WO2021240879A1 - Thermosetting resin composition - Google Patents

Thermosetting resin composition Download PDF

Info

Publication number
WO2021240879A1
WO2021240879A1 PCT/JP2021/002807 JP2021002807W WO2021240879A1 WO 2021240879 A1 WO2021240879 A1 WO 2021240879A1 JP 2021002807 W JP2021002807 W JP 2021002807W WO 2021240879 A1 WO2021240879 A1 WO 2021240879A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
resin composition
thermosetting resin
formula
Prior art date
Application number
PCT/JP2021/002807
Other languages
French (fr)
Japanese (ja)
Inventor
千佳 峯崎
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2022527499A priority Critical patent/JPWO2021240879A1/ja
Publication of WO2021240879A1 publication Critical patent/WO2021240879A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a thermosetting resin composition, a cured product thereof, a method for producing a structure using the thermosetting resin composition, and a structure containing the cured product.
  • the encapsulant which is a plastic material, is also required to have high heat resistance.
  • the material is heat-softened in a plunger, and the heat-softened material is pushed into the heated mold cavity through a flow path in the mold such as a gate, sprue, runner, etc. It is a method of curing inside. Since the material is injected into the cavity with high fluidity, it is possible to mold at low pressure.
  • Transfer molding is characterized by being less likely to damage the insert than other molding methods that require high pressure. Transfer molding is known as a typical molding method in encapsulation molding of power semiconductors and ICs because it can be miniaturized and microfabricated and has high productivity.
  • thermosetting resin compositions containing a large amount of polyfunctional epoxy resin, bismaleimide, triazine skeleton, benzoxazine skeleton, and silsesquioki Thermosetting resin compositions containing a highly heat-resistant structure such as a sun skeleton have been proposed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 11-140277 describes (A) a phenol resin having a novolak structure containing a biphenyl derivative and / or a naphthalene derivative in the molecule, in an amount of 30 to 100 parts by mass in the total phenol resin amount. , (B) Epoxy resin containing 30 to 100 parts by mass of a novolak-structured epoxy resin containing a biphenyl derivative and / or a naphthalene derivative in the molecule, (C) an inorganic filler, (D) promoting curing. Described is an epoxy resin composition for encapsulating a semiconductor, which comprises an agent as an essential component.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 5-43630 describes an aromatic bismaleimide containing N, N'-(alkyl-substituted diphenylmethane) bismaleimide and a polyallylphenol from a condensed polyphenol of salicylaldehyde and phenol. Describes the resin composition.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 5-6869 describes (A) a maleimide compound having two or more maleimide groups in one molecule, (B) an allylated phenolic resin having a specific repeating unit, and (C). Described is a semiconductor device in which a semiconductor element is sealed by using a resin composition containing a curing catalyst.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 6-93047 describes a curable resin composition comprising a maleimide compound, an alkenylphenol compound having a specific structure, and an epoxy group-containing organic silane compound in a specific ratio. ..
  • Japanese Unexamined Patent Publication No. 11-14277 Japanese Unexamined Patent Publication No. 5-43630 Japanese Unexamined Patent Publication No. 5-6869 Japanese Unexamined Patent Publication No. 6-93047
  • Patent Document 1 As a method for increasing the heat resistance of the material, increasing the number of functional groups of the epoxy resin to increase the crosslink density (Patent Document 1) and using maleimide resin as another resin (Patent Documents 2 to 4) can be mentioned.
  • Patent Documents 2 to 4 As the heat resistance of the material is increased by these methods, the crosslinked structure of the cured product of the thermosetting resin becomes denser, so that the material becomes harder and stronger, and the elasticity of the cured product tends to increase.
  • thermosetting resin composition that gives a cured product having excellent adhesion to a metal and excellent reflow resistance without impairing moldability and heat resistance of the cured product.
  • thermosetting resin composition containing a polyalkenylphenol compound (A), a polymaleimide compound (B), a polyethylene glycol compound (C), and a radical initiator (D).
  • the polyethylene glycol compound (C) has a structural unit of the formula (1), and the structural unit of the formula (1) is 90 mol% to 100 mol% with respect to the total structural unit.
  • Thermosetting resin composition [2]
  • the content of the polyethylene glycol compound (C) is 1 to 10% by mass based on the total of the polyalkenylphenol compound (A), the polymaleimide compound (B), and the polyethylene glycol compound (C).
  • the thermosetting resin composition according to [1].
  • thermosetting resin composition according to [1] or [2], wherein the polyethylene glycol compound (C) has a number average molecular weight Mn of 2000 to 50,000.
  • the polyalkenylphenol compound (A) is represented by the formula (2) -1 :.
  • equation (2) -2 It is a polyalkenylphenol compound having a structural unit represented by In formulas (2) -1 and (2) -2, R 1 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 2 Are independent of each other, equation (3): Represents a 2-alkenyl group represented by, and in formula (3), R 3 , R 4 , R 5 , R 6 and R 7 are independently hydrogen atoms and alkyl groups having 1 to 5 carbon atoms, respectively.
  • R 1 and R. 2 may be the same or different for each phenol skeleton unit, and Q independently has an alkylene group represented by the formula ⁇ CR 8 R 9 ⁇ , a cycloalkylene group having 5 to 10 carbon atoms, and an aromatic ring.
  • thermosetting resin composition representing an alkyl group of up to 5; an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • the thermosetting resin composition according to. [7] When the average number of structural units shown in formula (2) -1 per molecule is p and the average number of structural units shown in formula (2) -2 per molecule is q, p is 1.1 to The thermosetting resin according to [6], wherein 35 is a real number, p + q is a real number of 1.1 to 35, and q is a real number having a value of the formula: p / (p + q) of 0.4 to 1. Composition.
  • thermosetting resin composition according to any one of [1] to [7], wherein the polymaleimide compound (B) is an aromatic bismaleimide compound.
  • the filler (E) is at least one selected from the group consisting of silica, alumina, magnesium oxide, and solid rubber particles.
  • the content of the filler (E) is 100 parts by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), the polyethylene glycol compound (C), and the radical initiator (D).
  • thermosetting resin composition that gives a cured product having excellent adhesion to a metal and excellent reflow resistance without impairing the moldability and the heat resistance of the cured product. can.
  • thermosetting resin composition of one embodiment contains a polyalkenylphenol compound (A), a polymaleimide compound (B), a polyethylene glycol compound (C), and a radical initiator (D).
  • the polyalkenylphenol compound (A) is a compound having at least two phenol skeletons in the molecule and having a 2-alkenyl group bonded to a part or all of the aromatic ring forming the phenol skeleton in the molecule.
  • a 2-alkenyl group a group having a structure represented by the formula (3) is preferable.
  • R 3 , R 4 , R 5 , R 6 , and R 7 are independently hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, and cycloalkyl groups having 5 to 10 carbon atoms, respectively. Alternatively, it is an aryl group having 6 to 12 carbon atoms. * In the formula (3) represents a bond with a carbon atom constituting an aromatic ring.
  • alkyl groups having 1 to 5 carbon atoms constituting R 3 , R 4 , R 5 , R 6 and R 7 in the formula (3) include methyl group, ethyl group, n-propyl group and isopropyl. Groups, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group and the like can be mentioned.
  • Specific examples of the cycloalkyl group having 5 to 10 carbon atoms include a cyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group and the like.
  • aryl group having 6 to 12 carbon atoms include a phenyl group, a methylphenyl group, an ethylphenyl group, a biphenyl group, a naphthyl group and the like.
  • 2-alkenyl group represented by the formula (3) it is preferable that allyl groups, that is, R 3 , R 4 , R 5 , R 6 and R 7 are all hydrogen atoms.
  • 2-alkenyl is preferably 40 to 100%, more preferably 60 to 100%, still more preferably 80 to 100% of the total aromatic rings forming the phenol skeleton.
  • the groups are bonded.
  • Known basic skeletons of the polyalkenylphenol compound (A) include phenol novolac resin, cresol novolak resin, triphenylmethane-type phenol resin, phenol aralkyl resin, biphenyl aralkyl phenol resin, and phenol-dicyclopentadiene copolymer resin. Examples include the skeleton of phenolic resin.
  • the polyalkenylphenol compound (A) having the following formula (2) -1 and optionally the structural unit represented by the formula (2) -2 can be preferably used.
  • the structural units represented by the formulas (2) -1 and the formula (2) -2 are preferable phenol skeleton units constituting the polyalkenylphenol compound (A), and the bonding order of these phenol skeleton units is not particularly limited.
  • R 1 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, respectively, and is of the formula (2).
  • R 2 is independently a 2- alkoxy group represented by the formula (3).
  • R 1 and R 2 may be the same or different for each phenol skeleton unit.
  • Q is independently of the formula -CR 8 R 9 - in the alkylene group represented, a cycloalkylene group having 5 to 10 carbon atoms, a divalent organic group having an aromatic ring, a divalent having an alicyclic fused ring
  • R 8 and R 9 are independently hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, and alkenyl groups having 2 to 6 carbon atoms, respectively. It is a cycloalkyl group having 5 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • p is preferably 1. .1 to 35 real numbers
  • p + q are 1.1 to 35 real numbers
  • q satisfies the real number in which the value of the formula: p / (p + q) is 0.4 to 1.
  • alkyl group having 1 to 5 carbon atoms constituting R 1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and n.
  • the pentyl group and the like can be mentioned.
  • alkoxy group having 1 to 5 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, an n-pentoxy group and the like. Can be mentioned.
  • Examples of the cycloalkyl group having 5 to 10 carbon atoms include a pentenyl group, a hexenyl group, and the like, and examples thereof include a cyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group, and a carbon atom.
  • Specific examples of the aryl group having the number 6 to 12 include a phenyl group, a methylphenyl group, an ethylphenyl group, a biphenyl group, a naphthyl group and the like.
  • cycloalkylene group having 5 to 10 carbon atoms constituting Q include a cyclopentylene group, a cyclohexylene group, a methylcyclohexylene group, a cycloheptylene group and the like.
  • divalent organic group having an aromatic ring include a phenylene group, a trilene group, a naphthylene group, a biphenylene group, a fluorenylene group, an anthrasenylene group, a xylylene group, a 4,4-methylenediphenyl group and the like.
  • the number of carbon atoms of the divalent organic group having an aromatic ring can be 6 to 20 or 6 to 14.
  • divalent organic group having an alicyclic condensed ring examples include a dicyclopentadienylene group and the like.
  • the number of carbon atoms of the divalent organic group having an alicyclic condensed ring can be 7 to 20 or 7 to 10.
  • Q is a dicyclopentadienylene group, a phenylene group, a methylphenylene group, a xylylene group, or a biphenylene group in terms of high mechanical strength of the cured product. Since the viscosity of the polyalkenylphenol compound (A) is low and it is advantageous for mixing with the polymaleimide compound (B), Q is preferably ⁇ CH 2-.
  • P is preferably a real number of 1.1 to 35, more preferably a real number of 2 to 30, and even more preferably a real number of 3 to 10.
  • p is 1.1 or more, the thermal decomposition start temperature when the cured product of the thermosetting resin composition is placed in a high temperature environment is appropriate, and when p is 35 or less, the viscosity of the thermosetting resin composition is appropriate. Is a suitable range for processing during molding.
  • P + q is preferably a real number of 1.1 to 35, more preferably a real number of 2 to 30, and even more preferably a real number of 3 to 10.
  • p + q is 1.1 or more, the thermal decomposition start temperature when the cured product of the thermosetting resin composition is placed in a high temperature environment is appropriate, and when it is 35 or less, the viscosity of the thermosetting resin composition is appropriate. Is a suitable range for processing during molding.
  • q is preferably a real number in which the value of the formula: p / (p + q) is 0.4 to 1, and more preferably is a real number in which the value of the formula: p / (p + q) is 0.6 to 1. More preferably, it is a real number in which the value of the formula: p / (p + q) is 0.8 to 1. Equation: When the value of p / (p + q) is 1, q is 0. That is, in this embodiment, the polyalkenylphenol compound (A) does not contain the structural unit represented by the formula (2) -2. The polyalkenylphenol compound (A) can have only the structural unit represented by the formula (2) -1. When q is a value satisfying the above conditions, the degree of curing of the thermosetting resin composition can be made sufficient depending on the application.
  • the preferred number average molecular weight Mn of the polyalkenylphenol compound (A) is 300 to 5000, more preferably 400 to 4000, and even more preferably 500 to 3000.
  • the thermal decomposition start temperature is appropriate when the cured product of the thermosetting resin composition is placed in a high temperature environment, and when it is 5000 or less, the viscosity of the thermosetting resin composition Is a suitable range for processing during molding.
  • the polyalkenylphenol compound (A) can be obtained by rearranging a 2-alkenyl group by a Claisen rearrangement reaction after partially converting a part of the hydroxyl group of the phenol resin as a raw material into an alkenyl ether.
  • a known phenol resin having a structural unit represented by the following formula (2) -2 can be preferably used as the raw material phenol resin.
  • raw material phenol resin of the polyalkenylphenol compound (A) include phenol novolac resin, cresol novolak resin, triphenylmethane type phenol resin, phenol aralkyl resin, biphenyl aralkyl resin, phenol-dicyclopentadiene copolymer resin and the like. Can be mentioned.
  • the 2-alkenyl etherification reaction of the raw material phenol resin includes (i) a known method for reacting a halogenated 2-alkenyl compound such as allyl chloride, methallyl chloride, and allyl bromide with a phenol compound, and (ii) acetic acid.
  • a halogenated 2-alkenyl compound such as allyl chloride, methallyl chloride, and allyl bromide with a phenol compound
  • acetic acid Two known methods of reacting a carboxylic acid 2-alkenyl compound such as allyl with a phenol compound can be exemplified.
  • the method described in JP-A-2-91113 can be used for example, the method described in JP-A-2-91113 can be used.
  • a method for reacting the carboxylic acid 2-alkenyl compound with the phenol resin for example, the method described in JP-A-2011-26253 can be used.
  • the amount of the halogenated 2-alkenyl compound or the carboxylic acid 2-alkenyl compound to be used with respect to the phenolic hydroxyl group is preferably 0.4 to 5.0 equivalents, more preferably 0.6 to 4.0 equivalents.
  • the amount of the reaction site with the polymaleimide compound (B) after the Claisen rearrangement is more appropriate, and a cured product having more excellent heat resistance can be obtained.
  • the 2-alkenyl etherification reaction is carried out by mixing the 2-alkenyl compound with the raw material phenol resin and reacting for 4 to 40 hours.
  • a solvent in which the raw material phenol resin is dissolved can be used.
  • the reaction can also be carried out without a solvent using a carboxylic acid 2-alkenyl compound capable of dissolving the raw material phenol resin.
  • the 2-alkenyl etherification rate of the raw material phenol resin is determined by using a larger amount of the halogenated 2-alkenyl compound or the carboxylic acid 2-alkenyl compound than the above amount and adjusting the reaction time to be shorter than the reaction time. , The reaction rate (conversion rate) of the 2-alkenyl compound can be suppressed to a low level and controlled.
  • the target polyalkenylphenol compound (A) can be obtained by subjecting the polyalkenyl ether compound produced by the method according to (i) or (ii) to a Claisen rearrangement reaction.
  • the Claisen rearrangement reaction can be carried out by heating the polyalkenyl ether compound to a temperature of 100 to 250 ° C. and reacting it for 1 to 20 hours.
  • the Claisen rearrangement reaction may be carried out using a solvent having a high boiling point, or may be carried out without a solvent.
  • Inorganic salts such as sodium thiosulfate and sodium carbonate can also be added to promote the rearrangement reaction. Details are disclosed in, for example, Japanese Patent Application Laid-Open No. 2-91113.
  • the polymaleimide compound (B) is a compound having two or more maleimide groups represented by the formula (4). By blending the polymaleimide compound (B), the heat resistance of the cured product can be improved.
  • * represents a bond with an aromatic ring or an organic group containing a straight chain, a branched chain or a cyclic aliphatic hydrocarbon group.
  • polymaleimide compound (B) examples include bismaleimide such as bis (4-maleimidephenyl) methane, trismaleimide such as tris (4-maleimidephenyl) methane, and tetraxmaleimide such as bis (3,4-dimaleimidephenyl) methane. , And polymaleimides such as poly (4-maleimide styrene).
  • polymaleimide compound (B) include aromatic polymaleimide compounds and aliphatic polymaleimide compounds, and aromatic polymaleimide compounds are preferable because the obtained cured product has particularly excellent flame retardancy.
  • the aromatic polymaleimide compound is a compound having two or more maleimide groups represented by the formula (4), and these maleimide groups are bonded to the same or different aromatic rings.
  • Specific examples of the aromatic ring include a monocyclic ring such as benzene, a condensed ring such as naphthalene and anthracene, and the like.
  • the polymaleimide compound (B) is preferably an aromatic bismaleimide compound or an aliphatic bismaleimide compound, and more preferably an aromatic bismaleimide compound, because it mixes well in the curable resin composition. ..
  • aromatic bismaleimide compound examples include bis (4-maleimidephenyl) methane, bis (3-maleimidephenyl) methane, bis (3-methyl-4-maleimidephenyl) methane, and bis (3,5-dimethyl-).
  • 4-maleimidephenyl) methane bis (3-ethyl-4-maleimidephenyl) methane, bis (3,5-diethyl-4-maleimidephenyl) methane, bis (3-propyl-4-maleimidephenyl) methane, bis ( 3,5-Dipropyl-4-maleimidephenyl) methane, bis (3-butyl-4-maleimidephenyl) methane, bis (3,5-dibutyl-4-maleimidephenyl) methane, bis (3-ethyl-4-maleimide) -5-Methylphenyl) methane, 2,2-bis (4-maleimidephenyl) propane, 2,2-bis [4- (4-maleimidephenyloxy) phenyl] propane, bis (4-maleimidephenyl) ether, bis (3-maleimidephenyl) ether, bis (4-maleimidephenyl) ketone, bis (3-maleimidephenyl) ketone
  • aliphatic bismaleimide compound examples include bis (4-maleimidecyclohexyl) methane and bis (3-maleimidecyclohexyl) methane. Of these, bis (4-maleimidephenyl) methane and 2,2-bis [4- (4-maleimidephenyloxy) phenyl] propane are preferable. Examples of commercially available products include the BMI (trade name, Daiwa Kasei Kogyo Co., Ltd.) series.
  • the blending amount of the polyalkenylphenol compound (A) is preferably 5 to 200 parts by mass, more preferably 10 to 150 parts by mass, and 30 to 30 parts by mass. It is more preferably 100 parts by mass.
  • the compounding amount is 5 parts by mass or more, the fluidity at the time of molding is better.
  • the compounding amount is 200 parts by mass or less, the heat resistance of the cured product is better.
  • the polyethylene glycol compound (C) has a structural unit of the formula (1), and the structural unit of the formula (1) is 90 mol% to 100 mol% with respect to the total structural unit.
  • the structural unit of the formula (1) is preferably 95 mol% to 100 mol%, more preferably 97 mol% to 100 mol%.
  • the polyethylene glycol compound (C) has good compatibility with both the polyalkenylphenol compound (A) and the polymaleimide compound (B), the polyethylene glycol compound (C) is used.
  • the compatibility of the polyalkenylphenol compound (A) and the polymaleimide compound (B) can be improved.
  • the surface separability of the mold release agent can be controlled while the polyethylene glycol compound (C) itself is appropriately compatible with the mold release agent. This effect can suppress the bleed-out of the release agent and other components.
  • the high molecular weight polyethylene glycol compound (C) is a stable component even at a high temperature, the fluidity of the thermosetting resin composition and the adjustment of the surface wettability of the thermosetting resin composition with respect to the mold during molding are adjusted. Can also be. Due to these effects, bleed-out can be further suppressed by adding the high molecular weight polyethylene glycol compound (C).
  • the number average molecular weight Mn of the polyethylene glycol compound (C) is preferably 2000 to 50000, more preferably 2500 to 30000, and further preferably 3000 to 25000.
  • the number average molecular weight Mn is 2000 or more, the bleed-out of the polyethylene glycol compound (C) to the surface of the cured product after molding can be further suppressed.
  • the number average molecular weight Mn is 50,000 or less, the viscosity of the thermosetting resin composition falls within a range suitable for molding.
  • the structural units of the polyethylene glycol compound (C) other than the formula (1) are 0 to 10 mol%, preferably 0 to 5 mol%, and more preferably 0 to 3 mol% with respect to the total structural units.
  • the structural unit other than the formula (1) includes a structural unit constituting a branched structure; an amino group, a carboxy group, a sulfonic acid group, a hydroxy group, a glycidyl group, an azido group, a cyano group, a thiol group, and a non-substituted amino group.
  • a structural unit containing a terminal functional group such as a saturated hydrocarbon group; a by-produced structural unit during compound synthesis can be mentioned.
  • polyethylene glycol compound (C) examples include polyethylene glycol and polyethylene glycol derivatives.
  • Specific examples of polyethylene glycol include PEG-4000 and PEG-6000 of Toho Chemical Industry Co., Ltd., PEG-10000 and PEG-20000 of Sanyo Chemical Industries, Ltd.
  • Examples of the polyethylene glycol derivative include polyethylene glycol fatty acid esters such as polyethylene glycol oleic acid monoester and polyethylene glycol-di-2-ethylhexoate.
  • the content of the polyethylene glycol compound (C) is preferably 1 to 10% by mass, more preferably 1 to 10% by mass, based on the total of the polyalkenylphenol compound (A), the polymaleimide compound (B), and the polyethylene glycol compound (C). It is 1.3 to 7% by mass, more preferably 1.5 to 5% by mass.
  • the content of the polyethylene glycol compound (C) is 1% by mass or more, the wet adhesion to the metal surface can be further improved.
  • the content of the polyethylene glycol compound (C) is 10% by mass or less, the melting point or softening point of the thermosetting resin composition before molding can be appropriately adjusted to improve the handleability. Bleedout of the polyethylene glycol compound (C) after curing can be further suppressed.
  • radical initiator (D) By blending the radical initiator (D) with the thermosetting resin composition, the curing of the thermosetting resin composition can be promoted.
  • the radical initiator (D) include a thermal radical initiator.
  • the radical initiator (D) is preferably a thermal radical initiator.
  • the thermal radical initiator include organic peroxides.
  • the organic peroxide is preferably an organic peroxide having a 10-hour half-life temperature of 100 to 170 ° C., specifically, dicumyl peroxide, 2,5-dimethyl-2,5-di (tert).
  • the preferable amount of the radical initiator (D) to be used is 0.01 to 10 parts by mass with respect to 100 parts by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), and the polyethylene glycol compound (C). It is more preferably 0.05 to 7.5 parts by mass, and further preferably 0.1 to 5 parts by mass.
  • the amount of the radical initiator (D) used is 0.01 parts by mass or more, the curing reaction proceeds sufficiently, and when it is 10 parts by mass or less, the storage stability of the thermosetting resin composition is better. be.
  • the thermosetting resin composition may further contain a filler (E).
  • the type of the filler (E) is not particularly limited, and examples thereof include solid rubber particles such as solid silicone rubber particles, organic fillers such as silicone powder, and inorganic fillers such as silica, alumina, magnesium oxide, and boron nitride. It can be appropriately selected depending on the intended use.
  • the filler (E) is at least one selected from the group consisting of silica, alumina, magnesium oxide, and solid rubber particles.
  • thermosetting resin composition when used for semiconductor encapsulation, it is preferable to add an insulating inorganic filler in order to obtain a cured product having a low coefficient of thermal expansion.
  • the inorganic filler is not particularly limited, and known materials can be used. Specific examples of the inorganic filler include silica such as amorphous silica and crystalline silica, and particles such as alumina, boron nitride, aluminum nitride, and silicon nitride. From the viewpoint of reducing the viscosity, spherical amorphous silica is desirable.
  • the inorganic filler may be surface-treated with a silane coupling agent or the like, but may not be surface-treated.
  • the average particle size of the filler (E) is preferably 0.1 to 30 ⁇ m, and more preferably the maximum particle size is 100 ⁇ m or less, particularly 75 ⁇ m or less. When the average particle size is in this range, the viscosity of the thermosetting resin composition is appropriate at the time of use, and the injectability into the narrow pitch wiring portion or the narrow gap portion is also appropriate.
  • the average particle size referred to here is the volume cumulative particle size D 50 measured by a laser diffraction / scattering type particle size distribution measuring device.
  • the content of the filler (E) in the thermosetting resin composition can be appropriately determined according to the intended use.
  • the content of the filler (E) in the thermosetting resin composition is 100% by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), the polyethylene glycol compound (C), and the radical initiator (D). It is preferably 200 to 1900 parts by mass, more preferably 300 to 1000 parts by mass, and further preferably 300 to 600 parts by mass with respect to the parts.
  • thermosetting resin composition As other additives, a coupling agent, a defoaming agent, a coloring agent, a phosphor, a denaturing agent, a leveling agent, a light diffusing agent, a flame retardant, an adhesion-imparting agent, a mold release agent, etc. are blended in the thermosetting resin composition. It is also possible to do.
  • the other additives do not include the polyalkenylphenol compound (A), the polymaleimide compound (B), the polyethylene glycol compound (C), the radical initiator (D), and the compound corresponding to the filler (E).
  • a coupling agent may be blended from the viewpoint of improving the adhesiveness.
  • the coupling agent is not particularly limited, and for example, vinyl triethoxysilane, vinyl trimethoxysilane, 3-glycidoxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- Examples thereof include a silane coupling agent such as phenyl-3-aminopropyltrimethoxysilane.
  • the coupling agent may be used alone or in combination of two or more.
  • the blending amount of the coupling agent in the thermosetting resin composition is preferably 0.1 to 5% by mass. When the blending amount is 0.1% by mass or more, the effect of the coupling agent is sufficiently exhibited, and when it is 5% by mass or less, the melt viscosity, the hygroscopicity and the strength of the cured product are more good.
  • a mold release agent may be blended from the viewpoint of improving the mold release property.
  • the release agent is not particularly limited, and examples thereof include carnauba wax, amide wax, montanic acid ester wax, montanic acid partially saponified ester wax, metal soap such as calcium stearate, polyethylene wax, and polypropylene wax. Of these, carnauba wax, montanic acid ester wax, and polyethylene wax are preferable.
  • the release agent may be used alone or in combination of two or more.
  • the blending amount of the release agent in the thermosetting resin composition is preferably 0.01 to 0.5% by mass. When the blending amount is 0.01% by mass or more, the effect of the mold release agent is sufficiently exhibited, and when it is 0.5% by mass or less, bleed-out such as mold stain does not occur and the appearance is good.
  • thermosetting resin composition a polyalkenylphenol compound (A), a polymaleimide compound (B), a polyethylene glycol compound (C), a radical initiator (D), and other optional components are uniformly mixed. And, if it can be dispersed, it is not particularly limited.
  • the method of melt-mixing the polyalkenylphenol compound (A), the polymaleimide compound (B), and the polyethylene glycol compound (C) first, and then adding the radical initiator (D) and any additive is to add each material. It is preferable because it is easy to mix uniformly.
  • each component is not particularly limited.
  • Reaction vessel pot mill, two-roll mill, three-roll mill, rotary mixer, twin-screw mixer, dispenser, single-screw or twin-screw (same-direction or different-direction) extruder, kneader, etc. It can be mixed by putting it in the mixer of the above and stirring or kneading.
  • a rotary mixer is preferable because the stirring conditions can be easily changed, and industrially, a twin-screw mixer is preferable from the viewpoint of productivity.
  • Each mixer can be used by appropriately changing the stirring conditions.
  • the method is not particularly limited as long as the resin is not melted by the heat generated in the work process, but if the amount is small, the method using an agate mortar is convenient.
  • a commercially available crusher it is preferable that the amount of heat generated during crushing is small in order to suppress the melting of the mixture.
  • the particle size of the powder is preferably 1 mm or less.
  • thermosetting resin composition can be melted by heating to a temperature at which the curing reaction does not proceed rapidly.
  • a structure can be produced by molding the melted thermosetting resin composition into an arbitrary preferred shape, curing it if necessary, and removing the mold.
  • molding molding particularly transfer molding and compression molding are preferable.
  • Preferred conditions for transfer molding are, for example, in the case of a mold having a size of 10 mm ⁇ 75 mm ⁇ 3 mm, the temperature of the top plate and the mold is 170 to 190 ° C, the holding pressure is 50 to 150 kg / cm 2 , and the holding time. Can be 1.5 to 10 minutes.
  • the temperature of the top plate and the mold is 170 to 190 ° C.
  • the molding pressure is 5 to 20 MPa
  • the pressurizing time is 1. . It can be 5 to 10 minutes.
  • the thermosetting resin composition can be cured by heating.
  • the curing temperature is preferably 130 to 300 ° C, more preferably 150 to 230 ° C, and even more preferably 150 to 200 ° C.
  • the curing temperature is 130 ° C. or higher, the thermosetting resin composition before curing can be sufficiently melted and easily filled in the mold, and demolding after curing is also easy.
  • the curing temperature is 300 ° C. or lower, thermal deterioration or volatilization of the material can be avoided.
  • the heating time can be appropriately changed depending on the thermosetting resin composition and the curing temperature, but 0.1 to 24 hours is preferable from the viewpoint of productivity. This heating may be performed in a plurality of times.
  • the final curing temperature is preferably 250 ° C. or lower, preferably 230 ° C. or lower, without curing at an excessively high temperature, for example, by raising the temperature as the curing progresses. Is more preferable.
  • thermosetting resin composition can be used, for example, in applications such as semiconductor encapsulants, prepregs, interlayer insulating resins, solder resists, and die attaches.
  • the analysis method, characteristic evaluation method, and raw materials used in the examples and comparative examples are as follows.
  • the heat resistance of the cured product was evaluated from the viewpoint of the glass dislocation temperature (Tg).
  • Tg glass dislocation temperature
  • a thermosetting resin composition is molded using a transfer molding machine under the conditions of a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2 , and a holding time of 3 minutes, and a glass transition temperature of 5 mm ⁇ 5 mm ⁇ 5 mm.
  • a test piece for measurement was prepared. The test piece was heated at 200 ° C. for 5 hours and then cured, and then measured by thermal mechanical measurement (TMA).
  • TMA thermal mechanical measurement
  • the measurement was carried out using a TMA / SS6100 thermomechanical analyzer manufactured by SII Nanotechnology Co., Ltd. under the conditions of a temperature range of 30 to 300 ° C., a heating rate of 5 ° C./min, and a load of 20.0 mN.
  • the inflection point of the expansion coefficient was Tg.
  • the moldability was evaluated from the viewpoint of mold releasability. Specifically, the molding die 1 shown in FIG. 1 (the size of the test piece is lower diameter: 25 mm ⁇ , upper diameter: 10 mm ⁇ , upper thickness: 7 mm, lower thickness: 7 mm, taper: 2 °), top plate. Using a transfer molding machine equipped with 2 and the bottom plate 3, a thermosetting resin composition was molded under the conditions of a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2 , and a holding time of 3 minutes, and as shown in FIG. The demolding force when pushed from the top with only a spring was measured.
  • Molding was performed a plurality of times in succession, and the number of continuous moldings in which the average value of the left and right demolding forces was 40 N or less was recorded. The evaluation was completed when the average value exceeded 40 N or when the number of moldings reached 10 times.
  • thermosetting resin composition is molded using a transfer molding machine under the conditions of a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2 , and a holding time of 3 minutes, and after taking out the obtained molded product.
  • the mold and the molded product were visually observed. It is good that the mold is not cloudy after 10 times of molding and demolding and no resin exuded on the surface of the molded product is seen after repeating molding and demolding under the above conditions.
  • Those in which at least one of exudation and stains on the mold were observed were acceptable, and those in which at least one of resin exudation and stains on the mold was observed in the first and second times were evaluated as defective.
  • a lead frame was used in which the material was rolled oxygen-free copper (C1020), the outer dimensions were 52 mm in width, 38 mm in length, and 0.5 mm in thickness, and the bed was 18 mm in length and width in the center.
  • the bed was sealed around the center of the lead frame with an outer dimension of 30 mm in length, 30 mm in width, and 3 mm in thickness. Sealing was performed by molding a thermosetting resin composition using a transfer molding machine under the conditions of a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2, and a holding time of 3 minutes. After curing at 200 ° C. for 5 hours.
  • the peeling state of the interface between the lead frame and the cured product of the thermosetting resin composition was observed using an ultrasonic flaw detection imaging device (Honda Electronics Co., Ltd., HA-60A). Using Image-J software, the value obtained by dividing the area of the non-peeled portion by the total area was determined as the post-molding adhesion ratio.
  • the reflow resistance was evaluated by the adhesion rate after reflow.
  • a reflow simulator SRS-1 manufactured by Malcolm Co., Ltd. was used in accordance with the level 3 conditions of IPC / JEDEC J-STD-020D. Then, a reflow test was conducted. The test piece after the reflow test was analyzed in the same manner as in the post-molding adhesion test, and the obtained value was determined as the post-reflow adhesion.
  • For the production method refer to Example 1 of JP-A-2016-28129.
  • BMI-4000 (2,2-bis [4- (4-maleimidephenyloxy) phenyl] propane, Daiwa Kasei Kogyo Co., Ltd.)
  • BMI-1100H bis (4-maleimidephenyl) methane, Daiwa Kasei Kogyo Co., Ltd.
  • PEG-4000 polyethylene glycol, Mn4000, Mw5000, structural unit of formula (1) 100 mol%, Toho Chemical Industry Co., Ltd.
  • PEG-6000 polyethylene glycol, Mn6000, Mw7300, structural unit of formula (1) 100 mol%, Toho Chemical Industry Co., Ltd.
  • PEG-10000 polyethylene glycol, Mn10000, Mw14000, structural unit of formula (1) 100 mol%, Sanyo Chemical Industries, Ltd.
  • PEG-20000 polyethylene glycol, Mn21000, Mw26000, structural unit of formula (1) 100 mol%, Sanyo Chemical Industries, Ltd.
  • -Rionon MO-60 polyethylene glycol oleic acid monoester, Mn7200, Mw8000, structural unit of formula (1) 94 mol%, Lion Specialty Chemicals Co., Ltd.
  • KF6004 Silicon PEG, Mn3000, Mw4500, structural unit of formula (1) 50 mol%, Shin-Etsu Chemical Co., Ltd.
  • EPPN-501H triphenylmethane type epoxy resin, Nippon Kayaku Co., Ltd.
  • CRG-951 Phhenol novolac resin, Aica Kogyo Co., Ltd.
  • TPP triphenylphosphine
  • thermosetting resin composition 35 parts by mass of BRG-APO as polyalkenylphenol compound (A), 65 parts by mass of BMI-4000 as polymaleimide compound (B), 2 parts by mass of PEG-6000 as polyethylene glycol compound (C), radical initiator ( As D), 1.5 parts by mass of Park Mill D, 400 parts by mass of MSR5100 as filler (E), 0.4 parts by mass of carnauba wax as a release agent and 0.15 parts by mass of PE520 were mixed and melt-kneaded (d). Two rolls (roll diameter 8 inches) manufactured by Toyo Seiki Seisakusho Co., Ltd. were used at 110 ° C. for 10 minutes.
  • thermosetting resin composition was subjected to the above analysis, and was transferred and molded using a tablet compacted by a tableting machine (Fuji Yakuhin Machinery Co., Ltd.) to evaluate the above characteristics.
  • a tableting machine Feji Yakuhin Machinery Co., Ltd.
  • thermosetting resin composition was produced in the same manner as in Example 1 except that the type and amount of the raw materials were changed as shown in Table 1, and the thermosetting resin composition was analyzed and evaluated for characteristics.
  • Examples 1 to 8 had good releasability, adhesion after molding, adhesion after reflow, and appearance. In addition, Examples 1 to 8 were also excellent in heat resistance of the cured product. On the other hand, Comparative Examples 1 and 2 containing no polyethylene glycol compound (C) had poor releasability and appearance, and the adhesion rate after reflow was remarkably low. Comparative Example 3 based on the epoxy resin had poor releasability and appearance, and had a low adhesion rate after reflow resistance.

