JP2006036916A - Slurry composition, varnish composition, and insulating film and prepreg using the same - Google Patents

Slurry composition, varnish composition, and insulating film and prepreg using the same Download PDF

Info

Publication number
JP2006036916A
JP2006036916A JP2004218708A JP2004218708A JP2006036916A JP 2006036916 A JP2006036916 A JP 2006036916A JP 2004218708 A JP2004218708 A JP 2004218708A JP 2004218708 A JP2004218708 A JP 2004218708A JP 2006036916 A JP2006036916 A JP 2006036916A
Authority
JP
Japan
Prior art keywords
weight
varnish composition
composition
silica
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004218708A
Other languages
Japanese (ja)
Other versions
JP4903989B2 (en
Inventor
Motoki Hiraoka
基記 平岡
San Abe
賛 安部
Takeshi Yanagihara
武 楊原
Fumio Mitsuharu
史雄 三治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2004218708A priority Critical patent/JP4903989B2/en
Publication of JP2006036916A publication Critical patent/JP2006036916A/en
Application granted granted Critical
Publication of JP4903989B2 publication Critical patent/JP4903989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slurry composition and a varnish composition which allow molding of a cured product containing a small particle-sized silica filler at a high content; and an insulating film and a prepreg which are high in content of the silica filler and excellent in heat resistance and dimensional stability. <P>SOLUTION: A spherical silica particle having an average particle size of 0.1 μm or more and 5 μm or less and a sphericity of 0.8 or more, and a silica nano-particle having an average particle size of 1 nm or more and 50 nm or less are dispersed in an organic solvent to prepare a slurry composition. A resin is added to the slurry composition to prepare a varnish composition. The varnish composition is used to produce an insulating film and a prepreg. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂成形物を成形する際に用いられ、樹脂中にシリカフィラーを分散させるためのスラリー組成物、それを用いたワニス組成物、およびそのワニス組成物を硬化させて得られる絶縁フィルム、プリプレグに関する。   The present invention is a slurry composition for dispersing a silica filler in a resin, a varnish composition using the slurry composition, and an insulating film obtained by curing the varnish composition. , Related to prepreg.

電子機器の高性能化、高機能化、小型軽量化に伴い、搭載される半導体パッケージの高集積化、小型化、薄型化が進んでいる。また、ICチップを実装するプリント配線板も、薄板化、導体パターンの高密度化が進んでいる。集積度の向上等によりICチップの発熱量が増加し、ICチップからプリント配線板への熱伝導は大きくなる。加えて、導体パターンの高密度化によりプリント配線板の発熱量も大きくなる。このため、プリント配線板には、一層の耐熱性、寸法安定性が要求される。   As electronic devices have higher performance, higher functionality, and smaller and lighter weight, semiconductor packages to be mounted are becoming more highly integrated, smaller, and thinner. In addition, printed wiring boards on which IC chips are mounted are also becoming thinner and higher in the density of conductor patterns. The amount of heat generated by the IC chip increases due to the improvement in the degree of integration, and the heat conduction from the IC chip to the printed wiring board increases. In addition, the heat generation amount of the printed wiring board is increased by increasing the density of the conductor pattern. For this reason, the printed wiring board is required to have further heat resistance and dimensional stability.

プリント配線板として加工される銅張積層板は、プリプレグあるいは絶縁フィルムと銅箔とを積層成形して作製される。プリプレグは、エポキシ樹脂等の熱硬化性樹脂を主成分とするワニス組成物をガラスクロス等に含浸し、これを加熱乾燥し同樹脂を半硬化状態(Bステージ)にして製造される(例えば、特許文献1参照。)。また、絶縁フィルムは、同ワニス組成物を加熱硬化させて製造される。
特開2004−115634号公報
A copper clad laminate processed as a printed wiring board is produced by laminating a prepreg or insulating film and a copper foil. A prepreg is manufactured by impregnating a glass cloth or the like with a varnish composition containing a thermosetting resin such as an epoxy resin as a main component, and heating and drying the varnish composition to make the resin semi-cured (B stage) (for example, (See Patent Document 1). The insulating film is produced by heat-curing the varnish composition.
JP 2004-115634 A

プリント配線板の耐熱性等を向上させるため、マトリックス樹脂にシリカ等のフィラーを配合したワニス組成物を用いる試みがなされている。この場合、フィラーをできるだけ多量に配合することが望ましい。しかし、粒子径の小さなフィラーを使用した場合、フィラーを樹脂中に均一に分散させることは難しい。また、フィラーを多量に配合すると、硬化後にクラック等を生じ、所望の絶縁フィルムやプリプレグを製造することができない。このように、ワニス組成物を硬化させた硬化物において、粒子径の小さなフィラーを高密度に配合させることは難しい。現状では、絶縁フィルムやプリプレグのフィラー配合量は、最大で60重量%程度とされている。   In order to improve the heat resistance etc. of a printed wiring board, the trial using the varnish composition which mix | blended fillers, such as a silica, with the matrix resin is made | formed. In this case, it is desirable to add as much filler as possible. However, when a filler having a small particle size is used, it is difficult to uniformly disperse the filler in the resin. Moreover, when a filler is blended in a large amount, cracks and the like occur after curing, and a desired insulating film or prepreg cannot be produced. Thus, it is difficult to mix a filler having a small particle diameter at a high density in a cured product obtained by curing the varnish composition. At present, the filler content of the insulating film or prepreg is about 60% by weight at the maximum.

本発明は、このような実状を鑑みてなされたものであり、粒子径の小さなシリカフィラーを高い配合割合で配合した硬化物を成形することのできるスラリー組成物、ワニス組成物を提供することを課題とする。また、そのワニス組成物を用いることにより、シリカフィラーの配合割合が高く、耐熱性、寸法安定性等に優れた絶縁フィルム、プリプレグを提供することを課題とする。   The present invention has been made in view of such a situation, and provides a slurry composition and a varnish composition that can form a cured product in which a silica filler having a small particle diameter is blended at a high blending ratio. Let it be an issue. Another object of the present invention is to provide an insulating film and a prepreg having a high blending ratio of silica filler and excellent heat resistance, dimensional stability and the like by using the varnish composition.

(1)本発明のスラリー組成物は、平均粒子径0.1μm以上5μm以下、かつ、真球度0.8以上の球状シリカ粒子と、平均粒子径1nm以上50nm以下のシリカナノ粒子と、が有機溶媒に分散されてなることを特徴とする。   (1) In the slurry composition of the present invention, spherical silica particles having an average particle size of 0.1 μm to 5 μm and a sphericity of 0.8 or more and silica nanoparticles having an average particle size of 1 nm to 50 nm are organic. It is characterized by being dispersed in a solvent.

本発明のスラリー組成物には、平均粒子径の大小異なる少なくとも二種類のシリカフィラーが混合して配合される。その一つである球状シリカ粒子は、真球度0.8以上の略真球状の粒子形状をなす。本明細書では、「真球度」を「粒子の最大径に対する最小径の比」と定義する。例えば、走査型電子顕微鏡(SEM)による観察の結果、観測される最大径に対する最小径の比が0.8以上であればよい。   In the slurry composition of the present invention, at least two kinds of silica fillers having different average particle sizes are mixed and blended. One of them, spherical silica particles, has a substantially spherical particle shape with a sphericity of 0.8 or more. In this specification, “sphericity” is defined as “ratio of minimum diameter to maximum diameter of particle”. For example, the ratio of the minimum diameter to the maximum diameter observed as a result of observation with a scanning electron microscope (SEM) may be 0.8 or more.

このように、粒子形状が略真球状で、平均粒子径0.1μm以上5μm以下の球状シリカ粒子に、平均粒子径1nm以上50nm以下のシリカナノ粒子を混合することで、粒子径の小さなシリカフィラーを有機溶媒中に高濃度で分散させることができる。本発明のスラリー組成物を用いれば、シリカフィラーを有機溶媒に分散させた状態で樹脂と混合させることができるため、多量のシリカフィラーを樹脂中に均一に分散させることができる。   Thus, silica filler having a small particle diameter is obtained by mixing silica nanoparticles having an average particle diameter of 1 nm or more and 50 nm or less into spherical silica particles having a substantially spherical shape and an average particle diameter of 0.1 μm or more and 5 μm or less. It can be dispersed at high concentration in an organic solvent. If the slurry composition of this invention is used, since a silica filler can be mixed with resin in the state disperse | distributed to the organic solvent, a lot of silica fillers can be disperse | distributed uniformly in resin.

