encapsulation and semiconductor device | |
EP3614425A1 (en) | Resin composition for sealing electronic control device, electronic control device, and method for manufacturing same | |
JP2019044006A (en) | Resin composition for semiconductor sealing and semiconductor device | |
TWI599574B (en) | Phosphonium compound, epoxy resin composition including the same and semiconductor device prepared using the same | |
JP2009275146A (en) | Epoxy resin composition for sealing semiconductor and semiconductor device using the same | |
JP2012067252A (en) | Sealing epoxy resin composition and semiconductor device | |
JP7400268B2 (en) | Unsaturated polyester resin composition and cured product thereof | |
JP2016079368A (en) | Low thermal expandable resin composition and manufacturing method therefor | |
KR20130064000A (en) | Epoxy resin composition for electronic parts encapsulation and electronic parts-equipped device using the same | |
KR102146996B1 (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same | |
JP5298310B2 (en) | Resin composition for sealing electronic components and electronic component device using the same | |
WO2020152906A1 (en) | Thermosetting resin composition | |
WO2021054169A1 (en) | Coil sealing resin composition, electronic component device, and method for producing electronic component device | |
JP5407767B2 (en) | Epoxy resin composition and semiconductor device | |
JP2013112710A (en) | Epoxy resin composition for sealing semiconductor | |
JP2006274221A (en) | Epoxy resin composition for optical semiconductor and semiconductor device | |
JP6946088B2 (en) | A composition for a cured resin, a cured product of the composition, a method for producing the composition and the cured product, and a semiconductor device. | |
KR20210040771A (en) | Curable resin composition, cured product thereof, and structure including cured product thereof | |
JP2006193566A (en) | Method for producing epoxy resin composition for optical semi-conductor | |
JP5369379B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same | |
CN111492009A (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same | |
JP7020603B1 (en) | Bond magnet compounds, moldings, and bond magnets | |
JP2014218594A (en) | Sealing resin composition and method for producing the same, and resin sealing type semiconductor device | |
WO2021240879A1 (en) | Thermosetting resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171020 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180619 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180820 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190108 |