Abstract

Provided is a thermosetting resin composition that, without impairing molding properties or cured product thermal resistance, provides a cured product that has excellent adhesion to metal and excellent reflow resistance. The thermosetting resin composition contains: a polyalkenyl phenol compound (A); a polymaleimide compound (B); a polyethylene glycol compound (C); and a radical initiator (D). The polyethylene glycol compound (C) has a structural unit indicated in formula (1), said structural unit in formula (1) being 90–100 mol% of all structural units.

Description

熱硬化性樹脂組成物Thermosetting resin composition
 本発明は、熱硬化性樹脂組成物、その硬化物、該熱硬化性樹脂組成物を用いた構造体の製造方法、及びその硬化物を含む構造体に関する。 The present invention relates to a thermosetting resin composition, a cured product thereof, a method for producing a structure using the thermosetting resin composition, and a structure containing the cured product.
 近年、電子機器及び産業機器に用いられる半導体パッケージには、電子部品の高密度集積化に伴い、高密度配線化、小型化、薄型化、高耐熱化、高放熱化等の性能が求められている。そのためプラスチック材料である封止材にも、高耐熱化が求められている。 In recent years, semiconductor packages used in electronic devices and industrial devices have been required to have high-density wiring, miniaturization, thinning, high heat resistance, high heat dissipation, and other performances due to the high-density integration of electronic components. There is. Therefore, the encapsulant, which is a plastic material, is also required to have high heat resistance.
 トランスファー成形は、材料をプランジャー内で加熱軟化させ、加熱軟化した材料を、ゲート、スプルー、ランナーなどの金型内流路を介して加熱された金型キャビティの中に押し込み、金型キャビティの中で硬化させる方法である。流動性の高い状態で材料をキャビティ内に注入するため、低い圧力での成形が可能である。 In transfer molding, the material is heat-softened in a plunger, and the heat-softened material is pushed into the heated mold cavity through a flow path in the mold such as a gate, sprue, runner, etc. It is a method of curing inside. Since the material is injected into the cavity with high fluidity, it is possible to mold at low pressure.
 トランスファー成形は、高い圧力を必要とする他の成形方法と比べて、インサート物を損傷しにくいという特徴がある。トランスファー成形は、小型化及び微細加工が可能であり、生産性も高いことから、パワー半導体及びICの封止成形における、代表的な成形方法として知られている。 Transfer molding is characterized by being less likely to damage the insert than other molding methods that require high pressure. Transfer molding is known as a typical molding method in encapsulation molding of power semiconductors and ICs because it can be miniaturized and microfabricated and has high productivity.
 トランスファー成形で利用される封止材としては、従来、エポキシ-フェノール系熱硬化性樹脂材料が用いられていた。しかし、近年の高耐熱化の要求に、従来の材料で対応することは難しい。高耐熱化の要求に対応するため、樹脂系を種々工夫した封止材、例えば、多官能エポキシ樹脂を多く配合した熱硬化性樹脂組成物、ビスマレイミド、トリアジン骨格、ベンゾオキサジン骨格、シルセスキオキサン骨格などの高耐熱性構造を含む熱硬化性樹脂組成物等が提案されている。 Conventionally, an epoxy-phenolic thermosetting resin material has been used as a sealing material used in transfer molding. However, it is difficult to meet the recent demand for high heat resistance with conventional materials. In order to meet the demand for high heat resistance, encapsulants with various resin systems, such as thermosetting resin compositions containing a large amount of polyfunctional epoxy resin, bismaleimide, triazine skeleton, benzoxazine skeleton, and silsesquioki Thermosetting resin compositions containing a highly heat-resistant structure such as a sun skeleton have been proposed.
 特許文献1(特開平11-140277号公報)は、(A)分子中にビフェニル誘導体及び/又はナフタレン誘導体を含むノボラック構造のフェノール樹脂を、総フェノール樹脂量中に30~100質量部含むフェノール樹脂、(B)分子中にビフェニル誘導体及び/又はナフタレン誘導体を含むノボラック構造のエポキシ樹脂を、総エポキシ樹脂量中に30~100質量部含むエポキシ樹脂、(C)無機充填材、(D)硬化促進剤を必須成分とすることを特徴とする半導体封止用エポキシ樹脂組成物を記載している。 Patent Document 1 (Japanese Unexamined Patent Publication No. 11-140277) describes (A) a phenol resin having a novolak structure containing a biphenyl derivative and / or a naphthalene derivative in the molecule, in an amount of 30 to 100 parts by mass in the total phenol resin amount. , (B) Epoxy resin containing 30 to 100 parts by mass of a novolak-structured epoxy resin containing a biphenyl derivative and / or a naphthalene derivative in the molecule, (C) an inorganic filler, (D) promoting curing. Described is an epoxy resin composition for encapsulating a semiconductor, which comprises an agent as an essential component.
 特許文献2(特開平5-43630号公報)は、N,N’-(アルキル置換ジフェニルメタン)ビスマレイミドと、サリチルアルデヒドとフェノールの縮合ポリフェノールからのポリアリルフェノールとを含有してなる芳香族ビスマレイミド樹脂組成物を記載している。 Patent Document 2 (Japanese Unexamined Patent Publication No. 5-43630) describes an aromatic bismaleimide containing N, N'-(alkyl-substituted diphenylmethane) bismaleimide and a polyallylphenol from a condensed polyphenol of salicylaldehyde and phenol. Describes the resin composition.
 特許文献3(特開平5-6869号公報)は、(A)1分子中に2個以上のマレイミド基を有するマレイミド化合物、(B)特定の繰り返し単位を有するアリル化フェノール樹脂、及び(C)硬化触媒を含有する樹脂組成物を用いて、半導体素子を封止してなる半導体装置を記載している。 Patent Document 3 (Japanese Unexamined Patent Publication No. 5-6869) describes (A) a maleimide compound having two or more maleimide groups in one molecule, (B) an allylated phenolic resin having a specific repeating unit, and (C). Described is a semiconductor device in which a semiconductor element is sealed by using a resin composition containing a curing catalyst.
 特許文献4(特開平6-93047号公報)は、マレイミド化合物、特定構造のアルケニルフェノール化合物、及びエポキシ基含有有機シラン化合物を、特定比率で配合してなる硬化性樹脂組成物を記載している。 Patent Document 4 (Japanese Unexamined Patent Publication No. 6-93047) describes a curable resin composition comprising a maleimide compound, an alkenylphenol compound having a specific structure, and an epoxy group-containing organic silane compound in a specific ratio. ..
特開平11-140277号公報Japanese Unexamined Patent Publication No. 11-14277 特開平5-43630号公報Japanese Unexamined Patent Publication No. 5-43630 特開平5-6869号公報Japanese Unexamined Patent Publication No. 5-6869 特開平6-93047号公報Japanese Unexamined Patent Publication No. 6-93047
 材料開発において、樹脂系を大幅に変更した場合、複数のトレードオフの関係にある性能の両立に、問題が生じる場合がある。例えば、材料の高耐熱化を図る手法として、エポキシ樹脂の官能基数を増やして架橋密度を高めること(特許文献1)、及びその他の樹脂としてマレイミド樹脂を用いること(特許文献2~4)が挙げられるが、これらの手法によって材料の耐熱性を上げるほど、熱硬化性樹脂の硬化物の架橋構造が密になるため、材料が硬く強固になり、硬化物の弾性率が高くなる傾向がある。その結果、熱硬化性樹脂を封止材として用いる場合など、硬化物を異種材料と密着させて用いる場合には、その界面において生じる応力により材料が剥離するといった問題が生じやすい。特に、応力及び/又は熱応力が繰り返し激しくかかるようなデバイスにおいては、それらを構成する硬化物と他部材との間で剥離が生じやすい。 In material development, if the resin system is changed drastically, there may be a problem in balancing the performance that has multiple trade-offs. For example, as a method for increasing the heat resistance of the material, increasing the number of functional groups of the epoxy resin to increase the crosslink density (Patent Document 1) and using maleimide resin as another resin (Patent Documents 2 to 4) can be mentioned. However, as the heat resistance of the material is increased by these methods, the crosslinked structure of the cured product of the thermosetting resin becomes denser, so that the material becomes harder and stronger, and the elasticity of the cured product tends to increase. As a result, when a cured product is used in close contact with a different material, such as when a thermosetting resin is used as a sealing material, there is a tendency for the material to peel off due to the stress generated at the interface. In particular, in a device in which stress and / or thermal stress is repeatedly and violently applied, peeling is likely to occur between the cured product constituting them and another member.
 また、金属製のインサートを含む樹脂成形においては、ブリードアウトや離型性などの成形性と、内部部品との密着性との間でトレードオフが生じやすい。これらの性質は、メイン樹脂の骨格及び極性が変わると、大きく傾向が変わる。 Also, in resin molding including metal inserts, trade-offs are likely to occur between moldability such as bleed-out and releasability and adhesion to internal parts. These properties change significantly when the skeleton and polarity of the main resin change.
 したがって、耐熱性及び成形性を損なうことなく、金属等の他部材に対しての密着性に優れ、耐リフロー性やヒートサイクル性に優れた材料が求められる。上記のようなトレードオフを解消するためには、その樹脂系に合った添加材などを利用することが有用である。 Therefore, there is a demand for a material having excellent adhesion to other members such as metal, and excellent reflow resistance and heat cycle resistance without impairing heat resistance and moldability. In order to eliminate the above-mentioned trade-off, it is useful to use an additive or the like suitable for the resin system.
 本開示では、成形性及び硬化物の耐熱性を損なうことなく、金属に対しての密着性に優れ、かつ耐リフロー性に優れた硬化物を与える熱硬化性樹脂組成物が記載される。 The present disclosure describes a thermosetting resin composition that gives a cured product having excellent adhesion to a metal and excellent reflow resistance without impairing moldability and heat resistance of the cured product.
 すなわち、本発明は、以下の[1]~[15]に関する。
[1]
 ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、ポリエチレングリコール化合物(C)、及びラジカル開始剤(D)を含有する熱硬化性樹脂組成物であって、
 前記ポリエチレングリコール化合物(C)が、式(1)の構造単位を有し、前記式(1)の構造単位が全構造単位に対して90モル%~100モル%である、
熱硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
[2]
 前記ポリエチレングリコール化合物(C)の含有量が、前記ポリアルケニルフェノール化合物(A)、前記ポリマレイミド化合物(B)、及び前記ポリエチレングリコール化合物(C)の合計に対して1~10質量%である、[1]に記載の熱硬化性樹脂組成物。
[3]
 前記ポリエチレングリコール化合物(C)の数平均分子量Mnが、2000~50000である、[1]又は[2]に記載の熱硬化性樹脂組成物。
[4]
 前記ポリアルケニルフェノール化合物(A)の含有量が、前記ポリマレイミド化合物(B)100質量部に対して5~200質量部である、[1]~[3]のいずれかに記載の熱硬化性樹脂組成物。
[5]
 前記ポリエチレングリコール化合物(C)が、ポリエチレングリコールである、[1]~[4]のいずれかに記載の熱硬化性樹脂組成物。
[6]
 前記ポリアルケニルフェノール化合物(A)が、式(2)-1:
Figure JPOXMLDOC01-appb-C000006
及び任意に式(2)-2:
Figure JPOXMLDOC01-appb-C000007
で表される構造単位を有するポリアルケニルフェノール化合物であり、
 式(2)-1及び式(2)-2において、R1はそれぞれ独立に、水素原子、炭素原子数1~5のアルキル基、又は炭素原子数1~5のアルコキシ基を表し、R2はそれぞれ独立に、式(3):
Figure JPOXMLDOC01-appb-C000008
で表される2-アルケニル基を表し、式(3)において、R3、R4、R5、R6、及びR7はそれぞれ独立に、水素原子、炭素原子数1~5のアルキル基、炭素原子数5~10のシクロアルキル基、又は炭素原子数6~12のアリール基であり、式(3)の*は、芳香環を構成する炭素原子との結合部を表し、R1及びR2は各フェノール骨格単位で同じでもよく異なっていてもよく、Qはそれぞれ独立に、式-CR89-で表されるアルキレン基、炭素原子数5~10のシクロアルキレン基、芳香環を有する二価の有機基、脂環式縮合環を有する二価の有機基、又はこれらを組み合わせた二価の有機基を表し、R8及びR9はそれぞれ独立に、水素原子、炭素原子数1~5のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数5~10のシクロアルキル基、又は炭素原子数6~12のアリール基を表す、[1]~[5]のいずれかに記載の熱硬化性樹脂組成物。
[7]
 式(2)-1に示す構造単位の一分子あたりの平均数をp、式(2)-2に示す構造単位の一分子あたりの平均数をqとしたときに、pは1.1~35の実数、p+qは1.1~35の実数であり、かつqは式:p/(p+q)の値が0.4~1となる実数を満たす、[6]に記載の熱硬化性樹脂組成物。
[8]
 前記ポリマレイミド化合物(B)が、芳香族ビスマレイミド化合物である、[1]~[7]のいずれかに記載の熱硬化性樹脂組成物。
[9]
 前記ラジカル開始剤(D)が、有機過酸化物である、[1]~[8]のいずれかに記載の熱硬化性樹脂組成物。
[10]
 さらに充填材(E)を含む、[1]~[9]のいずれかに記載の熱硬化性樹脂組成物。
[11]
 前記充填材(E)が、シリカ、アルミナ、酸化マグネシウム、及び固体ゴム粒子からなる群から選択される少なくとも一種である、[10]に記載の熱硬化性樹脂組成物。
[12]
 前記充填材(E)の含有量が、前記ポリアルケニルフェノール化合物(A)、前記ポリマレイミド化合物(B)、前記ポリエチレングリコール化合物(C)、及び前記ラジカル開始剤(D)の合計100質量部に対して200~1900質量部である、[10]又は[11]に記載の熱硬化性樹脂組成物。
[13]
 [1]~[12]のいずれかに記載の熱硬化性樹脂組成物の硬化物。
[14]
 [1]~[12]のいずれかに記載の熱硬化性樹脂組成物をモールディング成形する、構造体の製造方法。
[15]
 [13]に記載の硬化物を含む構造体。
That is, the present invention relates to the following [1] to [15].
[1]
A thermosetting resin composition containing a polyalkenylphenol compound (A), a polymaleimide compound (B), a polyethylene glycol compound (C), and a radical initiator (D).
The polyethylene glycol compound (C) has a structural unit of the formula (1), and the structural unit of the formula (1) is 90 mol% to 100 mol% with respect to the total structural unit.
Thermosetting resin composition.
Figure JPOXMLDOC01-appb-C000005
[2]
The content of the polyethylene glycol compound (C) is 1 to 10% by mass based on the total of the polyalkenylphenol compound (A), the polymaleimide compound (B), and the polyethylene glycol compound (C). The thermosetting resin composition according to [1].
[3]
The thermosetting resin composition according to [1] or [2], wherein the polyethylene glycol compound (C) has a number average molecular weight Mn of 2000 to 50,000.
[4]
The thermosetting according to any one of [1] to [3], wherein the content of the polyalkenylphenol compound (A) is 5 to 200 parts by mass with respect to 100 parts by mass of the polymaleimide compound (B). Resin composition.
[5]
The thermosetting resin composition according to any one of [1] to [4], wherein the polyethylene glycol compound (C) is polyethylene glycol.
[6]
The polyalkenylphenol compound (A) is represented by the formula (2) -1 :.
Figure JPOXMLDOC01-appb-C000006
And optionally equation (2) -2:
Figure JPOXMLDOC01-appb-C000007
It is a polyalkenylphenol compound having a structural unit represented by
In formulas (2) -1 and (2) -2, R 1 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 2 Are independent of each other, equation (3):
Figure JPOXMLDOC01-appb-C000008
Represents a 2-alkenyl group represented by, and in formula (3), R 3 , R 4 , R 5 , R 6 and R 7 are independently hydrogen atoms and alkyl groups having 1 to 5 carbon atoms, respectively. It is a cycloalkyl group having 5 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and * in the formula (3) represents a bonding portion with a carbon atom constituting an aromatic ring, and R 1 and R. 2 may be the same or different for each phenol skeleton unit, and Q independently has an alkylene group represented by the formula −CR 8 R 9 −, a cycloalkylene group having 5 to 10 carbon atoms, and an aromatic ring. Represents a divalent organic group having a divalent organic group, a divalent organic group having an alicyclic condensed ring, or a divalent organic group combining these, and R 8 and R 9 independently represent a hydrogen atom and one carbon atom. Any of [1] to [5] representing an alkyl group of up to 5; an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms. The thermosetting resin composition according to.
[7]
When the average number of structural units shown in formula (2) -1 per molecule is p and the average number of structural units shown in formula (2) -2 per molecule is q, p is 1.1 to The thermosetting resin according to [6], wherein 35 is a real number, p + q is a real number of 1.1 to 35, and q is a real number having a value of the formula: p / (p + q) of 0.4 to 1. Composition.
[8]
The thermosetting resin composition according to any one of [1] to [7], wherein the polymaleimide compound (B) is an aromatic bismaleimide compound.
[9]
The thermosetting resin composition according to any one of [1] to [8], wherein the radical initiator (D) is an organic peroxide.
[10]
The thermosetting resin composition according to any one of [1] to [9], further comprising a filler (E).
[11]
The thermosetting resin composition according to [10], wherein the filler (E) is at least one selected from the group consisting of silica, alumina, magnesium oxide, and solid rubber particles.
[12]
The content of the filler (E) is 100 parts by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), the polyethylene glycol compound (C), and the radical initiator (D). The thermosetting resin composition according to [10] or [11], which is 200 to 1900 parts by mass.
[13]
A cured product of the thermosetting resin composition according to any one of [1] to [12].
[14]
A method for producing a structure, wherein the thermosetting resin composition according to any one of [1] to [12] is molded.