(2)本発明のワニス組成物は、上記本発明のスラリー組成物に樹脂を配合してなることを特徴とする。すなわち、上記本発明のスラリー組成物に、樹脂を配合するという簡便な作業により、本発明のワニス組成物を調製することができる。本発明のワニス組成物では、球状シリカ粒子の粒子径状、および球状シリカ粒子とシリカナノ粒子との粒子径の違いにより、樹脂中でシリカフィラーの最密充填状態が形成されると考えられる。したがって、本発明のワニス組成物によれば、樹脂中に均一かつ高配合割合でシリカフィラーが分散した硬化物を製造することができる。このように、本発明のワニス組成物は、絶縁フィルム、プリプレグの製造に好適である。   (2) The varnish composition of the present invention is characterized by blending a resin with the slurry composition of the present invention. That is, the varnish composition of the present invention can be prepared by a simple operation of adding a resin to the slurry composition of the present invention. In the varnish composition of the present invention, it is considered that a close-packed state of silica filler is formed in the resin due to the difference in the particle size of the spherical silica particles and the particle size of the spherical silica particles and the silica nanoparticles. Therefore, according to the varnish composition of the present invention, it is possible to produce a cured product in which the silica filler is dispersed uniformly and in a high blending ratio in the resin. Thus, the varnish composition of this invention is suitable for manufacture of an insulating film and a prepreg.

(3)本発明の絶縁フィルムは、上記本発明のワニス組成物を基材に塗布し、該ワニス組成物を加熱硬化させて得られたことを特徴とする。上記本発明のワニス組成物から製造することで、粒子径の小さなシリカフィラーが多量に配合された場合でも、クラック等を生じることなく、良好な絶縁フィルムを得ることができる。したがって、本発明の絶縁フィルムは、耐熱性、寸法安定性に優れる。   (3) The insulating film of the present invention is obtained by applying the varnish composition of the present invention to a substrate and heating and curing the varnish composition. By producing from the varnish composition of the present invention, even when a large amount of silica filler having a small particle diameter is blended, a good insulating film can be obtained without causing cracks and the like. Therefore, the insulating film of the present invention is excellent in heat resistance and dimensional stability.

(4)本発明のプリプレグは、上記本発明のワニス組成物を基材に含浸し、該ワニス組成物が含浸した基材を加熱乾燥して半硬化させて得られたことを特徴とする。上記本発明のワニス組成物から製造することで、粒子径の小さなシリカフィラーが多量に配合された場合でも、クラック等を生じることなく、良好なプリプレグを得ることができる。したがって、本発明のプリプレグは、耐熱性、寸法安定性に優れる。   (4) The prepreg of the present invention is obtained by impregnating a base material with the varnish composition of the present invention, and drying and semi-curing the base material impregnated with the varnish composition. By producing from the varnish composition of the present invention, even when a large amount of silica filler having a small particle diameter is blended, a good prepreg can be obtained without causing cracks and the like. Therefore, the prepreg of the present invention is excellent in heat resistance and dimensional stability.

本発明のスラリー組成物によれば、粒子径の小さなシリカフィラーを有機溶媒中に高濃度で分散させることができる。よって、本発明のスラリー組成物を用いた本発明のワニス組成物によれば、樹脂中に均一かつ高配合割合でシリカフィラーが分散した硬化物を製造することができる。   According to the slurry composition of the present invention, a silica filler having a small particle size can be dispersed at a high concentration in an organic solvent. Therefore, according to the varnish composition of the present invention using the slurry composition of the present invention, a cured product in which the silica filler is uniformly dispersed in the resin at a high blending ratio can be produced.

また、本発明の絶縁フィルムは、本発明のワニス組成物から製造されるため、粒子径の小さなシリカフィラーを多量に配合することができ、耐熱性、寸法安定性に優れる。同様に、本発明のプリプレグも、本発明のワニス組成物から製造されるため、耐熱性、寸法安定性に優れる。   Moreover, since the insulating film of this invention is manufactured from the varnish composition of this invention, it can mix | blend a large amount of silica fillers with a small particle diameter, and is excellent in heat resistance and dimensional stability. Similarly, since the prepreg of the present invention is produced from the varnish composition of the present invention, it is excellent in heat resistance and dimensional stability.

以下、本発明のスラリー組成物、ワニス組成物、絶縁フィルム、プリプレグの実施形態について詳しく説明する。なお、本発明のスラリー組成物、ワニス組成物、絶縁フィルム、プリプレグは、下記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   Hereinafter, embodiments of the slurry composition, varnish composition, insulating film, and prepreg of the present invention will be described in detail. The slurry composition, varnish composition, insulating film, and prepreg of the present invention are not limited to the following embodiments, and can be modified and improved by those skilled in the art without departing from the spirit of the present invention. It can be implemented in various forms.

〈スラリー組成物〉
(1)本発明のスラリー組成物を構成する球状シリカ粒子の平均粒子径は、0.1μm以上5μm以下である。配合するフィラーの粒子径をできるだけ小さくするという観点から、球状シリカ粒子の平均粒子径を3μm以下とするとよい。また、球状シリカ粒子の真球度は0.8以上とする。シリカフィラーの充填を密にする、および本発明のスラリー組成物の粘性の観点から、真球度を0.9以上とするとよい。球状シリカ粒子を後述する有機溶媒に配合する場合、上記範囲内の平均粒子径を持ち、真球度0.8以上の球状シリカ粒子の粉体を一種類だけ配合してもよく、また、二種類以上を混合して配合してもよい。なお、必要に応じて、5μm以上、3μm以上等の粗粒を除去することが望ましい。
<Slurry composition>
(1) The average particle diameter of the spherical silica particles constituting the slurry composition of the present invention is 0.1 μm or more and 5 μm or less. From the viewpoint of making the particle diameter of the filler to be blended as small as possible, the average particle diameter of the spherical silica particles is preferably 3 μm or less. The sphericity of the spherical silica particles is 0.8 or more. From the viewpoint of dense packing of the silica filler and the viscosity of the slurry composition of the present invention, the sphericity is preferably 0.9 or more. When the spherical silica particles are blended in the organic solvent described later, only one kind of spherical silica particle powder having an average particle diameter in the above range and a sphericity of 0.8 or more may be blended. You may mix and mix a kind or more. If necessary, it is desirable to remove coarse particles of 5 μm or more, 3 μm or more.

球状シリカ粒子の製造方法は、特に限定されるものではないが、例えば、VMC(Vap-erized Metal Combustion)法により、シリコン粉末を燃焼して製造することが望ましい。VMC法とは、酸素を含む雰囲気中でバーナーにより化学炎を形成し、この化学炎中に目的とする酸化物粒子の一部を構成する金属粉末を粉塵雲が形成される程度の量投入し、爆燃を起こさせて酸化物粒子を得る方法である。   The method for producing the spherical silica particles is not particularly limited. For example, it is desirable to produce silicon particles by burning them by a VMC (Vap-erized Metal Combustion) method. In the VMC method, a chemical flame is formed by a burner in an oxygen-containing atmosphere, and metal powder that constitutes part of the target oxide particles is introduced into the chemical flame in such an amount that a dust cloud is formed. In this method, deflagration is caused to obtain oxide particles.

VMC法の作用について説明すれば以下のようになる。まず、容器中に反応ガスである酸素を含有するガスを充満させ、この反応ガス中化学炎を形成する。次いで、この化学炎に金属粉末を投入し高濃度(500g/m3以上)の粉塵雲を形成する。すると、化学炎により金属粉末表面に熱エネルギが与えられ、金属粉末の表面温度が上昇し、金属粉末表面から金属の蒸気が周囲に広がる。この金属蒸気が酸素ガスと反応して発火し火炎を生じる。この火炎により生じた熱は、さらに金属粉末の気化を促進し、生じた金属蒸気と反応ガスが混合され、連鎖的に発火伝播する。このとき金属粉末自体も破壊して飛散し、火炎伝播を促す。燃焼後に生成ガスが自然冷却されることにより、酸化物粒子の雲ができる。得られた酸化物粒子は、電気集塵器等により帯電させて捕獲される。 The operation of the VMC method will be described as follows. First, a gas containing oxygen, which is a reaction gas, is filled in a container to form a chemical flame in the reaction gas. Next, metal powder is introduced into the chemical flame to form a dust cloud with a high concentration (500 g / m 3 or more). Then, thermal energy is given to the metal powder surface by the chemical flame, the surface temperature of the metal powder rises, and metal vapor spreads from the metal powder surface to the surroundings. This metal vapor reacts with oxygen gas to ignite and produce a flame. The heat generated by the flame further promotes the vaporization of the metal powder, and the generated metal vapor and the reaction gas are mixed and propagated in a chain. At this time, the metal powder itself is destroyed and scattered, which promotes flame propagation. The product gas is naturally cooled after combustion, thereby forming a cloud of oxide particles. The obtained oxide particles are charged and captured by an electric dust collector or the like.

VMC法は粉塵爆発の原理を利用するものである。VMC法によれば、瞬時に大量の酸化物粒子が得られる。得られる酸化物粒子は、略真球状の形状をなす。例えば、シリカ粒子を得る場合にはシリコン粉末を投入すればよい。投入するシリコン粉末の粒子径、投入量、火炎温度等を調整することにより、得られる酸化物粒子の粒子径を調整することが可能である。   The VMC method uses the principle of dust explosion. According to the VMC method, a large amount of oxide particles can be obtained instantaneously. The resulting oxide particles have a substantially spherical shape. For example, when obtaining silica particles, silicon powder may be added. It is possible to adjust the particle diameter of the resulting oxide particles by adjusting the particle diameter, input amount, flame temperature, and the like of the silicon powder to be input.