[15]
A structure containing the cured product according to [13].
 本発明によれば、成形性及び硬化物の耐熱性を損なうことなく、金属に対しての密着性に優れ、かつ耐リフロー性に優れた硬化物を与える熱硬化性樹脂組成物を得ることができる。 According to the present invention, it is possible to obtain a thermosetting resin composition that gives a cured product having excellent adhesion to a metal and excellent reflow resistance without impairing the moldability and the heat resistance of the cured product. can.
離型性の評価に用いる成形金型、天板及び底板の概略図である。It is a schematic diagram of the molding die, the top plate and the bottom plate used for the evaluation of the releasability. 離型性の評価に用いるサンプルの概略図である。It is a schematic diagram of the sample used for the evaluation of the releasability.
 以下に、本発明について詳細に説明する。一実施態様の熱硬化性樹脂組成物は、ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、ポリエチレングリコール化合物(C)、及びラジカル開始剤(D)を含有する。 The present invention will be described in detail below. The thermosetting resin composition of one embodiment contains a polyalkenylphenol compound (A), a polymaleimide compound (B), a polyethylene glycol compound (C), and a radical initiator (D).
 [ポリアルケニルフェノール化合物(A)]
 ポリアルケニルフェノール化合物(A)は、分子内に少なくとも2つのフェノール骨格を有し、かつ分子内のフェノール骨格を形成する芳香環の一部又は全部に、2-アルケニル基が結合している化合物である。2-アルケニル基としては、式(3)で表される構造の基が好ましい。
[Polyalkenylphenol compound (A)]
The polyalkenylphenol compound (A) is a compound having at least two phenol skeletons in the molecule and having a 2-alkenyl group bonded to a part or all of the aromatic ring forming the phenol skeleton in the molecule. be. As the 2-alkenyl group, a group having a structure represented by the formula (3) is preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(3)において、R3、R4、R5、R6、及びR7はそれぞれ独立に、水素原子、炭素原子数1~5のアルキル基、炭素原子数5~10のシクロアルキル基、又は炭素原子数6~12のアリール基である。式(3)の*は、芳香環を構成する炭素原子との結合部を表す。 In formula (3), R 3 , R 4 , R 5 , R 6 , and R 7 are independently hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, and cycloalkyl groups having 5 to 10 carbon atoms, respectively. Alternatively, it is an aryl group having 6 to 12 carbon atoms. * In the formula (3) represents a bond with a carbon atom constituting an aromatic ring.
 式(3)におけるR3、R4、R5、R6、及びR7を構成する炭素原子数1~5のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等を挙げることができる。炭素原子数5~10のシクロアルキル基の具体例としては、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基等を挙げることができる。炭素原子数6~12のアリール基の具体例としては、フェニル基、メチルフェニル基、エチルフェニル基、ビフェニル基、ナフチル基等を挙げることができる。式(3)で表される2-アルケニル基は、アリル基、すなわちR3、R4、R5、R6、及びR7が全て水素原子であることが好ましい。 Specific examples of the alkyl groups having 1 to 5 carbon atoms constituting R 3 , R 4 , R 5 , R 6 and R 7 in the formula (3) include methyl group, ethyl group, n-propyl group and isopropyl. Groups, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group and the like can be mentioned. Specific examples of the cycloalkyl group having 5 to 10 carbon atoms include a cyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group and the like. Specific examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a methylphenyl group, an ethylphenyl group, a biphenyl group, a naphthyl group and the like. In the 2-alkenyl group represented by the formula (3), it is preferable that allyl groups, that is, R 3 , R 4 , R 5 , R 6 and R 7 are all hydrogen atoms.
 ポリアルケニルフェノール化合物(A)において、フェノール骨格を形成する全芳香環のうち、好ましくは40~100%、より好ましくは60~100%、さらに好ましくは80~100%の芳香環に、2-アルケニル基が結合されている。 In the polyalkenylphenol compound (A), 2-alkenyl is preferably 40 to 100%, more preferably 60 to 100%, still more preferably 80 to 100% of the total aromatic rings forming the phenol skeleton. The groups are bonded.
 ポリアルケニルフェノール化合物(A)の基本骨格としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、トリフェニルメタン型フェノール樹脂、フェノールアラルキル樹脂、ビフェニルアラルキルフェノール樹脂、フェノール-ジシクロペンタジエン共重合体樹脂等の公知のフェノール樹脂の骨格が挙げられる。中でも、下記式(2)-1及び任意に式(2)-2に示す構造単位を有するポリアルケニルフェノール化合物(A)を、好ましく使用することができる。 Known basic skeletons of the polyalkenylphenol compound (A) include phenol novolac resin, cresol novolak resin, triphenylmethane-type phenol resin, phenol aralkyl resin, biphenyl aralkyl phenol resin, and phenol-dicyclopentadiene copolymer resin. Examples include the skeleton of phenolic resin. Among them, the polyalkenylphenol compound (A) having the following formula (2) -1 and optionally the structural unit represented by the formula (2) -2 can be preferably used.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(2)-1及び式(2)-2に示す構造単位は、ポリアルケニルフェノール化合物(A)を構成する好ましいフェノール骨格単位であり、これらのフェノール骨格単位の結合順序は特に限定されない。式(2)-1及び式(2)-2において、R1はそれぞれ独立に、水素原子、炭素原子数1~5のアルキル基、又は炭素原子数1~5のアルコキシ基であり、式(2)-1において、R2はそれぞれ独立に、式(3)で表される2-アルケニル基である。R1及びR2は、各フェノール骨格単位で同じでもよく異なっていてもよい。Qはそれぞれ独立に、式-CR89-で表されるアルキレン基、炭素原子数5~10のシクロアルキレン基、芳香環を有する二価の有機基、脂環式縮合環を有する二価の有機基、又はこれらを組み合わせた二価の有機基であり、R8及びR9はそれぞれ独立に、水素原子、炭素原子数1~5のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数5~10のシクロアルキル基、又は炭素原子数6~12のアリール基である。 The structural units represented by the formulas (2) -1 and the formula (2) -2 are preferable phenol skeleton units constituting the polyalkenylphenol compound (A), and the bonding order of these phenol skeleton units is not particularly limited. In formulas (2) -1 and (2) -2, R 1 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, respectively, and is of the formula (2). In 2) -1, R 2 is independently a 2- alkoxy group represented by the formula (3). R 1 and R 2 may be the same or different for each phenol skeleton unit. Q is independently of the formula -CR 8 R 9 - in the alkylene group represented, a cycloalkylene group having 5 to 10 carbon atoms, a divalent organic group having an aromatic ring, a divalent having an alicyclic fused ring R 8 and R 9 are independently hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, and alkenyl groups having 2 to 6 carbon atoms, respectively. It is a cycloalkyl group having 5 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms.
 式(2)-1に示す構造単位の一分子あたりの平均数をp、式(2)-2に示す構造単位の一分子あたりの平均数をqとしたときに、好ましくは、pは1.1~35の実数、p+qは1.1~35の実数であり、かつqは式:p/(p+q)の値が0.4~1となる実数を満たす。 When the average number of structural units represented by the formula (2) -1 per molecule is p and the average number of the structural units represented by the formula (2) -2 per molecule is q, p is preferably 1. .1 to 35 real numbers, p + q are 1.1 to 35 real numbers, and q satisfies the real number in which the value of the formula: p / (p + q) is 0.4 to 1.
 R1を構成する炭素原子数1~5のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等を挙げることができる。炭素原子数1~5のアルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基等が挙げられる。 Specific examples of the alkyl group having 1 to 5 carbon atoms constituting R 1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and n. -The pentyl group and the like can be mentioned. Specific examples of the alkoxy group having 1 to 5 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, an n-pentoxy group and the like. Can be mentioned.
 式-CR89-で表されるアルキレン基のR8及びR9において、炭素原子数1~5のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等を挙げることができ、炭素原子数2~6のアルケニル基の具体例としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等を挙げることができ、炭素原子数5~10のシクロアルキル基の具体例としては、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基等を挙げることができ、炭素原子数6~12のアリール基の具体例としては、フェニル基、メチルフェニル基、エチルフェニル基、ビフェニル基、ナフチル基等を挙げることできる。 Formula -CR 8 R 9 - in which R 8 and R 9 of the alkylene group represented by, specific examples of the alkyl group having 1 to 5 carbon atoms, a methyl group, an ethyl group, n- propyl group, an isopropyl group, Examples thereof include an n-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, and specific examples of the alkenyl group having 2 to 6 carbon atoms include a vinyl group, an allyl group, and a butenyl group. Examples of the cycloalkyl group having 5 to 10 carbon atoms include a pentenyl group, a hexenyl group, and the like, and examples thereof include a cyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group, and a carbon atom. Specific examples of the aryl group having the number 6 to 12 include a phenyl group, a methylphenyl group, an ethylphenyl group, a biphenyl group, a naphthyl group and the like.
 Qを構成する炭素原子数5~10のシクロアルキレン基の具体例としては、シクロペンチレン基、シクロヘキシレン基、メチルシクロヘキシレン基、シクロヘプチレン基等を挙げることができる。芳香環を有する二価の有機基の具体例としては、フェニレン基、トリレン基、ナフチレン基、ビフェニレン基、フルオレニレン基、アントラセニレン基、キシリレン基、4,4-メチレンジフェニル基等を挙げることができる。芳香環を有する二価の有機基の炭素原子数は、6~20又は6~14とすることができる。脂環式縮合環を有する二価の有機基の具体例としては、ジシクロペンタジエニレン基等を挙げることができる。脂環式縮合環を有する二価の有機基の炭素原子数は、7~20又は7~10とすることができる。 Specific examples of the cycloalkylene group having 5 to 10 carbon atoms constituting Q include a cyclopentylene group, a cyclohexylene group, a methylcyclohexylene group, a cycloheptylene group and the like. Specific examples of the divalent organic group having an aromatic ring include a phenylene group, a trilene group, a naphthylene group, a biphenylene group, a fluorenylene group, an anthrasenylene group, a xylylene group, a 4,4-methylenediphenyl group and the like. The number of carbon atoms of the divalent organic group having an aromatic ring can be 6 to 20 or 6 to 14. Specific examples of the divalent organic group having an alicyclic condensed ring include a dicyclopentadienylene group and the like. The number of carbon atoms of the divalent organic group having an alicyclic condensed ring can be 7 to 20 or 7 to 10.
 Qがジシクロペンタジエニレン基、フェニレン基、メチルフェニレン基、キシリレン基、又はビフェニレン基であることが、硬化物の機械強度が高い点で好ましい。ポリアルケニルフェノール化合物(A)の粘度が低くポリマレイミド化合物(B)との混合に有利であることから、Qが-CH2-であることが好ましい。 It is preferable that Q is a dicyclopentadienylene group, a phenylene group, a methylphenylene group, a xylylene group, or a biphenylene group in terms of high mechanical strength of the cured product. Since the viscosity of the polyalkenylphenol compound (A) is low and it is advantageous for mixing with the polymaleimide compound (B), Q is preferably −CH 2-.
 pは、好ましくは1.1~35の実数であり、より好ましくは2~30の実数であり、さらに好ましくは3~10の実数である。pが1.1以上であれば、熱硬化性樹脂組成物の硬化物を高温環境に置いたときの熱分解開始温度が適切であり、35以下であれば、熱硬化性樹脂組成物の粘度が成形時の加工に好適な範囲となる。 P is preferably a real number of 1.1 to 35, more preferably a real number of 2 to 30, and even more preferably a real number of 3 to 10. When p is 1.1 or more, the thermal decomposition start temperature when the cured product of the thermosetting resin composition is placed in a high temperature environment is appropriate, and when p is 35 or less, the viscosity of the thermosetting resin composition is appropriate. Is a suitable range for processing during molding.
 p+qは、好ましくは1.1~35の実数であり、より好ましくは2~30の実数であり、さらに好ましくは3~10の実数である。p+qが1.1以上であれば、熱硬化性樹脂組成物の硬化物を高温環境に置いたときの熱分解開始温度が適切であり、35以下であれば、熱硬化性樹脂組成物の粘度が成形時の加工に好適な範囲となる。 P + q is preferably a real number of 1.1 to 35, more preferably a real number of 2 to 30, and even more preferably a real number of 3 to 10. When p + q is 1.1 or more, the thermal decomposition start temperature when the cured product of the thermosetting resin composition is placed in a high temperature environment is appropriate, and when it is 35 or less, the viscosity of the thermosetting resin composition is appropriate. Is a suitable range for processing during molding.
 qは、好ましくは式:p/(p+q)の値が0.4~1となる実数であり、より好ましくは式:p/(p+q)の値が0.6~1となる実数であり、さらに好ましくは式:p/(p+q)の値が0.8~1となる実数である。式:p/(p+q)の値が1となる場合、qは0である。すなわち、この実施態様ではポリアルケニルフェノール化合物(A)は、式(2)-2に示す構造単位を含まない。ポリアルケニルフェノール化合物(A)は、式(2)-1に示す構造単位のみを有するものとすることができる。qが上記条件を満たす値であれば、熱硬化性樹脂組成物の硬化度を、用途に応じて十分なものとすることができる。 q is preferably a real number in which the value of the formula: p / (p + q) is 0.4 to 1, and more preferably is a real number in which the value of the formula: p / (p + q) is 0.6 to 1. More preferably, it is a real number in which the value of the formula: p / (p + q) is 0.8 to 1. Equation: When the value of p / (p + q) is 1, q is 0. That is, in this embodiment, the polyalkenylphenol compound (A) does not contain the structural unit represented by the formula (2) -2. The polyalkenylphenol compound (A) can have only the structural unit represented by the formula (2) -1. When q is a value satisfying the above conditions, the degree of curing of the thermosetting resin composition can be made sufficient depending on the application.
 ポリアルケニルフェノール化合物(A)の好ましい数平均分子量Mnは、300~5000であり、より好ましくは400~4000であり、さらに好ましくは500~3000である。数平均分子量Mnが300以上であれば、熱硬化性樹脂組成物の硬化物を高温環境に置いたとき熱分解開始温度が適切であり、5000以下であれば、熱硬化性樹脂組成物の粘度が成形時の加工に好適な範囲となる。 The preferred number average molecular weight Mn of the polyalkenylphenol compound (A) is 300 to 5000, more preferably 400 to 4000, and even more preferably 500 to 3000. When the number average molecular weight Mn is 300 or more, the thermal decomposition start temperature is appropriate when the cured product of the thermosetting resin composition is placed in a high temperature environment, and when it is 5000 or less, the viscosity of the thermosetting resin composition Is a suitable range for processing during molding.
 ポリアルケニルフェノール化合物(A)は、原料となるフェノール樹脂の水酸基の一部をアルケニルエーテル化した後、クライゼン転位反応により、2-アルケニル基を転位させることにより得ることができる。原料フェノール樹脂として、好ましくは下記式(2)-2で表される構造単位を有する公知のフェノール樹脂を使用することができる。
Figure JPOXMLDOC01-appb-C000012
The polyalkenylphenol compound (A) can be obtained by rearranging a 2-alkenyl group by a Claisen rearrangement reaction after partially converting a part of the hydroxyl group of the phenol resin as a raw material into an alkenyl ether. As the raw material phenol resin, a known phenol resin having a structural unit represented by the following formula (2) -2 can be preferably used.
Figure JPOXMLDOC01-appb-C000012
 ポリアルケニルフェノール化合物(A)の原料フェノール樹脂の具体例としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、トリフェニルメタン型フェノール樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、フェノール-ジシクロペンタジエン共重合体樹脂等を挙げることができる。 Specific examples of the raw material phenol resin of the polyalkenylphenol compound (A) include phenol novolac resin, cresol novolak resin, triphenylmethane type phenol resin, phenol aralkyl resin, biphenyl aralkyl resin, phenol-dicyclopentadiene copolymer resin and the like. Can be mentioned.
 原料フェノール樹脂の2-アルケニルエーテル化反応としては、(i)塩化アリル、塩化メタリル、臭化アリル等のハロゲン化2-アルケニル化合物と、フェノール化合物とを反応させる公知の方法、及び(ii)酢酸アリルのようなカルボン酸2-アルケニル化合物と、フェノール化合物とを反応させる公知の方法の2つの方法を例示することができる。ハロゲン化2-アルケニル化合物を用いた2-アルケニルエーテル化反応は、例えば、特開平2-91113号公報に記載の方法を使用することができる。カルボン酸2-アルケニル化合物とフェノール樹脂を反応させる方法は、例えば、特開2011-26253号公報に記載の方法を使用することができる。 The 2-alkenyl etherification reaction of the raw material phenol resin includes (i) a known method for reacting a halogenated 2-alkenyl compound such as allyl chloride, methallyl chloride, and allyl bromide with a phenol compound, and (ii) acetic acid. Two known methods of reacting a carboxylic acid 2-alkenyl compound such as allyl with a phenol compound can be exemplified. For the 2-alkenyl etherification reaction using the halogenated 2-alkenyl compound, for example, the method described in JP-A-2-91113 can be used. As a method for reacting the carboxylic acid 2-alkenyl compound with the phenol resin, for example, the method described in JP-A-2011-26253 can be used.