(2)本発明のスラリー組成物を構成するシリカナノ粒子は、平均粒子径1nm以上50nm以下である。後述するワニス組成物から硬化物を製造した場合に最密充填状態を形成し易くするという観点から、シリカナノ粒子の平均粒子径を5nm以上30nm以下とするとよい。シリカナノ粒子の製造方法は、特に限定されるものではない。例えば、乾式法として、上記VMC法やPVS(Physical Vapor Synthesis)法等の燃焼法が挙げられる。また、湿式法として、沈降法やゲル法が挙げられる。   (2) The silica nanoparticles constituting the slurry composition of the present invention have an average particle size of 1 nm to 50 nm. From the viewpoint of easily forming a close-packed state when a cured product is produced from a varnish composition described later, the average particle diameter of the silica nanoparticles is preferably 5 nm or more and 30 nm or less. The method for producing silica nanoparticles is not particularly limited. For example, examples of the dry method include combustion methods such as the VMC method and the PVS (Physical Vapor Synthesis) method. Moreover, a precipitation method and a gel method are mentioned as a wet method.

(3)球状シリカ粒子およびシリカナノ粒子は、樹脂との密着性を向上させるため、表面処理が施されていることが望ましい。表面処理は、例えば、シラン系、チタネート系、アルミネート系、ジルコネート系の各種カップリング剤、カチオン、アニオン、両性、中性の各種界面活性剤、フェノール樹脂等の極性基を有する樹脂等を用いて行うことができる。例えば、シランカップリング剤による表面処理は、球状シリカ粒子、シリカナノ粒子からなる被処理粉体を処理容器に収容し、この被処理粉体を攪拌しながら気化させたシランカップリング剤と反応させればよい。   (3) The spherical silica particles and the silica nanoparticles are preferably subjected to a surface treatment in order to improve the adhesion with the resin. Surface treatment uses, for example, various silane, titanate, aluminate and zirconate coupling agents, cations, anions, amphoteric and neutral surfactants, resins having polar groups such as phenol resins, etc. Can be done. For example, in the surface treatment with a silane coupling agent, a powder to be treated consisting of spherical silica particles and silica nanoparticles is placed in a treatment container, and this powder to be treated is allowed to react with the silane coupling agent vaporized while stirring. That's fine.

表面処理に用いる処理剤の重量は、被処理粉体の重量を100重量%とした場合の5重量%以下とすることが望ましい。5重量%より多くすると、硬化物の特性に影響を及ぼすおそれがあるからである。3重量%以下とするとより好適である。また、表面処理の効果を充分に発揮させるためには、処理剤の重量を、被処理粉体の重量の1重量%以上とすることが望ましい。   The weight of the treatment agent used for the surface treatment is desirably 5% by weight or less when the weight of the powder to be treated is 100% by weight. This is because if it exceeds 5% by weight, the properties of the cured product may be affected. It is more preferable to make it 3% by weight or less. Moreover, in order to fully exhibit the effect of the surface treatment, it is desirable that the weight of the treatment agent is 1% by weight or more of the weight of the powder to be treated.

(4)本発明のスラリー組成物において、シリカフィラーを分散させる有機溶媒は、その種類が特に限定されるものではない。ワニス組成物に用いる樹脂に応じて適宜選択すればよい。例えば、メチルエチルケトン(MEK)、N−メチル−2ピロリドン(NMP)、アセトン、メチルセロソルブ、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、シクロヘキサノン、酢酸エチル、テトラヒドロフラン(THF)、イソプロピルアルコール(IPA)、エーテル、塩化メチレン、キシレン等を用いればよい。   (4) In the slurry composition of the present invention, the type of the organic solvent in which the silica filler is dispersed is not particularly limited. What is necessary is just to select suitably according to resin used for a varnish composition. For example, methyl ethyl ketone (MEK), N-methyl-2pyrrolidone (NMP), acetone, methyl cellosolve, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), cyclohexanone, ethyl acetate, tetrahydrofuran (THF), isopropyl alcohol (IPA), ether, methylene chloride, xylene, or the like may be used.

(5)球状シリカ粒子およびシリカナノ粒子を有機溶媒に分散させて、本発明のスラリー組成物を調製する。この際、有機溶媒中にシリカフィラーを均一に分散させるため、まずシリカナノ粒子のみを、有機溶媒に一次粒子の状態に分散させておくことが望ましい。その後、そのスラリーに球状シリカ粒子を混合するとよい。例えば、シリカナノ粒子の粉体を使用する場合には、まず、シリカナノ粒子の粉体を有機溶媒に分散させてスラリーを調製する。次に、該スラリーに球状シリカ粒子を混合すればよい。また、湿式法で製造されたシリカナノ粒子の分散液を使用する場合には、必要に応じて該分散液の溶媒置換を行ったり、該分散液のスラリー濃度を調整した後、球状シリカ粒子を混合すればよい。   (5) The spherical silica particles and silica nanoparticles are dispersed in an organic solvent to prepare the slurry composition of the present invention. At this time, in order to uniformly disperse the silica filler in the organic solvent, it is desirable to first disperse only the silica nanoparticles in the state of primary particles in the organic solvent. Thereafter, spherical silica particles may be mixed into the slurry. For example, when silica nanoparticle powder is used, first, a slurry is prepared by dispersing silica nanoparticle powder in an organic solvent. Next, spherical silica particles may be mixed into the slurry. In addition, when using a dispersion of silica nanoparticles produced by a wet method, solvent dispersion of the dispersion is performed as necessary, or the slurry concentration of the dispersion is adjusted, and then the spherical silica particles are mixed. do it.

本発明のスラリー組成物中のシリカフィラーの濃度は、特に限定されるものではないが、スラリー組成物の全体を100重量%とした場合に、30重量%以上95重量%以下とすることが望ましい。樹脂との混合を考慮すると、90重量%以下とすることがより望ましい。また、本発明のスラリー組成物では、略真球状の球状シリカ粒子をシリカフィラーの一つとして採用するため、他のシリカフィラーを採用する場合に比べて、スラリー組成物の粘性は低い。したがって、シリカフィラーの濃度を高めることができ、この点から50重量%以上とすることがより望ましい。また、70重量%以上の高濃度であっても、容易に樹脂との混合を行うことができる。   The concentration of the silica filler in the slurry composition of the present invention is not particularly limited, but when the entire slurry composition is 100% by weight, it is preferably 30% by weight or more and 95% by weight or less. . Considering mixing with the resin, it is more desirable that the content be 90% by weight or less. Moreover, in the slurry composition of this invention, since the substantially spherical spherical silica particle is employ | adopted as one of silica fillers, the viscosity of a slurry composition is low compared with the case where another silica filler is employ | adopted. Therefore, the concentration of the silica filler can be increased, and from this point, it is more desirable to be 50% by weight or more. Further, even with a high concentration of 70% by weight or more, it can be easily mixed with the resin.

また、シリカナノ粒子の配合量は、球状シリカ粒子の配合量の1重量%以上40重量%以下とすることが望ましい。1重量%未満および40重量%を超える場合には、樹脂中でシリカフィラーの最密充填状態を形成し難いからである。5重量%以上25重量%以下とするとより好適である。   Further, the blending amount of the silica nanoparticles is desirably 1% by weight or more and 40% by weight or less of the blending amount of the spherical silica particles. This is because when the content is less than 1% by weight and exceeds 40% by weight, it is difficult to form a close-packed state of silica filler in the resin. It is more preferable that the content be 5 wt% or more and 25 wt% or less.

〈ワニス組成物〉
(1)本発明のワニス組成物は、上述した本発明のスラリー組成物に樹脂を混合して調製される。スラリー組成物と樹脂との混合は、三本ロール、ボールミル、ニーダー等の公知の手段を用いて行えばよい。樹脂は、熱硬化性あるいは熱可塑性の樹脂から適宜選択すればよい。熱硬化性樹脂としては、エポキシ樹脂、ケイ素樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂等が挙げられる。また、熱可塑性樹脂としては、フッ素樹脂、ポリイミド、ポリアミド樹脂(ポリアミドイミド、ポリエーテルイミド等)、BT(ビスマレイミド・トリアジン)樹脂、ポリエステル(ポリブチレンテレフタレート、ポリエチレンテレフタレート、全芳香族ポリエステル等)、ポリスルホン系樹脂、ポリカーボネート等が挙げられる。
<Varnish composition>
(1) The varnish composition of the present invention is prepared by mixing a resin with the above-described slurry composition of the present invention. The mixing of the slurry composition and the resin may be performed using a known means such as a three roll, ball mill, kneader or the like. The resin may be appropriately selected from thermosetting or thermoplastic resins. Examples of the thermosetting resin include epoxy resin, silicon resin, phenol resin, melamine resin, urea resin, and unsaturated polyester resin. In addition, as the thermoplastic resin, fluorine resin, polyimide, polyamide resin (polyamideimide, polyetherimide, etc.), BT (bismaleimide / triazine) resin, polyester (polybutylene terephthalate, polyethylene terephthalate, wholly aromatic polyester, etc.), Examples include polysulfone resins and polycarbonate.