 フェノール性水酸基に対するハロゲン化2-アルケニル化合物又はカルボン酸2-アルケニル化合物の使用量は、0.4~5.0当量が好ましく、より好ましくは0.6~4.0当量である。0.4当量以上であると、クライゼン転位した後のポリマレイミド化合物(B)との反応部位の量がより適切であり、より耐熱性に優れた硬化物を得ることができる。 The amount of the halogenated 2-alkenyl compound or the carboxylic acid 2-alkenyl compound to be used with respect to the phenolic hydroxyl group is preferably 0.4 to 5.0 equivalents, more preferably 0.6 to 4.0 equivalents. When the amount is 0.4 equivalent or more, the amount of the reaction site with the polymaleimide compound (B) after the Claisen rearrangement is more appropriate, and a cured product having more excellent heat resistance can be obtained.
 2-アルケニルエーテル化反応は、2-アルケニル化合物を原料フェノール樹脂と混合し、4~40時間反応させることにより実施する。2-アルケニルエーテル化反応においては、原料フェノール樹脂が溶解する溶媒を用いることができる。原料フェノール樹脂を溶解可能なカルボン酸2-アルケニル化合物を用いて、無溶媒で反応を実施することもできる。 The 2-alkenyl etherification reaction is carried out by mixing the 2-alkenyl compound with the raw material phenol resin and reacting for 4 to 40 hours. In the 2-alkenyl etherification reaction, a solvent in which the raw material phenol resin is dissolved can be used. The reaction can also be carried out without a solvent using a carboxylic acid 2-alkenyl compound capable of dissolving the raw material phenol resin.
 原料フェノール樹脂の2-アルケニルエーテル化率は、ハロゲン化2-アルケニル化合物又はカルボン酸2-アルケニル化合物の使用量を前記使用量より多く使用し、かつ反応時間を前記反応時間より短く調整することにより、2-アルケニル化合物の反応率(転化率)を低く抑制して制御することもできる。 The 2-alkenyl etherification rate of the raw material phenol resin is determined by using a larger amount of the halogenated 2-alkenyl compound or the carboxylic acid 2-alkenyl compound than the above amount and adjusting the reaction time to be shorter than the reaction time. , The reaction rate (conversion rate) of the 2-alkenyl compound can be suppressed to a low level and controlled.
 目的とするポリアルケニルフェノール化合物(A)は、前記(i)又は(ii)に記載の方法により製造されたポリアルケニルエーテル化合物に、クライゼン転位反応を行うことにより得ることができる。クライゼン転位反応は、ポリアルケニルエーテル化合物を100~250℃の温度に加熱し、1~20時間反応させることにより行うことができる。クライゼン転位反応は、高沸点の溶剤を用いて行ってもよく、無溶媒で行うこともできる。転位反応を促進するため、チオ硫酸ナトリウム、炭酸ナトリウム等の無機塩を添加することもできる。詳細は、例えば、特開平2-91113号公報に開示されている。 The target polyalkenylphenol compound (A) can be obtained by subjecting the polyalkenyl ether compound produced by the method according to (i) or (ii) to a Claisen rearrangement reaction. The Claisen rearrangement reaction can be carried out by heating the polyalkenyl ether compound to a temperature of 100 to 250 ° C. and reacting it for 1 to 20 hours. The Claisen rearrangement reaction may be carried out using a solvent having a high boiling point, or may be carried out without a solvent. Inorganic salts such as sodium thiosulfate and sodium carbonate can also be added to promote the rearrangement reaction. Details are disclosed in, for example, Japanese Patent Application Laid-Open No. 2-91113.
 [ポリマレイミド化合物(B)]
 ポリマレイミド化合物(B)は、式(4)で表されるマレイミド基を2つ以上有する化合物である。ポリマレイミド化合物(B)を配合することにより、硬化物の耐熱性を向上させることができる。
Figure JPOXMLDOC01-appb-C000013
[Polymaleimide compound (B)]
The polymaleimide compound (B) is a compound having two or more maleimide groups represented by the formula (4). By blending the polymaleimide compound (B), the heat resistance of the cured product can be improved.
Figure JPOXMLDOC01-appb-C000013
 式(4)において、*は、芳香環又は直鎖、分岐鎖若しくは環状脂肪族炭化水素基を含む有機基との結合部を表す。 In the formula (4), * represents a bond with an aromatic ring or an organic group containing a straight chain, a branched chain or a cyclic aliphatic hydrocarbon group.
 ポリマレイミド化合物(B)としては、ビス(4-マレイミドフェニル)メタン等のビスマレイミド、トリス(4-マレイミドフェニル)メタン等のトリスマレイミド、ビス(3,4-ジマレイミドフェニル)メタン等のテトラキスマレイミド、及びポリ(4-マレイミドスチレン)等のポリマレイミドが挙げられる。ポリマレイミド化合物(B)としては、芳香族ポリマレイミド化合物及び脂肪族ポリマレイミド化合物が挙げられ、得られる硬化物の難燃性が特に優れる点で、芳香族ポリマレイミド化合物が好ましい。 Examples of the polymaleimide compound (B) include bismaleimide such as bis (4-maleimidephenyl) methane, trismaleimide such as tris (4-maleimidephenyl) methane, and tetraxmaleimide such as bis (3,4-dimaleimidephenyl) methane. , And polymaleimides such as poly (4-maleimide styrene). Examples of the polymaleimide compound (B) include aromatic polymaleimide compounds and aliphatic polymaleimide compounds, and aromatic polymaleimide compounds are preferable because the obtained cured product has particularly excellent flame retardancy.
 芳香族ポリマレイミド化合物は、式(4)で表されるマレイミド基を2つ以上有し、これらのマレイミド基が同一又は異なる芳香環に結合している化合物である。芳香環の具体例としては、ベンゼン等の単環、ナフタレン、アントラセン等の縮合環等が挙げられる。硬化性樹脂組成物中で良好に混合することから、ポリマレイミド化合物(B)は、芳香族ビスマレイミド化合物及び脂肪族ビスマレイミド化合物であることが好ましく、芳香族ビスマレイミド化合物であることがより好ましい。 The aromatic polymaleimide compound is a compound having two or more maleimide groups represented by the formula (4), and these maleimide groups are bonded to the same or different aromatic rings. Specific examples of the aromatic ring include a monocyclic ring such as benzene, a condensed ring such as naphthalene and anthracene, and the like. The polymaleimide compound (B) is preferably an aromatic bismaleimide compound or an aliphatic bismaleimide compound, and more preferably an aromatic bismaleimide compound, because it mixes well in the curable resin composition. ..
 芳香族ビスマレイミド化合物の具体例としては、ビス(4-マレイミドフェニル)メタン、ビス(3-マレイミドフェニル)メタン、ビス(3-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、ビス(3-プロピル-4-マレイミドフェニル)メタン、ビス(3,5-ジプロピル-4-マレイミドフェニル)メタン、ビス(3-ブチル-4-マレイミドフェニル)メタン、ビス(3,5-ジブチル-4-マレイミドフェニル)メタン、ビス(3-エチル-4-マレイミド-5-メチルフェニル)メタン、2,2-ビス(4-マレイミドフェニル)プロパン、2,2-ビス[4-(4-マレイミドフェニルオキシ)フェニル]プロパン、ビス(4-マレイミドフェニル)エーテル、ビス(3-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)ケトン、ビス(3-マレイミドフェニル)ケトン、ビス(4-マレイミドフェニル)スルホン、ビス(3-マレイミドフェニル)スルホン、ビス[4-(4-マレイミドフェニルオキシ)フェニル]スルホン、ビス(4-マレイミドフェニル)スルフィド、ビス(3-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)スルホキシド、ビス(3-マレイミドフェニル)スルホキシド、1,4-ビス(4-マレイミドフェニル)シクロヘキサン、1,4-ジマレイミドナフタレン、2,3-ジマレイミドナフタレン、1,5-ジマレイミドナフタレン、1,8-ジマレイミドナフタレン、2,6-ジマレイミドナフタレン、2,7-ジマレイミドナフタレン、4,4’-ジマレイミドビフェニル、3,3’-ジマレイミドビフェニル、3,4’-ジマレイミドビフェニル、2,5-ジマレイミド-1,3-キシレン、2,7-ジマレイミドフルオレン、9,9-ビス(4-マレイミドフェニル)フルオレン、9,9-ビス(4-マレイミド-3-メチルフェニル)フルオレン、9,9-ビス(3-エチル-4-マレイミドフェニル)フルオレン、3,7-ジマレイミド-2-メトキシフルオレン、9,10-ジマレイミドフェナントレン、1,2-ジマレイミドアントラキノン、1,5-ジマレイミドアントラキノン、2,6-ジマレイミドアントラキノン、1,2-ジマレイミドベンゼン、1,3-ジマレイミドベンゼン、1,4-ジマレイミドベンゼン、1,4-ビス(4-マレイミドフェニル)ベンゼン、2-メチル-1,4-ジマレイミドベンゼン、2,3-ジメチル-1,4-ジマレイミドベンゼン、2,5-ジメチル-1,4-ジマレイミドベンゼン、2,6-ジメチル-1,4-ジマレイミドベンゼン、4-エチル-1,3-ジマレイミドベンゼン、5-エチル-1,3-ジマレイミドベンゼン、4,6-ジメチル-1,3-ジマレイミドベンゼン、2,4,6-トリメチル-1,3-ジマレイミドベンゼン、2,3,5,6-テトラメチル-1,4-ジマレイミドベンゼン、4-メチル-1,3-ジマレイミドベンゼン等が挙げられる。 Specific examples of the aromatic bismaleimide compound include bis (4-maleimidephenyl) methane, bis (3-maleimidephenyl) methane, bis (3-methyl-4-maleimidephenyl) methane, and bis (3,5-dimethyl-). 4-maleimidephenyl) methane, bis (3-ethyl-4-maleimidephenyl) methane, bis (3,5-diethyl-4-maleimidephenyl) methane, bis (3-propyl-4-maleimidephenyl) methane, bis ( 3,5-Dipropyl-4-maleimidephenyl) methane, bis (3-butyl-4-maleimidephenyl) methane, bis (3,5-dibutyl-4-maleimidephenyl) methane, bis (3-ethyl-4-maleimide) -5-Methylphenyl) methane, 2,2-bis (4-maleimidephenyl) propane, 2,2-bis [4- (4-maleimidephenyloxy) phenyl] propane, bis (4-maleimidephenyl) ether, bis (3-maleimidephenyl) ether, bis (4-maleimidephenyl) ketone, bis (3-maleimidephenyl) ketone, bis (4-maleimidephenyl) sulfone, bis (3-maleimidephenyl) sulfone, bis [4- (4) -Maleimidephenyloxy) phenyl] sulfone, bis (4-maleimidephenyl) sulfide, bis (3-maleimidephenyl) sulfide, bis (4-maleimidephenyl) sulfoxide, bis (3-maleimidephenyl) sulfoxide, 1,4-bis (4-Maleimidephenyl) Cyclohexane, 1,4-Dimareimide naphthalene, 2,3-Dimareimide naphthalene, 1,5-Dimareimide naphthalene, 1,8-Dimareimide naphthalene, 2,6-Dimareimide naphthalene, 2, 7-Dimareimidenaphthalene, 4,4'-Dimareimidebiphenyl, 3,3'-Dimareimidebiphenyl, 3,4'-Dimareimidebiphenyl, 2,5-Dimareimide-1,3-xylene, 2,7-di Maleimide fluorene, 9,9-bis (4-maleimidephenyl) fluorene, 9,9-bis (4-maleimide-3-methylphenyl) fluorene, 9,9-bis (3-ethyl-4-maleimidephenyl) fluorene, 3,7-Dimareimide-2-methoxyfluorene, 9,10-Dimareimide phenanthrene, 1,2-Dimareimide anthraquinone, 1,5-Dimareimide anthraquinone, 2,6-Dimareimide anthraquinone, 1,2-Zimare Iimidebenzene, 1,3-dimareimidebenzene, 1,4-dimaleimidebenzene, 1,4-bis (4-maleimidephenyl) benzene, 2-methyl-1,4-dimaleimidebenzene, 2,3-dimethyl- 1,4-Dimareimidebenzene, 2,5-dimethyl-1,4-dimaleimidebenzene, 2,6-dimethyl-1,4-dimaleimidebenzene, 4-ethyl-1,3-dimaleimidebenzene, 5- Ethyl-1,3-dimaleimidebenzene, 4,6-dimethyl-1,3-dimaleimidebenzene, 2,4,6-trimethyl-1,3-dimaleimidebenzene, 2,3,5,6-tetramethyl Examples thereof include -1,4-dimaleimidebenzene and 4-methyl-1,3-dimaleimidebenzene.
 脂肪族ビスマレイミド化合物の具体例としては、ビス(4-マレイミドシクロヘキシル)メタン、ビス(3-マレイミドシクロヘキシル)メタン等が挙げられる。中でも、ビス(4-マレイミドフェニル)メタン及び2,2-ビス[4-(4-マレイミドフェニルオキシ)フェニル]プロパンが好ましい。市販品としては、例えば、BMI(商品名、大和化成工業株式会社)シリーズ等が挙げられる。 Specific examples of the aliphatic bismaleimide compound include bis (4-maleimidecyclohexyl) methane and bis (3-maleimidecyclohexyl) methane. Of these, bis (4-maleimidephenyl) methane and 2,2-bis [4- (4-maleimidephenyloxy) phenyl] propane are preferable. Examples of commercially available products include the BMI (trade name, Daiwa Kasei Kogyo Co., Ltd.) series.
 ポリマレイミド化合物(B)を100質量部としたとき、ポリアルケニルフェノール化合物(A)の配合量は5~200質量部とすることが好ましく、10~150質量部とすることがより好ましく、30~100質量部であることがさらに好ましい。上記配合量が5質量部以上であれば、成形時の流動性がより良好である。一方、上記配合量が200質量部以下であれば、硬化物の耐熱性がより良好である。 When the polymaleimide compound (B) is 100 parts by mass, the blending amount of the polyalkenylphenol compound (A) is preferably 5 to 200 parts by mass, more preferably 10 to 150 parts by mass, and 30 to 30 parts by mass. It is more preferably 100 parts by mass. When the compounding amount is 5 parts by mass or more, the fluidity at the time of molding is better. On the other hand, when the compounding amount is 200 parts by mass or less, the heat resistance of the cured product is better.
 [ポリエチレングリコール化合物(C)]
 ポリエチレングリコール化合物(C)は、式(1)の構造単位を有し、式(1)の構造単位が全構造単位に対して90モル%~100モル%である化合物である。
Figure JPOXMLDOC01-appb-C000014
 式(1)の構造単位は、好ましくは95モル%~100モル%であり、より好ましくは97モル%~100モル%である。
[Polyethylene glycol compound (C)]
The polyethylene glycol compound (C) has a structural unit of the formula (1), and the structural unit of the formula (1) is 90 mol% to 100 mol% with respect to the total structural unit.
Figure JPOXMLDOC01-appb-C000014
The structural unit of the formula (1) is preferably 95 mol% to 100 mol%, more preferably 97 mol% to 100 mol%.
 いかなる理論に拘束されるものではないが、ポリエチレングリコール化合物(C)は、ポリアルケニルフェノール化合物(A)及びポリマレイミド化合物(B)のいずれとも混和性が良好なため、ポリエチレングリコール化合物(C)を添加することで、ポリアルケニルフェノール化合物(A)及びポリマレイミド化合物(B)のなじみ性を向上させることができる。また、離型剤を使用する場合には、ポリエチレングリコール化合物(C)自体は適度に相溶しつつ、離型剤の表面分離性をコントロールすることができる。この効果により離型剤及びその他成分のブリードアウトを抑制することができる。さらに、高分子量のポリエチレングリコール化合物(C)は、高温でも安定な成分であるため、成形の際に、熱硬化性樹脂組成物の流動性及び熱硬化性樹脂組成物の型に対する表面濡れの調整もすることができる。これらの効果により、高分子量のポリエチレングリコール化合物(C)を添加することで、ブリードアウトをいっそう抑制することができる。 Although not bound by any theory, since the polyethylene glycol compound (C) has good compatibility with both the polyalkenylphenol compound (A) and the polymaleimide compound (B), the polyethylene glycol compound (C) is used. By adding the compound, the compatibility of the polyalkenylphenol compound (A) and the polymaleimide compound (B) can be improved. Further, when a mold release agent is used, the surface separability of the mold release agent can be controlled while the polyethylene glycol compound (C) itself is appropriately compatible with the mold release agent. This effect can suppress the bleed-out of the release agent and other components. Further, since the high molecular weight polyethylene glycol compound (C) is a stable component even at a high temperature, the fluidity of the thermosetting resin composition and the adjustment of the surface wettability of the thermosetting resin composition with respect to the mold during molding are adjusted. Can also be. Due to these effects, bleed-out can be further suppressed by adding the high molecular weight polyethylene glycol compound (C).
 ポリエチレングリコール化合物(C)の数平均分子量Mnは、好ましくは2000~50000であり、より好ましくは2500~30000、さらに好ましくは3000~25000である。数平均分子量Mnが2000以上であれば、成形後の硬化物表面へのポリエチレングリコール化合物(C)のブリードアウトをより抑制することができる。一方、数平均分子量Mnが50000以下であれば、熱硬化性樹脂組成物の粘度が、成形に適した範囲に収まる。 The number average molecular weight Mn of the polyethylene glycol compound (C) is preferably 2000 to 50000, more preferably 2500 to 30000, and further preferably 3000 to 25000. When the number average molecular weight Mn is 2000 or more, the bleed-out of the polyethylene glycol compound (C) to the surface of the cured product after molding can be further suppressed. On the other hand, when the number average molecular weight Mn is 50,000 or less, the viscosity of the thermosetting resin composition falls within a range suitable for molding.
 ポリエチレングリコール化合物(C)の式(1)以外の構造単位は、全構造単位に対して0~10モル%であり、好ましくは0~5モル%であり、より好ましくは0~3モル%である。式(1)以外の構造単位としては、分岐構造を構成する構造単位;置換されていてよいアミノ基、カルボキシ基、スルホン酸基、ヒドロキシ基、グリシジル基、アジド基、シアノ基、チオール基、不飽和炭化水素基等の末端官能基を含む構造単位;化合物合成時の副生成構造単位が挙げられる。 The structural units of the polyethylene glycol compound (C) other than the formula (1) are 0 to 10 mol%, preferably 0 to 5 mol%, and more preferably 0 to 3 mol% with respect to the total structural units. be. The structural unit other than the formula (1) includes a structural unit constituting a branched structure; an amino group, a carboxy group, a sulfonic acid group, a hydroxy group, a glycidyl group, an azido group, a cyano group, a thiol group, and a non-substituted amino group. A structural unit containing a terminal functional group such as a saturated hydrocarbon group; a by-produced structural unit during compound synthesis can be mentioned.
 ポリエチレングリコール化合物(C)としては、ポリエチレングリコール、ポリエチレングリコール誘導体が挙げられる。ポリエチレングリコールとしては、具体的には、東邦化学工業株式会社のPEG-4000、PEG-6000、三洋化成工業株式会社のPEG-10000、PEG-20000等が挙げられる。ポリエチレングリコール誘導体としては、ポリエチレングリコールオレイン酸モノエステル、ポリエチレングリコール-ジ-2-エチルヘキソエート等のポリエチレングリコール脂肪酸エステルが挙げられる。 Examples of the polyethylene glycol compound (C) include polyethylene glycol and polyethylene glycol derivatives. Specific examples of polyethylene glycol include PEG-4000 and PEG-6000 of Toho Chemical Industry Co., Ltd., PEG-10000 and PEG-20000 of Sanyo Chemical Industries, Ltd. Examples of the polyethylene glycol derivative include polyethylene glycol fatty acid esters such as polyethylene glycol oleic acid monoester and polyethylene glycol-di-2-ethylhexoate.
 ポリエチレングリコール化合物(C)の含有量は、ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、及びポリエチレングリコール化合物(C)の合計に対して、好ましくは1~10質量%、より好ましくは1.3~7質量%、さらに好ましくは1.5~5質量%である。ポリエチレングリコール化合物(C)の含有量が1質量%以上であれば、金属表面へ濡れ密着性をより向上させることができる。一方で、ポリエチレングリコール化合物(C)の含有量が10質量%以下であれば、成形前の熱硬化性樹脂組成物の融点又は軟化点を適宜調節して、ハンドリング性を向上させることができ、硬化後のポリエチレングリコール化合物(C)のブリードアウトをより抑えることができる。 The content of the polyethylene glycol compound (C) is preferably 1 to 10% by mass, more preferably 1 to 10% by mass, based on the total of the polyalkenylphenol compound (A), the polymaleimide compound (B), and the polyethylene glycol compound (C). It is 1.3 to 7% by mass, more preferably 1.5 to 5% by mass. When the content of the polyethylene glycol compound (C) is 1% by mass or more, the wet adhesion to the metal surface can be further improved. On the other hand, when the content of the polyethylene glycol compound (C) is 10% by mass or less, the melting point or softening point of the thermosetting resin composition before molding can be appropriately adjusted to improve the handleability. Bleedout of the polyethylene glycol compound (C) after curing can be further suppressed.
 [ラジカル開始剤(D)]
 熱硬化性樹脂組成物にラジカル開始剤(D)を配合することで、熱硬化性樹脂組成物の硬化を促進することができる。ラジカル開始剤(D)としては、例えば、熱ラジカル開始剤が挙げられる。ラジカル開始剤(D)は、好ましくは熱ラジカル開始剤である。熱ラジカル開始剤としては、有機過酸化物を挙げることができる。有機過酸化物は、10時間半減期温度が100~170℃の有機過酸化物であることが好ましく、具体的には、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、tert-ブチルクミルパーオキサイド、ジ-tert-ブチルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、及びクメンハイドロパーオキサイドを挙げることができる。
[Radical initiator (D)]
By blending the radical initiator (D) with the thermosetting resin composition, the curing of the thermosetting resin composition can be promoted. Examples of the radical initiator (D) include a thermal radical initiator. The radical initiator (D) is preferably a thermal radical initiator. Examples of the thermal radical initiator include organic peroxides. The organic peroxide is preferably an organic peroxide having a 10-hour half-life temperature of 100 to 170 ° C., specifically, dicumyl peroxide, 2,5-dimethyl-2,5-di (tert). -Butylperoxy) hexane, tert-butylcumyl peroxide, di-tert-butyl peroxide, 1,1,3,3-tetramethylbutylhydroperoxide, and cumenehydroperoxide can be mentioned.
 ラジカル開始剤(D)の好ましい使用量は、ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、及びポリエチレングリコール化合物(C)の合計100質量部に対して、0.01~10質量部であり、より好ましくは0.05~7.5質量部であり、さらに好ましくは0.1~5質量部である。ラジカル開始剤(D)の使用量が0.01質量部以上であれば、十分に硬化反応が進行し、10質量部以下であれば、熱硬化性樹脂組成物の保存安定性がより良好である。 The preferable amount of the radical initiator (D) to be used is 0.01 to 10 parts by mass with respect to 100 parts by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), and the polyethylene glycol compound (C). It is more preferably 0.05 to 7.5 parts by mass, and further preferably 0.1 to 5 parts by mass. When the amount of the radical initiator (D) used is 0.01 parts by mass or more, the curing reaction proceeds sufficiently, and when it is 10 parts by mass or less, the storage stability of the thermosetting resin composition is better. be.
 [充填材(E)]
 熱硬化性樹脂組成物は、さらに充填材(E)を含んでもよい。充填材(E)の種類に特に制限はなく、例として、固体シリコーンゴム粒子等の固体ゴム粒子、シリコーンパウダー等の有機充填材、シリカ、アルミナ、酸化マグネシウム、窒化ホウ素等の無機充填材等が挙げられ、用途により適宜選択することができる。一実施態様では、充填材(E)は、シリカ、アルミナ、酸化マグネシウム、及び固体ゴム粒子からなる群から選択される少なくとも一種である。
[Filler (E)]
The thermosetting resin composition may further contain a filler (E). The type of the filler (E) is not particularly limited, and examples thereof include solid rubber particles such as solid silicone rubber particles, organic fillers such as silicone powder, and inorganic fillers such as silica, alumina, magnesium oxide, and boron nitride. It can be appropriately selected depending on the intended use. In one embodiment, the filler (E) is at least one selected from the group consisting of silica, alumina, magnesium oxide, and solid rubber particles.
 例えば、熱硬化性樹脂組成物を半導体封止用途に使用する場合には、熱膨張係数の低い硬化物を得るために、絶縁性である無機充填材を配合することが好ましい。無機充填材は特に限定されず、公知のものを使用することができる。無機充填材として、具体的には、非晶質シリカ、結晶性シリカ等のシリカ、アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素等の粒子が挙げられる。低粘度化の観点からは、真球状の非晶質シリカが望ましい。無機充填材は、シランカップリング剤等で表面処理が施されたものであってもよいが、表面処理が施されていなくてもよい。 For example, when a thermosetting resin composition is used for semiconductor encapsulation, it is preferable to add an insulating inorganic filler in order to obtain a cured product having a low coefficient of thermal expansion. The inorganic filler is not particularly limited, and known materials can be used. Specific examples of the inorganic filler include silica such as amorphous silica and crystalline silica, and particles such as alumina, boron nitride, aluminum nitride, and silicon nitride. From the viewpoint of reducing the viscosity, spherical amorphous silica is desirable. The inorganic filler may be surface-treated with a silane coupling agent or the like, but may not be surface-treated.
 充填材(E)の平均粒径は0.1~30μmが好ましく、最大粒径が100μm以下、特に75μm以下のものがより好ましい。平均粒径がこの範囲にあると、熱硬化性樹脂組成物の粘度が使用時に適切であり、狭ピッチ配線部又は狭ギャップ部への注入性も適切である。ここでいう平均粒径とは、レーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D50である。 The average particle size of the filler (E) is preferably 0.1 to 30 μm, and more preferably the maximum particle size is 100 μm or less, particularly 75 μm or less. When the average particle size is in this range, the viscosity of the thermosetting resin composition is appropriate at the time of use, and the injectability into the narrow pitch wiring portion or the narrow gap portion is also appropriate. The average particle size referred to here is the volume cumulative particle size D 50 measured by a laser diffraction / scattering type particle size distribution measuring device.
 熱硬化性樹脂組成物の充填材(E)の含有量は、用途に応じて適宜決定することができる。熱硬化性樹脂組成物の充填材(E)の含有量は、ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、ポリエチレングリコール化合物(C)、及びラジカル開始剤(D)の合計100質量部に対して、好ましくは200~1900質量部、より好ましくは300~1000質量部、さらに好ましくは300~600質量部である。 The content of the filler (E) in the thermosetting resin composition can be appropriately determined according to the intended use. The content of the filler (E) in the thermosetting resin composition is 100% by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), the polyethylene glycol compound (C), and the radical initiator (D). It is preferably 200 to 1900 parts by mass, more preferably 300 to 1000 parts by mass, and further preferably 300 to 600 parts by mass with respect to the parts.
 [その他の添加剤]
 その他の添加剤として、カップリング剤、消泡剤、着色剤、蛍光体、変性剤、レベリング剤、光拡散剤、難燃剤、接着付与剤、離型剤等を熱硬化性樹脂組成物に配合することも可能である。その他の添加剤は、ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、ポリエチレングリコール化合物(C)、ラジカル開始剤(D)、及び充填材(E)に該当する化合物を含まない。
[Other additives]
As other additives, a coupling agent, a defoaming agent, a coloring agent, a phosphor, a denaturing agent, a leveling agent, a light diffusing agent, a flame retardant, an adhesion-imparting agent, a mold release agent, etc. are blended in the thermosetting resin composition. It is also possible to do. The other additives do not include the polyalkenylphenol compound (A), the polymaleimide compound (B), the polyethylene glycol compound (C), the radical initiator (D), and the compound corresponding to the filler (E).
 例えば、接着性を改良する観点から、カップリング剤を配合してもよい。カップリング剤は特に限定されず、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のシランカップリング剤等が挙げられる。カップリング剤は、単独で用いられてもよく、2種以上が併用されてもよい。熱硬化性樹脂組成物中のカップリング剤の配合量は、0.1~5質量%が好ましい。上記配合量が0.1質量%以上であれば、カップリング剤の効果が十分発揮され、5質量%以下であれば、溶融粘度、硬化物の吸湿性及び強度がより良好である。 For example, a coupling agent may be blended from the viewpoint of improving the adhesiveness. The coupling agent is not particularly limited, and for example, vinyl triethoxysilane, vinyl trimethoxysilane, 3-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, N- Examples thereof include a silane coupling agent such as phenyl-3-aminopropyltrimethoxysilane. The coupling agent may be used alone or in combination of two or more. The blending amount of the coupling agent in the thermosetting resin composition is preferably 0.1 to 5% by mass. When the blending amount is 0.1% by mass or more, the effect of the coupling agent is sufficiently exhibited, and when it is 5% by mass or less, the melt viscosity, the hygroscopicity and the strength of the cured product are more good.
 例えば、離型性を改良する観点から、離型剤を配合してもよい。離型剤は特に限定されず、例えば、カルナバワックス、アマイドワックス、モンタン酸エステルワックス、モンタン酸部分ケン化エステルワックス、ステアリン酸カルシウム等の金属石鹸、ポリエチレンワックス、ポリプロピレンワックス等が挙げられる。中でも、カルナバワックス、モンタン酸エステルワックス、ポリエチレンワックスが好ましい。離形剤は、単独で用いられてもよく、2種以上が併用されてもよい。熱硬化性樹脂組成物中の離型剤の配合量は、0.01~0.5質量%が好ましい。上記配合量が0.01質量%以上であれば、離型剤の効果が十分発揮され、0.5質量%以下であれば、金型汚れ等のブリードアウトが生じず外観が良好である。 For example, a mold release agent may be blended from the viewpoint of improving the mold release property. The release agent is not particularly limited, and examples thereof include carnauba wax, amide wax, montanic acid ester wax, montanic acid partially saponified ester wax, metal soap such as calcium stearate, polyethylene wax, and polypropylene wax. Of these, carnauba wax, montanic acid ester wax, and polyethylene wax are preferable. The release agent may be used alone or in combination of two or more. The blending amount of the release agent in the thermosetting resin composition is preferably 0.01 to 0.5% by mass. When the blending amount is 0.01% by mass or more, the effect of the mold release agent is sufficiently exhibited, and when it is 0.5% by mass or less, bleed-out such as mold stain does not occur and the appearance is good.
 [熱硬化性樹脂組成物の調製方法]
 熱硬化性樹脂組成物の調製方法は、ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、ポリエチレングリコール化合物(C)、ラジカル開始剤(D)、及びその他の任意成分が、均一に混合及び分散できれば特に限定されない。ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、及びポリエチレングリコール化合物(C)を先に溶融混合させ、その後にラジカル開始剤(D)及び任意の添加剤を加える方法は、各材料を均一に混合しやすいため好ましい。
[Method for preparing thermosetting resin composition]
In the method for preparing a thermosetting resin composition, a polyalkenylphenol compound (A), a polymaleimide compound (B), a polyethylene glycol compound (C), a radical initiator (D), and other optional components are uniformly mixed. And, if it can be dispersed, it is not particularly limited. The method of melt-mixing the polyalkenylphenol compound (A), the polymaleimide compound (B), and the polyethylene glycol compound (C) first, and then adding the radical initiator (D) and any additive is to add each material. It is preferable because it is easy to mix uniformly.
 各成分の混合方法は、特に限定されない。各成分を所定の配合割合で、反応容器、ポットミル、二本ロールミル、三本ロールミル、回転式混合機、二軸ミキサー、ディスパー、単軸又は二軸(同方向又は異方向)押出機、ニーダー等の混合機に投入し、撹拌又は混練することにより混合することができる。ラボスケールでは、容易に撹拌条件を変更できるため回転式混合機が好ましく、工業的には、生産性の観点から二軸ミキサーが好ましい。各混合機は、撹拌条件を適宜変更して用いることができる。 The mixing method of each component is not particularly limited. Reaction vessel, pot mill, two-roll mill, three-roll mill, rotary mixer, twin-screw mixer, dispenser, single-screw or twin-screw (same-direction or different-direction) extruder, kneader, etc. It can be mixed by putting it in the mixer of the above and stirring or kneading. In the laboratory scale, a rotary mixer is preferable because the stirring conditions can be easily changed, and industrially, a twin-screw mixer is preferable from the viewpoint of productivity. Each mixer can be used by appropriately changing the stirring conditions.
 熱硬化性樹脂組成物の粉末化を行う場合は、作業工程により発生した熱により樹脂が溶融しない方法であれば特に限定されないが、少量であれば、メノウ乳鉢を用いる方法が簡便である。市販の粉砕機を利用する場合、粉砕に際して発生する熱量が少ないものが、混合物の溶融を抑制するために好ましい。粉末の粒径については、1mm以下とすることが好ましい。 When the thermosetting resin composition is powdered, the method is not particularly limited as long as the resin is not melted by the heat generated in the work process, but if the amount is small, the method using an agate mortar is convenient. When a commercially available crusher is used, it is preferable that the amount of heat generated during crushing is small in order to suppress the melting of the mixture. The particle size of the powder is preferably 1 mm or less.
 [構造体の作製方法]
 熱硬化性樹脂組成物は、硬化反応が急激に進行しない温度まで加熱することにより、溶融させることができる。溶融した熱硬化性樹脂組成物を、任意の好ましい形状に成形し、必要に応じて硬化させ、脱型することにより、構造体を作製することができる。構造体の作製方法としては、モールディング成形、特にトランスファー成形及びコンプレッション成形が好ましい。
[Method of manufacturing the structure]
The thermosetting resin composition can be melted by heating to a temperature at which the curing reaction does not proceed rapidly. A structure can be produced by molding the melted thermosetting resin composition into an arbitrary preferred shape, curing it if necessary, and removing the mold. As a method for producing the structure, molding molding, particularly transfer molding and compression molding are preferable.
 トランスファー成形での好ましい条件としては、例えば、サイズが10mm×75mm×3mm厚の金型の場合、天板及び金型の温度を170~190℃、保持圧力を50~150kg/cm2、保持時間を1.5~10分間とすることができる。コンプレッション成形での好ましい条件としては、例えば、サイズが100mm×75mm×3mm厚の金型の場合、天板及び金型の温度を170~190℃、成形圧力を5~20MPa、加圧時間を1.5~10分間とすることができる。 Preferred conditions for transfer molding are, for example, in the case of a mold having a size of 10 mm × 75 mm × 3 mm, the temperature of the top plate and the mold is 170 to 190 ° C, the holding pressure is 50 to 150 kg / cm 2 , and the holding time. Can be 1.5 to 10 minutes. As preferable conditions for compression molding, for example, in the case of a mold having a size of 100 mm × 75 mm × 3 mm, the temperature of the top plate and the mold is 170 to 190 ° C., the molding pressure is 5 to 20 MPa, and the pressurizing time is 1. . It can be 5 to 10 minutes.
 [硬化物の作製方法]
 熱硬化性樹脂組成物は、加熱することにより硬化させることができる。硬化温度は、好ましくは130~300℃、より好ましくは150~230℃であり、さらに好ましくは150~200℃である。硬化温度が130℃以上であれば、硬化前の熱硬化性樹脂組成物を十分溶融させて、金型へ容易に充填することができ、硬化後の脱型も容易である。硬化温度が300℃以下であれば、材料の熱劣化又は揮発を避けることができる。
[Method for producing cured product]
The thermosetting resin composition can be cured by heating. The curing temperature is preferably 130 to 300 ° C, more preferably 150 to 230 ° C, and even more preferably 150 to 200 ° C. When the curing temperature is 130 ° C. or higher, the thermosetting resin composition before curing can be sufficiently melted and easily filled in the mold, and demolding after curing is also easy. When the curing temperature is 300 ° C. or lower, thermal deterioration or volatilization of the material can be avoided.
 加熱時間は、熱硬化性樹脂組成物及び硬化温度に応じて適宜変更することができるが、生産性の観点から0.1~24時間が好ましい。この加熱は、複数回に分けて行ってもよい。特に高い硬化度を求める場合には、過度に高温で硬化させずに、例えば硬化の進行とともに昇温させて、最終的な硬化温度を250℃以下とすることが好ましく、230℃以下とすることがより好ましい。 The heating time can be appropriately changed depending on the thermosetting resin composition and the curing temperature, but 0.1 to 24 hours is preferable from the viewpoint of productivity. This heating may be performed in a plurality of times. When a particularly high degree of curing is required, the final curing temperature is preferably 250 ° C. or lower, preferably 230 ° C. or lower, without curing at an excessively high temperature, for example, by raising the temperature as the curing progresses. Is more preferable.
 [硬化物の用途]
 熱硬化性樹脂組成物の硬化物は、例えば、半導体封止材、プリプレグ、層間絶縁樹脂、ソルダーレジスト、ダイアタッチ等の用途に用いることができる。
[Use of cured product]