本発明のワニス組成物を用いて、プリント配線板としての銅張積層板や絶縁フィルムを製造する場合には、樹脂としてエポキシ樹脂を採用するとよい。エポキシ樹脂としては、1分子中にエポキシ基を2個以上有するオリゴマー、ポリマーが好適である。例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂等が挙げられる。これらのうち一つを単独で、あるいは複数を混合して用いればよい。   When manufacturing the copper clad laminated board and insulating film as a printed wiring board using the varnish composition of this invention, it is good to employ | adopt an epoxy resin as resin. As the epoxy resin, oligomers and polymers having two or more epoxy groups in one molecule are suitable. For example, biphenyl type epoxy resin, stilbene type epoxy resin, bisphenol type epoxy resin, triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, naphthol type epoxy resin, triazine core containing An epoxy resin etc. are mentioned. One of these may be used alone, or a plurality may be used in combination.

(2)本発明のワニス組成物におけるシリカフィラーの配合量、つまり、球状シリカ粒子およびシリカナノ粒子の合計配合量は、製造される硬化物の耐熱性、耐吸湿性を向上させるという観点から多い方が望ましい。例えば、球状シリカ粒子およびシリカナノ粒子の合計配合量を、ワニス組成物から有機溶媒を除去し該ワニス組成物を硬化させた硬化物の全体重量を100重量%とした場合の85重量%以上とするとよい。両者の合計配合量を87重量%以上、さらには90重量%以上とするとより好適である。   (2) The amount of silica filler in the varnish composition of the present invention, that is, the total amount of spherical silica particles and silica nanoparticles, is larger from the viewpoint of improving the heat resistance and moisture absorption resistance of the cured product to be produced. Is desirable. For example, when the total amount of spherical silica particles and silica nanoparticles is 85% by weight or more when the total weight of the cured product obtained by removing the organic solvent from the varnish composition and curing the varnish composition is 100% by weight Good. It is more preferable that the total blending amount of both is 87% by weight or more, further 90% by weight or more.

本発明のワニス組成物は、球状シリカ粒子、シリカナノ粒子、有機溶媒、樹脂に加え、さらに硬化剤、硬化触媒を含む態様が望ましい。硬化剤には、既に公知の硬化剤を用いればよく、例えば、脂肪族ポリアミン、ポリアミドポリアミン、脂環族ポリアミン、芳香族ポリアミン等のアミン系硬化剤、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の無水物系硬化剤、ο−クレゾール、p−クレゾール、t−ブチルフェノール、クミルフェノール等のフェノール系硬化剤等が挙げられる。硬化触媒には、既に公知の硬化触媒を用いればよく、例えば、三級アミン、四級アンモニウム塩、イミゾダール化合物、ホウ素化合物、有機金属錯塩等が挙げられる。さらにまた、必要に応じて、カーボンブラック、ベンガラ等の着色剤、天然ワックス、合成ワックス等の離型剤、シリコーンオイル、イオン補足剤、難燃剤、反応性希釈剤、ゴム等の低応力添加剤等の種々の添加剤を配合してもよい。   The varnish composition of the present invention preferably has an embodiment containing a curing agent and a curing catalyst in addition to spherical silica particles, silica nanoparticles, an organic solvent and a resin. As the curing agent, a known curing agent may be used. For example, amine curing agents such as aliphatic polyamine, polyamide polyamine, alicyclic polyamine, aromatic polyamine, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl Examples thereof include anhydride-based curing agents such as hexahydrophthalic anhydride, and phenol-based curing agents such as o-cresol, p-cresol, t-butylphenol, and cumylphenol. As the curing catalyst, a known curing catalyst may be used, and examples thereof include tertiary amines, quaternary ammonium salts, imizodal compounds, boron compounds, and organometallic complex salts. Furthermore, if necessary, colorants such as carbon black and bengara, mold release agents such as natural wax and synthetic wax, silicone oil, ion scavenger, flame retardant, reactive diluent, low stress additives such as rubber You may mix | blend various additives, such as.

〈絶縁フィルム〉
本発明の絶縁フィルムは、上記本発明のワニス組成物を基材に塗布し、該ワニス組成物を加熱硬化させて得られる。例えば、本発明のワニス組成物を、スプレー、ロールコータ、スピンコータ、キャスティング、ディッピング等の方法により基材に塗布し、所定の温度に加熱することで、有機溶媒を蒸散させ、樹脂を硬化させて絶縁フィルムを得ることができる。
<Insulating film>
The insulating film of the present invention is obtained by applying the varnish composition of the present invention to a substrate and heating and curing the varnish composition. For example, the varnish composition of the present invention is applied to a substrate by a method such as spray, roll coater, spin coater, casting, dipping, and heated to a predetermined temperature to evaporate the organic solvent and cure the resin. An insulating film can be obtained.

本発明の絶縁フィルムに配合されるシリカフィラー量は、耐熱性、耐吸湿性を向上させるという観点から多い方が望ましい。したがって、絶縁フィルム中の球状シリカ粒子およびシリカナノ粒子の配合割合は、当該絶縁フィルムの全体重量を100重量%とした場合の85重量%以上であることが望ましい。87重量%以上とするとより好適である。   The amount of silica filler blended in the insulating film of the present invention is preferably large from the viewpoint of improving heat resistance and moisture absorption resistance. Therefore, the blending ratio of the spherical silica particles and silica nanoparticles in the insulating film is desirably 85% by weight or more when the total weight of the insulating film is 100% by weight. It is more preferable to be 87% by weight or more.

〈プリプレグ〉
本発明のプリプレグは、上記本発明のワニス組成物を基材に含浸し、該ワニス組成物が含浸した基材を加熱乾燥して半硬化させて得られる。基材としては、ガラス布、ガラス不織布、紙、合成繊維布等から選ばれる一種を単独で、あるいは二種以上を複合して用いればよい。例えば、本発明のワニス組成物を所定の処理槽に入れ、基材を同組成物中に浸漬することで、同組成物を基材へ均一に含浸させることができる。そして、乾燥機中にて、所定の温度に加熱することで、有機溶媒を蒸発させ、樹脂をBステージまで硬化させればよい。また、本発明のプリプレグを所要枚数積層し、この片側あるいは両側に銅箔等の金属箔を重ね合わせて加熱加圧することで、金属張積層板を製造することができる。
<Prepreg>
The prepreg of the present invention is obtained by impregnating a base material with the varnish composition of the present invention, and drying and semi-curing the base material impregnated with the varnish composition. As the base material, one kind selected from glass cloth, glass nonwoven cloth, paper, synthetic fiber cloth and the like may be used alone or in combination of two or more kinds. For example, by putting the varnish composition of the present invention in a predetermined treatment tank and immersing the base material in the composition, the base material can be uniformly impregnated into the base material. Then, the organic solvent is evaporated by heating to a predetermined temperature in the dryer, and the resin may be cured to the B stage. Moreover, a metal-clad laminate can be produced by laminating a required number of prepregs of the present invention, and superposing and heating and pressing a metal foil such as a copper foil on one or both sides.

本発明のプリプレグに配合されるシリカフィラー量は、耐熱性、耐吸湿性を向上させるという観点から多い方が望ましい。したがって、プリプレグ中の球状シリカ粒子およびシリカナノ粒子の配合割合は、当該プリプレグの全体重量を100重量%とした場合の85重量%以上であることが望ましい。87重量%以上とするとより好適である。   The amount of silica filler blended in the prepreg of the present invention is preferably large from the viewpoint of improving heat resistance and moisture absorption resistance. Therefore, the blending ratio of the spherical silica particles and silica nanoparticles in the prepreg is desirably 85% by weight or more when the total weight of the prepreg is 100% by weight. It is more preferable to be 87% by weight or more.

上記実施形態に基づいて、本発明のスラリー組成物を調製し、それを用いてワニス組成物を調製した。そして、調製したワニス組成物から絶縁フィルムおよびプリプレグを製造した。また、比較のため、シリカナノ粒子を含まないスラリー組成物を調製し、それを用いてワニス組成物を調製した。そして、調製したワニス組成物から絶縁フィルムおよびプリプレグの製造を試みた。以下、実施例と比較例と対比しながら説明する。   Based on the said embodiment, the slurry composition of this invention was prepared and the varnish composition was prepared using it. And the insulating film and the prepreg were manufactured from the prepared varnish composition. Moreover, the slurry composition which does not contain a silica nanoparticle was prepared for the comparison, and the varnish composition was prepared using it. And manufacture of the insulating film and the prepreg was tried from the prepared varnish composition. Hereinafter, description will be made while comparing the Examples and the Comparative Examples.

(1)実施例1
まず、シリカ粉体(日本アエロジル株式会社製「AEROSIL−50」、比表面積50m2/g、平均粒子径30nm)に表面処理を施して、シリカナノ粒子の粉体とした。表面処理は、シランカップリング剤のエポキシシラン(信越化学工業株式会社製「KBM−403」、以下同様。)を用いて行った。使用したエポキシシラン量は、シリカ粉体の5重量%とした。次いで、得られたシリカナノ粒子の粉体をMEKに分散させて、シリカナノ粒子の濃度が10重量%のスラリーを調製した。
(1) Example 1
First, silica powder (“AEROSIL-50” manufactured by Nippon Aerosil Co., Ltd., specific surface area 50 m 2 / g, average particle diameter 30 nm) was subjected to surface treatment to obtain silica nanoparticle powder. The surface treatment was performed using an epoxy silane (“KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd., hereinafter the same) as a silane coupling agent. The amount of epoxysilane used was 5% by weight of the silica powder. Subsequently, the obtained silica nanoparticle powder was dispersed in MEK to prepare a slurry having a silica nanoparticle concentration of 10 wt%.

次に、VMC法で製造されたシリカ粉体(株式会社アドマテックス製「アドマファインSO−25R」、平均粒子径0.5μm、真球度0.95)に表面処理を施して、球状シリカ粒子の粉体とした。表面処理は、エポキシシランを用いて行った。使用したエポキシシラン量は、シリカ粉体の0.6重量%とした。そして、調製した上記スラリー100重量部に、球状シリカ粒子の粉体72重量部を分散させて、シリカフィラーの濃度が47.7重量%のスラリー組成物を調製した。なお、シリカフィラー中、シリカナノ粒子の配合量は、球状シリカ粒子の配合量の13.9重量%である。調製したスラリー組成物の粗粒を5μm篩を用いて除去した。   Next, the silica powder produced by the VMC method (“Admafine SO-25R” manufactured by Admatechs Co., Ltd., average particle diameter 0.5 μm, sphericity 0.95) is subjected to surface treatment to obtain spherical silica particles. Of powder. The surface treatment was performed using epoxysilane. The amount of epoxysilane used was 0.6% by weight of the silica powder. Then, 72 parts by weight of spherical silica particles were dispersed in 100 parts by weight of the prepared slurry to prepare a slurry composition having a silica filler concentration of 47.7% by weight. In addition, the compounding quantity of a silica nanoparticle in a silica filler is 13.9 weight% of the compounding quantity of a spherical silica particle. The coarse particles of the prepared slurry composition were removed using a 5 μm sieve.

次に、スラリー組成物100重量部に、液状エポキシ樹脂(東都化成株式会社製「ZX−1059」)6.4重量部と、硬化触媒の2−PHZ(2−フェニル−4,5−ジヒドロキシメチルイミダゾール)0.4重量部とを混合し、ワニス組成物を調製した。このワニス組成物を、基材に塗布し、乾燥してMEKを除去すると、粘着性のある均質なフィルムが得られた。そして、得られたフィルムを120℃で3時間、さらに150℃で1時間保持すると、硬化して緻密なフィルムとなった。得られたフィルムの灰分測定を行ったところ、シリカフィラー固形分は87.5重量%であった。また、上記ワニス組成物をガラスクロスに含浸させた後、120℃に加熱乾燥し、MEKを除去するとともに液状エポキシ樹脂を半硬化させ、プリプレグを製造した。さらに、製造したプリプレグを三層に積層し、150℃、2時間加熱加圧することにより、三層が一体化した積層板を得た。   Next, in 100 parts by weight of the slurry composition, 6.4 parts by weight of a liquid epoxy resin (“ZX-1059” manufactured by Toto Kasei Co., Ltd.) and 2-PHZ (2-phenyl-4,5-dihydroxymethyl) as a curing catalyst A varnish composition was prepared by mixing 0.4 part by weight of imidazole. When this varnish composition was applied to a substrate and dried to remove MEK, a sticky homogeneous film was obtained. And when the obtained film was hold | maintained at 120 degreeC for 3 hours and also at 150 degreeC for 1 hour, it hardened | cured and became a precise | minute film. When the ash content of the obtained film was measured, the silica filler solid content was 87.5% by weight. Moreover, after impregnating the said varnish composition in the glass cloth, it heat-dried at 120 degreeC, remove | excluded MEK, and semi-hardened the liquid epoxy resin, and manufactured the prepreg. Further, the manufactured prepreg was laminated in three layers, and heated and pressed at 150 ° C. for 2 hours to obtain a laminated plate in which the three layers were integrated.

(2)比較例1
実施例1で使用したシリカ粉体に、該シリカ粉体の1重量%のエポキシシランを用いて表面処理を施して、球状シリカ粒子の粉体とした。この球状シリカ粒子の粉体をMEKに分散させて、シリカフィラーの濃度が47.7重量%のスラリー組成物を調製した。調製したスラリー組成物の粗粒を5μm篩を用いて除去した。
(2) Comparative Example 1
The silica powder used in Example 1 was surface-treated with 1% by weight of epoxy silane of the silica powder to obtain spherical silica particle powder. The spherical silica particle powder was dispersed in MEK to prepare a slurry composition having a silica filler concentration of 47.7 wt%. The coarse particles of the prepared slurry composition were removed using a 5 μm sieve.

次に、スラリー組成物100重量部に、実施例1と同様の液状エポキシ樹脂3.2重量部と、硬化触媒の2−PHZ0.2重量部とを混合し、ワニス組成物を調製した。このワニス組成物を、基材に塗布し、乾燥してMEKを除去したところ、フィルムに無数のクラックが生じ、フィルムがぼろぼろと基材から剥離した。なお、このフィルムの灰分測定を行ったところ、シリカフィラー固形分は87.1重量%であった。また、ワニス組成物をガラスクロスに含浸させた後、120℃に加熱乾燥し、MEKを除去するとともに液状エポキシ樹脂を半硬化させたところ、プリプレグに無数のクラックが生じ、シリカフィラーを含む樹脂成分がガラスクロスからぼろぼろと落ちた。このように、本比較例で調製したワニス組成物では、良好な硬化物を得ることはできなかった。   Next, 3.2 parts by weight of the same liquid epoxy resin as in Example 1 and 0.2 parts by weight of 2-PHZ as a curing catalyst were mixed with 100 parts by weight of the slurry composition to prepare a varnish composition. When this varnish composition was applied to a substrate and dried to remove MEK, innumerable cracks were generated in the film, and the film was peeled off from the substrate. In addition, when the ash content measurement of this film was performed, the silica filler solid content was 87.1 weight%. Moreover, after impregnating a glass cloth with a varnish composition, heating and drying at 120 ° C., removing MEK and semi-curing the liquid epoxy resin, a countless number of cracks occurred in the prepreg, and a resin component containing a silica filler Fell off the glass cloth. Thus, with the varnish composition prepared in this comparative example, a good cured product could not be obtained.

(3)実施例2
VMC法で製造されたシリカ粉体(株式会社アドマテックス製「アドマファインSO−C1」、平均粒子径0.2μm、真球度0.95)に表面処理を施して、球状シリカ粒子の粉体とした。表面処理は、エポキシシランを用いて行った。使用したエポキシシラン量は、シリカ粉体の5重量%とした。そして、実施例1で調製したシリカナノ粒子の濃度が10重量%のスラリー100重量部に、球状シリカ粒子の粉体72重量部を分散させて、シリカフィラーの濃度が47.7重量%のスラリー組成物を調製した。なお、シリカフィラー中、シリカナノ粒子の配合量は、球状シリカ粒子の配合量の13.9重量%である。調製したスラリー組成物の粗粒を5μm篩を用いて除去した。
(3) Example 2
Silica powder produced by the VMC method (“Admafine SO-C1” manufactured by Admatechs Co., Ltd., average particle size 0.2 μm, sphericity 0.95) is subjected to surface treatment to obtain spherical silica particle powder. It was. The surface treatment was performed using epoxysilane. The amount of epoxysilane used was 5% by weight of the silica powder. Then, 72 parts by weight of spherical silica particles are dispersed in 100 parts by weight of the slurry having a silica nanoparticle concentration of 10% by weight prepared in Example 1, and a slurry composition having a silica filler concentration of 47.7% by weight is dispersed. A product was prepared. In addition, the compounding quantity of a silica nanoparticle in a silica filler is 13.9 weight% of the compounding quantity of a spherical silica particle. The coarse particles of the prepared slurry composition were removed using a 5 μm sieve.

次に、スラリー組成物100重量部に、実施例1で使用した液状エポキシ樹脂7.5重量部と、硬化触媒の2−PHZ0.4重量部とを混合し、ワニス組成物を調製した。このワニス組成物を、基材に塗布し、乾燥してMEKを除去すると、粘着性のある均質なフィルムが得られた。そして、得られたフィルムを120℃で3時間、さらに150℃で1時間保持すると、硬化して緻密なフィルムとなった。得られたフィルムの灰分測定を行ったところ、シリカフィラー固形分は85.8重量%であった。また、上記ワニス組成物をガラスクロスに含浸させた後、120℃に加熱乾燥し、MEKを除去するとともに液状エポキシ樹脂を半硬化させ、プリプレグを製造した。さらに、製造したプリプレグを三層に積層し、150℃、2時間加熱加圧することにより、三層が一体化した積層板を得た。   Next, 7.5 parts by weight of the liquid epoxy resin used in Example 1 and 0.4 parts by weight of 2-PHZ as a curing catalyst were mixed with 100 parts by weight of the slurry composition to prepare a varnish composition. When this varnish composition was applied to a substrate and dried to remove MEK, a sticky homogeneous film was obtained. And when the obtained film was hold | maintained at 120 degreeC for 3 hours and also at 150 degreeC for 1 hour, it hardened | cured and became a precise | minute film. When the ash content of the obtained film was measured, the silica filler solid content was 85.8% by weight. Moreover, after impregnating the said varnish composition in the glass cloth, it heat-dried at 120 degreeC, remove | excluded MEK, and semi-hardened the liquid epoxy resin, and manufactured the prepreg. Further, the manufactured prepreg was laminated in three layers, and heated and pressed at 150 ° C. for 2 hours to obtain a laminated plate in which the three layers were integrated.