The cured product of the thermosetting resin composition can be used, for example, in applications such as semiconductor encapsulants, prepregs, interlayer insulating resins, solder resists, and die attaches.
 以下、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例等に限定されない。 Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to these Examples and the like.
 実施例及び比較例で用いた分析方法及び特性評価方法、及び原材料は、以下のとおりである。 The analysis method, characteristic evaluation method, and raw materials used in the examples and comparative examples are as follows.
 <分析方法及び特性評価方法>
 [分子量]
 GPCの測定条件は以下のとおりである。
 装置名:JASCO LC-2000 plus(日本分光株式会社)
 カラム:Shodex(登録商標)LF-804(昭和電工株式会社)
 移動相:テトラヒドロフラン
 流速:1.0mL/min
 検出器:JASCO RI-2031 plus(日本分光株式会社)
 温度:40℃
 上記測定条件で、ポリスチレンの標準物質を使用して作成した検量線を用いて、数平均分子量Mn及び重量平均分子量Mwを算出した。
<Analysis method and characteristic evaluation method>
[Molecular weight]
The measurement conditions of GPC are as follows.
Device name: JASCO LC-2000 plus (JASCO Corporation)
Column: Leftox (registered trademark) LF-804 (Showa Denko KK)
Mobile phase: Tetrahydrofuran Flow rate: 1.0 mL / min
Detector: JASCO RI-2031 plus (JASCO Corporation)
Temperature: 40 ° C
Under the above measurement conditions, the number average molecular weight Mn and the weight average molecular weight Mw were calculated using a calibration curve prepared using a polystyrene standard substance.
 [重合度]
 重合度Pは、GPCより算出した数平均分子量をMn、化合物の繰り返し構造の分子量をMとして、以下の式で求めた。
  P=Mn/M
[Degree of polymerization]
The degree of polymerization P was determined by the following formula, where the number average molecular weight calculated from GPC was Mn and the molecular weight of the repeating structure of the compound was M.
P = Mn / M
 [ガラス転移温度]
 硬化物の耐熱性を、ガラス転位温度(Tg)の観点から評価した。具体的には、トランスファー成形機を用い、金型温度180℃、保持圧力100kg/cm2、保持時間3分間の条件で熱硬化性樹脂組成物を成形し、5mm×5mm×5mmのガラス転移温度測定用の試験片を作製した。試験片を200℃にて5時間加熱して後硬化させた後、熱機械測定(TMA)により測定した。測定は、エスアイアイ・ナノテクノロジー株式会社製のTMA/SS6100熱機械分析装置を使用して、温度範囲30~300℃、昇温速度5℃/min、荷重20.0mNの条件で実施し、線膨張係数の変曲点をTgとした。
[Glass-transition temperature]
The heat resistance of the cured product was evaluated from the viewpoint of the glass dislocation temperature (Tg). Specifically, a thermosetting resin composition is molded using a transfer molding machine under the conditions of a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2 , and a holding time of 3 minutes, and a glass transition temperature of 5 mm × 5 mm × 5 mm. A test piece for measurement was prepared. The test piece was heated at 200 ° C. for 5 hours and then cured, and then measured by thermal mechanical measurement (TMA). The measurement was carried out using a TMA / SS6100 thermomechanical analyzer manufactured by SII Nanotechnology Co., Ltd. under the conditions of a temperature range of 30 to 300 ° C., a heating rate of 5 ° C./min, and a load of 20.0 mN. The inflection point of the expansion coefficient was Tg.
 [離型性]
 成形性を、金型からの離型性の観点から評価した。具体的には、図1に示す成形金型1(試験片サイズは、下部直径:25mmφ、上部直径:10mmφ、上段厚み:7mm、下段厚み:7mm、テーパー:2°である。)、天板2及び底板3を取り付けたトランスファー成形機を用い、金型温度180℃、保持圧力100kg/cm2、保持時間3分間の条件で熱硬化性樹脂組成物を成形し、図2に示すように、ばねばかりにて上部から押した際の脱型力を計測した。連続して複数回の成形を行い、左右の脱型力の平均値が40N以下を保つ連続成形回数を記録した。平均値が40Nを超えた場合、又は成形回数が10回に到達した時点で、評価を終了した。
[Releasability]
The moldability was evaluated from the viewpoint of mold releasability. Specifically, the molding die 1 shown in FIG. 1 (the size of the test piece is lower diameter: 25 mmφ, upper diameter: 10 mmφ, upper thickness: 7 mm, lower thickness: 7 mm, taper: 2 °), top plate. Using a transfer molding machine equipped with 2 and the bottom plate 3, a thermosetting resin composition was molded under the conditions of a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2 , and a holding time of 3 minutes, and as shown in FIG. The demolding force when pushed from the top with only a spring was measured. Molding was performed a plurality of times in succession, and the number of continuous moldings in which the average value of the left and right demolding forces was 40 N or less was recorded. The evaluation was completed when the average value exceeded 40 N or when the number of moldings reached 10 times.
 [外観(ブリードアウト)]
 成形性を、外観の観点からも評価した。具体的には、トランスファー成形機を用い、金型温度180℃、保持圧力100kg/cm2、保持時間3分間の条件で熱硬化性樹脂組成物を成形し、得られた成形物を取り出した後の金型及び成形物を目視観察した。上記条件で成形と脱型を繰り返し、10回の成形及び脱型後に金型に曇りがなく、かつ成形物の表面に染み出した樹脂が見られない場合を良好、3~10回目において樹脂の染み出し及び金型の汚れの少なくともいずれかが見られたものを可、1~2回目において樹脂の染み出し及び金型の汚れの少なくともいずれかが見られたものを不良として評価した。
[Appearance (bleed out)]
The moldability was also evaluated from the viewpoint of appearance. Specifically, a thermosetting resin composition is molded using a transfer molding machine under the conditions of a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2 , and a holding time of 3 minutes, and after taking out the obtained molded product. The mold and the molded product were visually observed. It is good that the mold is not cloudy after 10 times of molding and demolding and no resin exuded on the surface of the molded product is seen after repeating molding and demolding under the above conditions. Those in which at least one of exudation and stains on the mold were observed were acceptable, and those in which at least one of resin exudation and stains on the mold was observed in the first and second times were evaluated as defective.
 [成形後密着率]
 素材が圧延無酸素銅(C1020)であり、外寸が、横52mm、縦38mm、厚み0.5mmであり、ベッドが中央に縦横18mmで存在するリードフレームを用いた。リードフレームの中央を中心に、縦30mm、横30mm、厚さ3mmの外寸で、ベッドを囲う封止を行った。封止は、金型温度180℃、保持圧力100kg/cm2、保持時間3分間の条件にてトランスファー成形機を用いて熱硬化性樹脂組成物を成形することにより行い、得られた試験片を、200℃、5時間で後硬化させた。後硬化した試験片について、超音波探傷映像装置(本多電子株式会社、HA-60A)を用い、リードフレームと熱硬化性樹脂組成物の硬化物との界面の剥離状況を観察した。Image-Jソフトを用いて、剥離していない部分の面積を全体の面積で割り返した値を、成形後密着率として決定した。
[Adhesion rate after molding]
A lead frame was used in which the material was rolled oxygen-free copper (C1020), the outer dimensions were 52 mm in width, 38 mm in length, and 0.5 mm in thickness, and the bed was 18 mm in length and width in the center. The bed was sealed around the center of the lead frame with an outer dimension of 30 mm in length, 30 mm in width, and 3 mm in thickness. Sealing was performed by molding a thermosetting resin composition using a transfer molding machine under the conditions of a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2, and a holding time of 3 minutes. After curing at 200 ° C. for 5 hours. For the post-cured test piece, the peeling state of the interface between the lead frame and the cured product of the thermosetting resin composition was observed using an ultrasonic flaw detection imaging device (Honda Electronics Co., Ltd., HA-60A). Using Image-J software, the value obtained by dividing the area of the non-peeled portion by the total area was determined as the post-molding adhesion ratio.
 [耐リフロー]
 耐リフロー性は、リフロー後密着率により評価した。成形後密着率試験と同様の方法で得た、後硬化した試験片について、IPC/JEDEC J-STD-020Dのレベル3の条件に準拠して、株式会社マルコム製のリフローシミュレーターSRS-1を用いて、リフロー試験を行った。リフロー試験後の試験片について、成形後密着率試験と同様に解析し、得られた値をリフロー後密着率として決定した。
[Reflow resistance]
The reflow resistance was evaluated by the adhesion rate after reflow. For the post-cured test piece obtained by the same method as the post-molding adhesion test, a reflow simulator SRS-1 manufactured by Malcolm Co., Ltd. was used in accordance with the level 3 conditions of IPC / JEDEC J-STD-020D. Then, a reflow test was conducted. The test piece after the reflow test was analyzed in the same manner as in the post-molding adhesion test, and the obtained value was determined as the post-reflow adhesion.
 <原材料>
 [ポリアルケニルフェノール化合物(A)]
 ・BRG-APO(式(2)-1のR1=水素原子、Q=-CR89-、R8及びR9=水素原子、式(3)のR3~R7=水素原子)
 フェノールノボラック樹脂ショウノール(登録商標)BRG-556及びBRG-558(アイカ工業株式会社)の1:1混合物を用い、フェノール性水酸基のオルト位又はパラ位をアリル化した樹脂(水酸基当量154、数平均分子量Mn1000、重量平均分子量Mw3000、重合度6.6、p=6.6、q=0、p/(p+q)=1)を製造した。製造方法は特開2016-28129号公報の実施例1を参照。
<Raw materials>
[Polyalkenylphenol compound (A)]
· BRG-APO (formula (2) -1 of R 1 = hydrogen atom, Q = -CR 8 R 9 - , R 8 and R 9 = hydrogen atom, R 3 ~ R 7 = hydrogen atom of the formula (3))
Phenolic novolak resin A resin in which the ortho-position or para-position of a phenolic hydroxyl group is allylated using a 1: 1 mixture of BRG-556 (registered trademark) BRG-556 and BRG-558 (Aika Kogyo Co., Ltd.) (hydroxyl equivalent 154, number). An average molecular weight Mn1000, a weight average molecular weight Mw3000, a degree of polymerization of 6.6, p = 6.6, q = 0, and p / (p + q) = 1) were produced. For the production method, refer to Example 1 of JP-A-2016-28129.
 ・HE100C-APO(式(2)-1及び式(2)-2のR1=水素原子、Q=p-キシリレン基、式(3)のR3~R7=水素原子)
 フェノールアラルキル樹脂HE100C-10-15(エア・ウォーター株式会社)を用い、特開2016-28129号公報の実施例1に準じた方法で、フェノール性水酸基のオルト位又はパラ位をアリル化した樹脂(水酸基当量222、数平均分子量Mn900、重量平均分子量Mw1900、重合度4.0、p=3.8、q=0.2、p/(p+q)=0.95)を製造した。
HE100C-APO (R 1 = hydrogen atom of formula (2) -1 and formula (2) -2, Q = p-xylylene group, R 3 to R 7 = hydrogen atom of formula (3))
A resin in which the ortho-position or para-position of the phenolic hydroxyl group is allylated by a method according to Example 1 of JP-A-2016-28129 using the phenol aralkyl resin HE100C-10-15 (Air Water Co., Ltd.). Hydroxyl group equivalent 222, number average molecular weight Mn900, weight average molecular weight Mw1900, degree of polymerization 4.0, p = 3.8, q = 0.2, p / (p + q) = 0.95) were produced.
 [ポリマレイミド化合物(B)]
 ・BMI-4000(2,2-ビス[4-(4-マレイミドフェニルオキシ)フェニル]プロパン、大和化成工業株式会社)
 ・BMI-1100H(ビス(4-マレイミドフェニル)メタン、大和化成工業株式会社)
[Polymaleimide compound (B)]
・ BMI-4000 (2,2-bis [4- (4-maleimidephenyloxy) phenyl] propane, Daiwa Kasei Kogyo Co., Ltd.)
・ BMI-1100H (bis (4-maleimidephenyl) methane, Daiwa Kasei Kogyo Co., Ltd.)
 [ポリエチレングリコール化合物(C)]
 ・PEG-4000(ポリエチレングリコール、Mn4000、Mw5000、式(1)の構造単位100モル%、東邦化学工業株式会社)
 ・PEG-6000(ポリエチレングリコール、Mn6000、Mw7300、式(1)の構造単位100モル%、東邦化学工業株式会社)
 ・PEG-10000(ポリエチレングリコール、Mn10000、Mw14000、式(1)の構造単位100モル%、三洋化成工業株式会社)
 ・PEG-20000(ポリエチレングリコール、Mn21000、Mw26000、式(1)の構造単位100モル%、三洋化成工業株式会社)
 ・リオノンMO-60(ポリエチレングリコールオレイン酸モノエステル、Mn7200、Mw8000、式(1)の構造単位94モル%、ライオン・スペシャリティ・ケミカルズ株式会社)
[Polyethylene glycol compound (C)]
PEG-4000 (polyethylene glycol, Mn4000, Mw5000, structural unit of formula (1) 100 mol%, Toho Chemical Industry Co., Ltd.)
PEG-6000 (polyethylene glycol, Mn6000, Mw7300, structural unit of formula (1) 100 mol%, Toho Chemical Industry Co., Ltd.)
PEG-10000 (polyethylene glycol, Mn10000, Mw14000, structural unit of formula (1) 100 mol%, Sanyo Chemical Industries, Ltd.)
PEG-20000 (polyethylene glycol, Mn21000, Mw26000, structural unit of formula (1) 100 mol%, Sanyo Chemical Industries, Ltd.)
-Rionon MO-60 (polyethylene glycol oleic acid monoester, Mn7200, Mw8000, structural unit of formula (1) 94 mol%, Lion Specialty Chemicals Co., Ltd.)
 [ラジカル開始剤(D)]
 ・パークミル(登録商標)D(ジクミルパーオキサイド、日油株式会社)
[Radical initiator (D)]
・ Park Mill (registered trademark) D (Dikumil Peroxide, NOF Corporation)
 [充填材(E)]
 ・シリカフィラーMSR5100(球状シリカ、平均粒径22.7μm、株式会社龍森)を、シランカップリング剤KBE-403(信越化学工業株式会社)0.5質量%を用いて処理した。
[Filler (E)]
-Silica filler MSR5100 (spherical silica, average particle size 22.7 μm, Ryumori Co., Ltd.) was treated with 0.5% by mass of a silane coupling agent KBE-403 (Shin-Etsu Chemical Co., Ltd.).
 [離型剤]
 ・カルナバ1号(カルナバワックス、日興リカ株式会社)
 ・LICOWAX(登録商標)PE520(ポリエチレンワックス、クラリアントケミカルズ株式会社)
[Release agent]
・ Carnauba No. 1 (Carnauba Wax, Nikko Rika Co., Ltd.)
-LICOWAX (registered trademark) PE520 (polyethylene wax, Clariant Chemicals Co., Ltd.)
 他の樹脂として、以下の化合物を用いた。
 ・KF6004(シリコーンPEG、Mn3000、Mw4500、式(1)の構造単位50モル%、信越化学工業株式会社)
 ・EPPN-501H(トリフェニルメタン型エポキシ樹脂、日本化薬株式会社)
 ・CRG-951(フェノールノボラック樹脂、アイカ工業株式会社)
 ・TPP(トリフェニルホスフィン)
The following compounds were used as other resins.
KF6004 (Silicone PEG, Mn3000, Mw4500, structural unit of formula (1) 50 mol%, Shin-Etsu Chemical Co., Ltd.)
・ EPPN-501H (triphenylmethane type epoxy resin, Nippon Kayaku Co., Ltd.)
・ CRG-951 (Phenol novolac resin, Aica Kogyo Co., Ltd.)
・ TPP (triphenylphosphine)
 <実施例1>
 [熱硬化性樹脂組成物の製造]
 ポリアルケニルフェノール化合物(A)としてBRG-APOを35質量部、ポリマレイミド化合物(B)としてBMI-4000を65質量部、ポリエチレングリコール化合物(C)としてPEG-6000を2質量部、ラジカル開始剤(D)としてパークミルDを1.5質量部、充填材(E)としてMSR5100を400質量部、離型剤としてカルナバワックスを0.4質量部とPE520を0.15質量部混合し、溶融混練(株式会社東洋精機製作所製の2本ロール(ロール径8インチ)にて、110℃、10分)した。室温(25℃)にて1時間放冷して固化したのち、ミルミキサー(大阪ケミカル株式会社、型式WB-1、25℃、30秒)を用いて粉砕することにより、粉末状の熱硬化性樹脂組成物を得た。
<Example 1>
[Manufacturing of thermosetting resin composition]
35 parts by mass of BRG-APO as polyalkenylphenol compound (A), 65 parts by mass of BMI-4000 as polymaleimide compound (B), 2 parts by mass of PEG-6000 as polyethylene glycol compound (C), radical initiator ( As D), 1.5 parts by mass of Park Mill D, 400 parts by mass of MSR5100 as filler (E), 0.4 parts by mass of carnauba wax as a release agent and 0.15 parts by mass of PE520 were mixed and melt-kneaded (d). Two rolls (roll diameter 8 inches) manufactured by Toyo Seiki Seisakusho Co., Ltd. were used at 110 ° C. for 10 minutes. After allowing to cool at room temperature (25 ° C) for 1 hour to solidify, it is crushed using a mill mixer (Osaka Chemical Co., Ltd., model WB-1, 25 ° C, 30 seconds) to obtain a powdery thermosetting property. A resin composition was obtained.
 [分析及び特性評価]
 得られた熱硬化性樹脂組成物について、上記の分析を実施するとともに、打錠機(株式会社富士薬品機械)によりタブレット状に押し固めたものを用いてトランスファー成形することで、上記の特性評価に用いる各試験片を作製し、特性評価を行った。
[Analysis and characterization]
The obtained thermosetting resin composition was subjected to the above analysis, and was transferred and molded using a tablet compacted by a tableting machine (Fuji Yakuhin Machinery Co., Ltd.) to evaluate the above characteristics. Each test piece used in the above was prepared and its characteristics were evaluated.
 <実施例2~8、比較例1~3>
 原材料の種類及び量を表1のとおり変更した以外は、実施例1と同様に熱硬化性樹脂組成物を製造し、分析及び特性評価を行った。
<Examples 2 to 8, Comparative Examples 1 to 3>
A thermosetting resin composition was produced in the same manner as in Example 1 except that the type and amount of the raw materials were changed as shown in Table 1, and the thermosetting resin composition was analyzed and evaluated for characteristics.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実施例1~8は、離型性、成形後密着率、リフロー後密着率、及び外観がいずれも良好であった。加えて、実施例1~8は、硬化物の耐熱性にも優れていた。一方、ポリエチレングリコール化合物(C)を含まない比較例1及び2は、離型性及び外観が悪く、リフロー後の密着率が著しく低かった。エポキシ樹脂をベースとする比較例3は、離型性及び外観が悪く、耐リフロー後の密着率も低かった。 Examples 1 to 8 had good releasability, adhesion after molding, adhesion after reflow, and appearance. In addition, Examples 1 to 8 were also excellent in heat resistance of the cured product. On the other hand, Comparative Examples 1 and 2 containing no polyethylene glycol compound (C) had poor releasability and appearance, and the adhesion rate after reflow was remarkably low. Comparative Example 3 based on the epoxy resin had poor releasability and appearance, and had a low adhesion rate after reflow resistance.
1 金型
2 天板
3 底板
4 ゲート
5 ランナー
6 成形物
1 Mold 2 Top plate 3 Bottom plate 4 Gate 5 Runner 6 Molded product