(4)比較例2
実施例2で使用したシリカ粉体に、該シリカ粉体の2重量%のエポキシシランを用いて表面処理を施して、球状シリカ粒子の粉体とした。この球状シリカ粒子の粉体をMEKに分散させて、シリカフィラーの濃度が40重量%のスラリー組成物を調製した。調製したスラリー組成物の粗粒を5μm篩を用いて除去した。
(4) Comparative Example 2
The silica powder used in Example 2 was subjected to surface treatment using 2% by weight of epoxy silane of the silica powder to obtain spherical silica particle powder. The spherical silica particle powder was dispersed in MEK to prepare a slurry composition having a silica filler concentration of 40 wt%. The coarse particles of the prepared slurry composition were removed using a 5 μm sieve.

次に、スラリー組成物100重量部に、実施例2と同様の液状エポキシ樹脂4.0重量部と、硬化触媒の2−PHZ0.4重量部とを混合し、ワニス組成物を調製した。このワニス組成物を、基材に塗布し、乾燥してMEKを除去したところ、フィルムに無数のクラックが生じ、フィルムがぼろぼろと基材から剥離した。なお、このフィルムの灰分測定を行ったところ、シリカフィラー固形分は85.5重量%であった。また、ワニス組成物をガラスクロスに含浸させた後、120℃に加熱乾燥し、MEKを除去するとともに液状エポキシ樹脂を半硬化させたところ、プリプレグに無数のクラックが生じ、シリカフィラーを含む樹脂成分がガラスクロスからぼろぼろと落ちた。このように、本比較例で調製したワニス組成物では、良好な硬化物を得ることはできなかった。   Next, 4.0 parts by weight of the same liquid epoxy resin as in Example 2 and 0.4 parts by weight of 2-PHZ as a curing catalyst were mixed with 100 parts by weight of the slurry composition to prepare a varnish composition. When this varnish composition was applied to a substrate and dried to remove MEK, innumerable cracks were generated in the film, and the film was peeled off from the substrate. In addition, when the ash content measurement of this film was performed, the silica filler solid content was 85.5 weight%. Moreover, after impregnating a glass cloth with a varnish composition, heating and drying at 120 ° C., removing MEK and semi-curing the liquid epoxy resin, a countless number of cracks occurred in the prepreg, and a resin component containing a silica filler Fell off the glass cloth. Thus, with the varnish composition prepared in this comparative example, a good cured product could not be obtained.

(5)実施例3
湿式法で製造され溶媒置換されたシリカスラリー(日産化学株式会社製「MEK−ST」、シリカ固形分30重量%、平均粒子径10〜20nm)を、MEKで希釈して、シリカナノ粒子の濃度が10重量%のスラリーを調製した。調製したスラリー100重量部に、実施例1で使用した球状シリカ粒子の粉体72重量部を分散させて、シリカフィラーの濃度が47.7重量%のスラリー組成物を調製した。なお、シリカフィラー中、シリカナノ粒子の配合量は、球状シリカ粒子の配合量の13.9重量%である。調製したスラリー組成物の粗粒を5μm篩を用いて除去した。
(5) Example 3
Silica slurry manufactured by a wet method and solvent-substituted (“MEK-ST” manufactured by Nissan Chemical Co., Ltd., silica solid content 30% by weight, average particle size 10 to 20 nm) is diluted with MEK, and the concentration of silica nanoparticles is increased. A 10 wt% slurry was prepared. In 100 parts by weight of the prepared slurry, 72 parts by weight of the spherical silica particle powder used in Example 1 was dispersed to prepare a slurry composition having a silica filler concentration of 47.7% by weight. In addition, the compounding quantity of a silica nanoparticle in a silica filler is 13.9 weight% of the compounding quantity of a spherical silica particle. The coarse particles of the prepared slurry composition were removed using a 5 μm sieve.

次に、スラリー組成物100重量部に、実施例1で使用した液状エポキシ樹脂6.4重量部と、硬化触媒の2−PHZ0.4重量部とを混合し、ワニス組成物を調製した。このワニス組成物を、基材に塗布し、乾燥してMEKを除去すると、粘着性のある均質なフィルムが得られた。そして、得られたフィルムを120℃で3時間、さらに150℃で1時間保持すると、硬化して緻密なフィルムとなった。得られたフィルムの灰分測定を行ったところ、シリカフィラー固形分は87.5重量%であった。また、上記ワニス組成物をガラスクロスに含浸させた後、120℃に加熱乾燥し、MEKを除去するとともに液状エポキシ樹脂を半硬化させ、プリプレグを製造した。さらに、製造したプリプレグを三層に積層し、150℃、2時間加熱加圧することにより、三層が一体化した積層板を得た。   Next, 6.4 parts by weight of the liquid epoxy resin used in Example 1 and 0.4 parts by weight of 2-PHZ as a curing catalyst were mixed with 100 parts by weight of the slurry composition to prepare a varnish composition. When this varnish composition was applied to a substrate and dried to remove MEK, a sticky homogeneous film was obtained. And when the obtained film was hold | maintained at 120 degreeC for 3 hours and also at 150 degreeC for 1 hour, it hardened | cured and became a precise | minute film. When the ash content of the obtained film was measured, the silica filler solid content was 87.5% by weight. Moreover, after impregnating the said varnish composition in the glass cloth, it heat-dried at 120 degreeC, remove | excluded MEK, and semi-hardened the liquid epoxy resin, and manufactured the prepreg. Further, the manufactured prepreg was laminated in three layers, and heated and pressed at 150 ° C. for 2 hours to obtain a laminated plate in which the three layers were integrated.

(6)まとめ
以上、実施例1〜3に示したように、本発明のスラリー組成物、ワニス組成物によれば、シリカフィラーを87重量%以上と多量に配合した良好な硬化物を製造できることが確認された。一方、比較例1、2に示したように、シリカナノ粒子を配合しない場合には、シリカフィラーを多量に配合した硬化物を得ることはできなかった。
(6) Summary As described above in Examples 1 to 3, according to the slurry composition and the varnish composition of the present invention, it is possible to produce a good cured product containing a large amount of silica filler of 87% by weight or more. Was confirmed. On the other hand, as shown in Comparative Examples 1 and 2, when silica nanoparticles were not blended, it was not possible to obtain a cured product blended with a large amount of silica filler.

Claims (11)

平均粒子径0.1μm以上5μm以下、かつ、真球度0.8以上の球状シリカ粒子と、
平均粒子径1nm以上50nm以下のシリカナノ粒子と、
が有機溶媒に分散されてなるスラリー組成物。
Spherical silica particles having an average particle diameter of 0.1 μm to 5 μm and a sphericity of 0.8 or more;
Silica nanoparticles having an average particle diameter of 1 nm to 50 nm,
A slurry composition in which is dispersed in an organic solvent.
前記球状シリカ粒子は、シリコン粉末を燃焼して製造されたものである請求項1に記載のスラリー組成物。   The slurry composition according to claim 1, wherein the spherical silica particles are produced by burning silicon powder. 前記シリカナノ粒子の配合量は、前記球状シリカ粒子の配合量の1重量%以上40重量%以下である請求項1に記載のスラリー組成物。   2. The slurry composition according to claim 1, wherein the compounding amount of the silica nanoparticles is 1 wt% or more and 40 wt% or less of the compounding amount of the spherical silica particles. 請求項1に記載のスラリー組成物に樹脂を配合してなるワニス組成物。   The varnish composition formed by mix | blending resin with the slurry composition of Claim 1. 前記樹脂は、エポキシ樹脂を含む請求項4に記載のワニス組成物。   The varnish composition according to claim 4, wherein the resin includes an epoxy resin. さらに、硬化剤、硬化触媒を含む請求項4に記載のワニス組成物。   Furthermore, the varnish composition of Claim 4 containing a hardening | curing agent and a hardening catalyst. 前記球状シリカ粒子および前記シリカナノ粒子の合計配合量は、当該ワニス組成物から前記有機溶媒を除去し該ワニス組成物を硬化させた硬化物の全体重量を100重量%とした場合の85重量%以上である請求項4に記載のワニス組成物。   The total amount of the spherical silica particles and the silica nanoparticles is 85% by weight or more when the total weight of the cured product obtained by removing the organic solvent from the varnish composition and curing the varnish composition is 100% by weight. The varnish composition according to claim 4. 請求項4に記載のワニス組成物を基材に塗布し、該ワニス組成物を加熱硬化させて得られた絶縁フィルム。   The insulating film obtained by apply | coating the varnish composition of Claim 4 to a base material, and heat-hardening this varnish composition. 前記球状シリカ粒子および前記シリカナノ粒子の配合割合は、当該絶縁フィルムの全体重量を100重量%とした場合の85重量%以上である請求項8に記載の絶縁フィルム。   The insulating film according to claim 8, wherein a blending ratio of the spherical silica particles and the silica nanoparticles is 85% by weight or more when the total weight of the insulating film is 100% by weight. 請求項4に記載のワニス組成物を基材に含浸し、該ワニス組成物が含浸した基材を加熱乾燥して半硬化させて得られたプリプレグ。   A prepreg obtained by impregnating a base material with the varnish composition according to claim 4, and drying and semi-curing the base material impregnated with the varnish composition. 前記球状シリカ粒子および前記シリカナノ粒子の配合割合は、当該プリプレグの全体重量を100重量%とした場合の85重量%以上である請求項10に記載のプリプレグ。   The prepreg according to claim 10, wherein a blending ratio of the spherical silica particles and the silica nanoparticles is 85% by weight or more when the total weight of the prepreg is 100% by weight.
JP2004218708A 2004-07-27 2004-07-27 Composition for printed circuit boards Expired - Lifetime JP4903989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004218708A JP4903989B2 (en) 2004-07-27 2004-07-27 Composition for printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218708A JP4903989B2 (en) 2004-07-27 2004-07-27 Composition for printed circuit boards

Publications (2)

Publication Number Publication Date
JP2006036916A true JP2006036916A (en) 2006-02-09
JP4903989B2 JP4903989B2 (en) 2012-03-28

Family

ID=35902262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218708A Expired - Lifetime JP4903989B2 (en) 2004-07-27 2004-07-27 Composition for printed circuit boards

Country Status (1)

Country Link
JP (1) JP4903989B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101062A (en) * 2006-10-17 2008-05-01 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminated plate and semiconductor device
JP2008130796A (en) * 2006-11-21 2008-06-05 Sumitomo Bakelite Co Ltd Insulating resin composition for multilayer printed circuit boards, insulation sheet with base material, multilayer printed circuit board, and semiconductor device
EP2000494A1 (en) * 2007-06-05 2008-12-10 Miravete de Marco, Antonio Nanoreinforcement prepreg method and product thus obtained
JP2009518510A (en) * 2005-12-05 2009-05-07 スリーエム イノベイティブ プロパティズ カンパニー Flame retardant polymer composition
WO2010013741A1 (en) * 2008-07-31 2010-02-04 積水化学工業株式会社 Epoxy resin composition, prepreg, cured body, sheet-like molded body, laminate and multilayer laminate
WO2010035452A1 (en) * 2008-09-24 2010-04-01 積水化学工業株式会社 Resin composition, cured body and multilayer body
JP2010150407A (en) * 2008-12-25 2010-07-08 Ajinomoto Co Inc Method for producing resin composition varnish
JP2011052118A (en) * 2009-09-02 2011-03-17 Sumitomo Bakelite Co Ltd Resin composition, transparent substrate and substrate for solar battery
JP2011116910A (en) * 2009-12-07 2011-06-16 Sumitomo Bakelite Co Ltd Resin composition for circuit substrate, prepreg, laminated plate, resin sheet, multilayer printed wiring board, and semiconductor device
WO2011095208A1 (en) * 2010-02-03 2011-08-11 Abb Research Ltd Electrical insulation system
JP2011162622A (en) * 2010-02-08 2011-08-25 Sumitomo Bakelite Co Ltd Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
KR101072139B1 (en) 2009-04-07 2011-10-12 박재준 Method for preparing epoxy/silica multicomposite for high voltage insulation and product thereby
JP2011202140A (en) * 2009-10-14 2011-10-13 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and semiconductor device
WO2012002434A1 (en) * 2010-07-01 2012-01-05 住友ベークライト株式会社 Prepreg, wiring board, and semiconductor device
JP2012054573A (en) * 2011-10-11 2012-03-15 Sumitomo Bakelite Co Ltd Insulating resin composition for multilayer printed circuit board, insulation sheet with substrate, multilayer printed circuit board, and semiconductor device
JP2012062422A (en) * 2010-09-17 2012-03-29 Sekisui Chem Co Ltd Resin composition and molded body
WO2012101991A1 (en) * 2011-01-24 2012-08-02 住友ベークライト株式会社 Pre-preg, laminate board, printed wiring board, and semiconductor device
JP2012153752A (en) * 2011-01-24 2012-08-16 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
JP2013010899A (en) * 2011-06-30 2013-01-17 Sekisui Chem Co Ltd Resin varnish, filtration treatment resin varnish, method of producing the filtration treatment resin varnish, laminated film, and multilayer board
JP2013010848A (en) * 2011-06-29 2013-01-17 Nippon Zeon Co Ltd Resin composition, film, laminate, cured product, and composite
JP2013104060A (en) * 2011-11-15 2013-05-30 Samsung Electro-Mechanics Co Ltd Epoxy resin composition for forming printed circuit board, printed circuit board manufactured therefrom, and method for manufacturing printed circuit board
US20130149514A1 (en) * 2010-07-30 2013-06-13 Kyocera Corporation Insulating sheet, method of manufacturing the same, and method of manufacturing structure using the insulating sheet
EP2623565A1 (en) * 2012-02-06 2013-08-07 Siemens Aktiengesellschaft Repair substance
JP2013204030A (en) * 2012-03-29 2013-10-07 Admatechs Co Ltd Filler containing liquid composition
JP2013209626A (en) * 2012-02-28 2013-10-10 Sumitomo Bakelite Co Ltd Prepreg and prepreg manufacturing method
JP2015021086A (en) * 2013-07-22 2015-02-02 住友ベークライト株式会社 Resin composition, resin sheet, prepreg, laminate, printed wiring board, and semiconductor device
CN109456620A (en) * 2018-11-19 2019-03-12 江苏联瑞新材料股份有限公司 A kind of low viscosity filler composition and preparation method thereof
JP2019123799A (en) * 2018-01-16 2019-07-25 日立化成株式会社 Resin composition for interlayer insulation layer, resin film for interlayer insulation layer, multilayer printed wiring board, semiconductor package and method for manufacturing multilayer printed wiring board
WO2019245026A1 (en) * 2018-06-21 2019-12-26 日立化成株式会社 Thermosetting resin composition, prepreg, laminated sheet, printed-wiring board and semiconductor package, and method for producing thermosetting resin composition
JP2020066695A (en) * 2018-10-25 2020-04-30 日立化成株式会社 Liquid resin composition and electronic component device and method for producing the same
CN114716867A (en) * 2022-03-25 2022-07-08 生益电子股份有限公司 Filler dispersion liquid, ink and application of filler dispersion liquid and ink
WO2022151042A1 (en) * 2021-01-13 2022-07-21 穗晔实业股份有限公司 Slurry composition and preparation method therefor
CN114989761A (en) * 2022-06-29 2022-09-02 东莞市德聚胶接技术有限公司 Underfill adhesive composition for wafer-level chip size packaging and preparation method thereof
CN115350655A (en) * 2022-09-01 2022-11-18 镇江博慎新材料有限公司 Non-polar hydrogel and preparation method and application thereof
CN116623437A (en) * 2023-05-09 2023-08-22 中国科学院苏州纳米技术与纳米仿生研究所 Priming paste of cloth-based circuit and method for preparing circuit by printing on cloth surface
WO2023157542A1 (en) * 2022-02-21 2023-08-24 味の素株式会社 Resin composition
CN116640475A (en) * 2023-04-28 2023-08-25 广东工业大学 Chip resistor secondary protection slurry and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061605A (en) * 1992-06-17 1994-01-11 Shin Etsu Chem Co Ltd Silica fine powder, production thereof and resin composition containing silica fine powder
JPH07198904A (en) * 1993-12-28 1995-08-01 Dainippon Printing Co Ltd Close-packed coating film, its production and close-packed coating film forming film
JP2002088141A (en) * 2000-09-13 2002-03-27 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg and copper-clad laminate using the same
JP2004352783A (en) * 2003-05-27 2004-12-16 Matsushita Electric Works Ltd Resin composition for sealing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061605A (en) * 1992-06-17 1994-01-11 Shin Etsu Chem Co Ltd Silica fine powder, production thereof and resin composition containing silica fine powder
JPH07198904A (en) * 1993-12-28 1995-08-01 Dainippon Printing Co Ltd Close-packed coating film, its production and close-packed coating film forming film
JP2002088141A (en) * 2000-09-13 2002-03-27 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg and copper-clad laminate using the same
JP2004352783A (en) * 2003-05-27 2004-12-16 Matsushita Electric Works Ltd Resin composition for sealing