Claims (15)

  1.  ポリアルケニルフェノール化合物(A)、ポリマレイミド化合物(B)、ポリエチレングリコール化合物(C)、及びラジカル開始剤(D)を含有する熱硬化性樹脂組成物であって、
     前記ポリエチレングリコール化合物(C)が、式(1)の構造単位を有し、前記式(1)の構造単位が全構造単位に対して90モル%~100モル%である、
    熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    A thermosetting resin composition containing a polyalkenylphenol compound (A), a polymaleimide compound (B), a polyethylene glycol compound (C), and a radical initiator (D).
    The polyethylene glycol compound (C) has a structural unit of the formula (1), and the structural unit of the formula (1) is 90 mol% to 100 mol% with respect to the total structural unit.
    Thermosetting resin composition.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記ポリエチレングリコール化合物(C)の含有量が、前記ポリアルケニルフェノール化合物(A)、前記ポリマレイミド化合物(B)、及び前記ポリエチレングリコール化合物(C)の合計に対して1~10質量%である、請求項1に記載の熱硬化性樹脂組成物。 The content of the polyethylene glycol compound (C) is 1 to 10% by mass based on the total of the polyalkenylphenol compound (A), the polymaleimide compound (B), and the polyethylene glycol compound (C). The thermosetting resin composition according to claim 1.
  3.  前記ポリエチレングリコール化合物(C)の数平均分子量Mnが、2000~50000である、請求項1又は2に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1 or 2, wherein the polyethylene glycol compound (C) has a number average molecular weight Mn of 2000 to 50,000.
  4.  前記ポリアルケニルフェノール化合物(A)の含有量が、前記ポリマレイミド化合物(B)100質量部に対して5~200質量部である、請求項1~3のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting according to any one of claims 1 to 3, wherein the content of the polyalkenylphenol compound (A) is 5 to 200 parts by mass with respect to 100 parts by mass of the polymaleimide compound (B). Resin composition.
  5.  前記ポリエチレングリコール化合物(C)が、ポリエチレングリコールである、請求項1~4のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 4, wherein the polyethylene glycol compound (C) is polyethylene glycol.
  6.  前記ポリアルケニルフェノール化合物(A)が、式(2)-1:
    Figure JPOXMLDOC01-appb-C000002
    及び任意に式(2)-2:
    Figure JPOXMLDOC01-appb-C000003
    で表される構造単位を有するポリアルケニルフェノール化合物であり、
     式(2)-1及び式(2)-2において、R1はそれぞれ独立に、水素原子、炭素原子数1~5のアルキル基、又は炭素原子数1~5のアルコキシ基を表し、R2はそれぞれ独立に、式(3):
    Figure JPOXMLDOC01-appb-C000004
    で表される2-アルケニル基を表し、式(3)において、R3、R4、R5、R6、及びR7はそれぞれ独立に、水素原子、炭素原子数1~5のアルキル基、炭素原子数5~10のシクロアルキル基、又は炭素原子数6~12のアリール基であり、式(3)の*は、芳香環を構成する炭素原子との結合部を表し、R1及びR2は各フェノール骨格単位で同じでもよく異なっていてもよく、Qはそれぞれ独立に、式-CR89-で表されるアルキレン基、炭素原子数5~10のシクロアルキレン基、芳香環を有する二価の有機基、脂環式縮合環を有する二価の有機基、又はこれらを組み合わせた二価の有機基を表し、R8及びR9はそれぞれ独立に、水素原子、炭素原子数1~5のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数5~10のシクロアルキル基、又は炭素原子数6~12のアリール基を表す、請求項1~5のいずれか一項に記載の熱硬化性樹脂組成物。
    The polyalkenylphenol compound (A) is represented by the formula (2) -1 :.
    Figure JPOXMLDOC01-appb-C000002
    And optionally equation (2) -2:
    Figure JPOXMLDOC01-appb-C000003
    It is a polyalkenylphenol compound having a structural unit represented by
    In formulas (2) -1 and (2) -2, R 1 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 2 Are independent of each other, equation (3):
    Figure JPOXMLDOC01-appb-C000004
    Represents a 2-alkenyl group represented by, and in formula (3), R 3 , R 4 , R 5 , R 6 and R 7 are independently hydrogen atoms and alkyl groups having 1 to 5 carbon atoms. It is a cycloalkyl group having 5 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and * in the formula (3) represents a bonding portion with a carbon atom constituting an aromatic ring, and R 1 and R are represented. 2 may be the same or different for each phenol skeleton unit, and Q independently has an alkylene group represented by the formula −CR 8 R 9 −, a cycloalkylene group having 5 to 10 carbon atoms, and an aromatic ring. Represents a divalent organic group having a divalent organic group, a divalent organic group having an alicyclic condensed ring, or a divalent organic group combining these, and R 8 and R 9 are independently hydrogen atoms and 1 carbon atom, respectively. One of claims 1 to 5, which represents an alkyl group having 5 to 5, an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms. The thermosetting resin composition according to.
  7.  式(2)-1に示す構造単位の一分子あたりの平均数をp、式(2)-2に示す構造単位の一分子あたりの平均数をqとしたときに、pは1.1~35の実数、p+qは1.1~35の実数であり、かつqは式:p/(p+q)の値が0.4~1となる実数を満たす、請求項6に記載の熱硬化性樹脂組成物。 When the average number of structural units shown in formula (2) -1 per molecule is p and the average number of structural units shown in formula (2) -2 per molecule is q, p is 1.1 to The thermosetting resin according to claim 6, wherein 35 is a real number, p + q is a real number of 1.1 to 35, and q is a real number having a value of the formula: p / (p + q) of 0.4 to 1. Composition.
  8.  前記ポリマレイミド化合物(B)が、芳香族ビスマレイミド化合物である、請求項1~7のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 7, wherein the polymaleimide compound (B) is an aromatic bismaleimide compound.
  9.  前記ラジカル開始剤(D)が、有機過酸化物である、請求項1~8のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 8, wherein the radical initiator (D) is an organic peroxide.
  10.  さらに充填材(E)を含む、請求項1~9のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 9, further comprising a filler (E).
  11.  前記充填材(E)が、シリカ、アルミナ、酸化マグネシウム、及び固体ゴム粒子からなる群から選択される少なくとも一種である、請求項10に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 10, wherein the filler (E) is at least one selected from the group consisting of silica, alumina, magnesium oxide, and solid rubber particles.
  12.  前記充填材(E)の含有量が、前記ポリアルケニルフェノール化合物(A)、前記ポリマレイミド化合物(B)、前記ポリエチレングリコール化合物(C)、及び前記ラジカル開始剤(D)の合計100質量部に対して200~1900質量部である、請求項10又は11に記載の熱硬化性樹脂組成物。 The content of the filler (E) is 100 parts by mass in total of the polyalkenylphenol compound (A), the polymaleimide compound (B), the polyethylene glycol compound (C), and the radical initiator (D). The thermosetting resin composition according to claim 10 or 11, which is 200 to 1900 parts by mass.
  13.  請求項1~12のいずれか一項に記載の熱硬化性樹脂組成物の硬化物。 A cured product of the thermosetting resin composition according to any one of claims 1 to 12.
  14.  請求項1~12のいずれか一項に記載の熱硬化性樹脂組成物をモールディング成形する、構造体の製造方法。 A method for producing a structure, wherein the thermosetting resin composition according to any one of claims 1 to 12 is molded by molding.
  15.  請求項13に記載の硬化物を含む構造体。 A structure containing the cured product according to claim 13.
PCT/JP2021/002807 2020-05-28 2021-01-27 Thermosetting resin composition WO2021240879A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022527499A JPWO2021240879A1 (en) 2020-05-28 2021-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-093303 2020-05-28
JP2020093303 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021240879A1 true WO2021240879A1 (en) 2021-12-02

Family

ID=78744212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002807 WO2021240879A1 (en) 2020-05-28 2021-01-27 Thermosetting resin composition

Country Status (2)

Country Link
JP (1) JPWO2021240879A1 (en)
WO (1) WO2021240879A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693047A (en) * 1991-11-18 1994-04-05 Toagosei Chem Ind Co Ltd Curable resin composition
JP2015145912A (en) * 2014-01-31 2015-08-13 昭和電工株式会社 radiation-sensitive composition
WO2016010124A1 (en) * 2014-07-18 2016-01-21 昭和電工株式会社 Positive photosensitive resin composition
WO2018088052A1 (en) * 2016-11-09 2018-05-17 昭和電工株式会社 Positive photosensitive resin composition and titanium black dispersion liquid
JP6689434B1 (en) * 2019-02-06 2020-04-28 昭和電工株式会社 Photosensitive resin composition, organic EL element partition wall, and organic EL element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693047A (en) * 1991-11-18 1994-04-05 Toagosei Chem Ind Co Ltd Curable resin composition
JP2015145912A (en) * 2014-01-31 2015-08-13 昭和電工株式会社 radiation-sensitive composition
WO2016010124A1 (en) * 2014-07-18 2016-01-21 昭和電工株式会社 Positive photosensitive resin composition
WO2018088052A1 (en) * 2016-11-09 2018-05-17 昭和電工株式会社 Positive photosensitive resin composition and titanium black dispersion liquid
JP6689434B1 (en) * 2019-02-06 2020-04-28 昭和電工株式会社 Photosensitive resin composition, organic EL element partition wall, and organic EL element

Also Published As

Publication number Publication date
JPWO2021240879A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP6832938B2 (en) Method for Producing Curable Resin Mixture and Curable Resin Composition
JP7363821B2 (en) thermosetting resin composition
JP7153635B2 (en) Curable resin composition, cured product thereof, and structure containing cured product
JP7065832B2 (en) A curable resin composition, a cured product thereof, and a structure containing the cured product thereof.
WO2021240879A1 (en) Thermosetting resin composition
WO2021240878A1 (en) Thermosetting resin composition
EP2602289A2 (en) Epoxy resin composition for electronic parts encapsulation and electronic parts-equipped device using the same
KR20210040771A (en) Curable resin composition, cured product thereof, and structure including cured product thereof
JP6771369B2 (en) Thermosetting resin composition
JP7367766B2 (en) Thermosetting resin composition, cured product thereof, and structure containing the cured product
JP7351297B2 (en) Thermosetting resin composition for semiconductor encapsulation materials, semiconductor encapsulation materials, and semiconductor devices
JP2019048933A (en) Curable resin composition, cured article thereof, manufacturing method of structure using the curable resin composition, and structure containing the cured article
JP2023070490A (en) thermosetting composition
TWI681991B (en) Curable resin composition, cured product thereof, method for manufacturing structure using the curable resin composition, and structure including the cured product
WO2020070531A1 (en) Curable resin composition, cured object therefrom, method for producing structure using said curable resin composition, and structure including said cured object
JP2022045020A (en) Resin molding for optical semiconductor sealing
JP2021192421A (en) Resin molded product for opto-semiconductor encapsulation
JPH06322121A (en) Resin composition for sealing semiconductor and resin-sealed semiconductor device
TW202338932A (en) Semiconductor apparatus characterized in that the semiconductor is provided with the sealing material which can use the high-output and narrow-linewidth laser to perform a marking with excellent visibility
JP2006045393A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527499

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811972

Country of ref document: EP

Kind code of ref document: A1