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518510A (en) * 2005-12-05 2009-05-07 スリーエム イノベイティブ プロパティズ カンパニー Flame retardant polymer composition
JP2008101062A (en) * 2006-10-17 2008-05-01 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminated plate and semiconductor device
JP2008130796A (en) * 2006-11-21 2008-06-05 Sumitomo Bakelite Co Ltd Insulating resin composition for multilayer printed circuit boards, insulation sheet with base material, multilayer printed circuit board, and semiconductor device
EP2000495A1 (en) * 2007-06-05 2008-12-10 Miravete de Marco, Antonio Nanoreinforcement prepreg method and product thus obtained
ES2320305A1 (en) * 2007-06-05 2009-05-20 Antonio Miravete De Marco Nanoreinforcement prepreg method and product thus obtained
EP2000494A1 (en) * 2007-06-05 2008-12-10 Miravete de Marco, Antonio Nanoreinforcement prepreg method and product thus obtained
JP4782870B2 (en) * 2008-07-31 2011-09-28 積水化学工業株式会社 Cured body, sheet-like molded body, laminated board and multilayer laminated board
WO2010013741A1 (en) * 2008-07-31 2010-02-04 積水化学工業株式会社 Epoxy resin composition, prepreg, cured body, sheet-like molded body, laminate and multilayer laminate
KR101383434B1 (en) * 2008-07-31 2014-04-08 세키스이가가쿠 고교가부시키가이샤 Epoxy resin composition, prepreg, cured body, sheet-like molded body, laminate and multilayer laminate
WO2010035452A1 (en) * 2008-09-24 2010-04-01 積水化学工業株式会社 Resin composition, cured body and multilayer body
JP4686750B2 (en) * 2008-09-24 2011-05-25 積水化学工業株式会社 Cured body and laminate
US20110244183A1 (en) * 2008-09-24 2011-10-06 Sekisui Chemical Co., Ltd. Resin composition, cured body and multilayer body
KR101051873B1 (en) 2008-09-24 2011-07-25 세키스이가가쿠 고교가부시키가이샤 Cured and Laminated Products
JP2010150407A (en) * 2008-12-25 2010-07-08 Ajinomoto Co Inc Method for producing resin composition varnish
KR101072139B1 (en) 2009-04-07 2011-10-12 박재준 Method for preparing epoxy/silica multicomposite for high voltage insulation and product thereby
JP2011052118A (en) * 2009-09-02 2011-03-17 Sumitomo Bakelite Co Ltd Resin composition, transparent substrate and substrate for solar battery
JP2011202140A (en) * 2009-10-14 2011-10-13 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and semiconductor device
US8852734B2 (en) 2009-10-14 2014-10-07 Sumitomo Bakelite Company, Ltd. Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and semiconductor device
JP2011116910A (en) * 2009-12-07 2011-06-16 Sumitomo Bakelite Co Ltd Resin composition for circuit substrate, prepreg, laminated plate, resin sheet, multilayer printed wiring board, and semiconductor device
WO2011095208A1 (en) * 2010-02-03 2011-08-11 Abb Research Ltd Electrical insulation system
US20130203897A1 (en) * 2010-02-03 2013-08-08 Abb Research Ltd Electrical insulation system
JP2011162622A (en) * 2010-02-08 2011-08-25 Sumitomo Bakelite Co Ltd Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
WO2012002434A1 (en) * 2010-07-01 2012-01-05 住友ベークライト株式会社 Prepreg, wiring board, and semiconductor device
JPWO2012002434A1 (en) * 2010-07-01 2013-08-29 住友ベークライト株式会社 Prepreg, wiring board and semiconductor device
US20130149514A1 (en) * 2010-07-30 2013-06-13 Kyocera Corporation Insulating sheet, method of manufacturing the same, and method of manufacturing structure using the insulating sheet
JP2012062422A (en) * 2010-09-17 2012-03-29 Sekisui Chem Co Ltd Resin composition and molded body
JP2012153752A (en) * 2011-01-24 2012-08-16 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
JP2012167256A (en) * 2011-01-24 2012-09-06 Sumitomo Bakelite Co Ltd Prepreg, laminate, printed wiring board, and semiconductor device
WO2012101991A1 (en) * 2011-01-24 2012-08-02 住友ベークライト株式会社 Pre-preg, laminate board, printed wiring board, and semiconductor device
CN103347938A (en) * 2011-01-24 2013-10-09 住友电木株式会社 Pre-preg, laminate board, printed wiring board, and semiconductor device
KR101355777B1 (en) 2011-01-24 2014-02-04 스미토모 베이클리트 컴퍼니 리미티드 Prepreg, laminate, printed wiring board, and semiconductor device
JP2013010848A (en) * 2011-06-29 2013-01-17 Nippon Zeon Co Ltd Resin composition, film, laminate, cured product, and composite
JP2013010899A (en) * 2011-06-30 2013-01-17 Sekisui Chem Co Ltd Resin varnish, filtration treatment resin varnish, method of producing the filtration treatment resin varnish, laminated film, and multilayer board
JP2012054573A (en) * 2011-10-11 2012-03-15 Sumitomo Bakelite Co Ltd Insulating resin composition for multilayer printed circuit board, insulation sheet with substrate, multilayer printed circuit board, and semiconductor device
JP2013104060A (en) * 2011-11-15 2013-05-30 Samsung Electro-Mechanics Co Ltd Epoxy resin composition for forming printed circuit board, printed circuit board manufactured therefrom, and method for manufacturing printed circuit board
WO2013117372A1 (en) * 2012-02-06 2013-08-15 Siemens Aktiengesellschaft Repair material
EP2623565A1 (en) * 2012-02-06 2013-08-07 Siemens Aktiengesellschaft Repair substance
JP2013209626A (en) * 2012-02-28 2013-10-10 Sumitomo Bakelite Co Ltd Prepreg and prepreg manufacturing method
JP2013204030A (en) * 2012-03-29 2013-10-07 Admatechs Co Ltd Filler containing liquid composition
JP2015021086A (en) * 2013-07-22 2015-02-02 住友ベークライト株式会社 Resin composition, resin sheet, prepreg, laminate, printed wiring board, and semiconductor device
JP2019123799A (en) * 2018-01-16 2019-07-25 日立化成株式会社 Resin composition for interlayer insulation layer, resin film for interlayer insulation layer, multilayer printed wiring board, semiconductor package and method for manufacturing multilayer printed wiring board
WO2019245026A1 (en) * 2018-06-21 2019-12-26 日立化成株式会社 Thermosetting resin composition, prepreg, laminated sheet, printed-wiring board and semiconductor package, and method for producing thermosetting resin composition
JPWO2019245026A1 (en) * 2018-06-21 2021-08-02 昭和電工マテリアルズ株式会社 Method for manufacturing thermosetting resin composition, prepreg, laminated board, printed wiring board and semiconductor package, and thermosetting resin composition
JP7420071B2 (en) 2018-06-21 2024-01-23 株式会社レゾナック Thermosetting resin composition, prepreg, laminate, printed wiring board, semiconductor package, and method for producing thermosetting resin composition
JP2020066695A (en) * 2018-10-25 2020-04-30 日立化成株式会社 Liquid resin composition and electronic component device and method for producing the same
JP7404620B2 (en) 2018-10-25 2023-12-26 株式会社レゾナック Liquid resin composition, electronic component device, and manufacturing method thereof
CN109456620A (en) * 2018-11-19 2019-03-12 江苏联瑞新材料股份有限公司 A kind of low viscosity filler composition and preparation method thereof
WO2022151042A1 (en) * 2021-01-13 2022-07-21 穗晔实业股份有限公司 Slurry composition and preparation method therefor
WO2023157542A1 (en) * 2022-02-21 2023-08-24 味の素株式会社 Resin composition
WO2023178850A1 (en) * 2022-03-25 2023-09-28 生益电子股份有限公司 Filler dispersion liquid, ink and use thereof
CN114716867A (en) * 2022-03-25 2022-07-08 生益电子股份有限公司 Filler dispersion liquid, ink and application of filler dispersion liquid and ink
CN114989761A (en) * 2022-06-29 2022-09-02 东莞市德聚胶接技术有限公司 Underfill adhesive composition for wafer-level chip size packaging and preparation method thereof
CN115350655A (en) * 2022-09-01 2022-11-18 镇江博慎新材料有限公司 Non-polar hydrogel and preparation method and application thereof
CN115350655B (en) * 2022-09-01 2024-04-02 镇江博慎新材料有限公司 Nonpolar hydrogel and preparation method and application thereof
CN116640475A (en) * 2023-04-28 2023-08-25 广东工业大学 Chip resistor secondary protection slurry and preparation method and application thereof
CN116623437A (en) * 2023-05-09 2023-08-22 中国科学院苏州纳米技术与纳米仿生研究所 Priming paste of cloth-based circuit and method for preparing circuit by printing on cloth surface
CN116623437B (en) * 2023-05-09 2024-04-02 中国科学院苏州纳米技术与纳米仿生研究所 Method for preparing circuit by printing on surface of cloth

Also Published As

Publication number Publication date
JP4903989B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4903989B2 (en) Composition for printed circuit boards
KR101274975B1 (en) Thermally conductive materials based on thermally conductive hollow particles and fabrication method thereof
JP5306844B2 (en) Resin composition having high thermal conductivity and high glass transition temperature (Tg) and used for printed circuit board, and prepreg and coating using the same
JP6309264B2 (en) Insulating material, insulating layer composition containing the same, and substrate using the insulating layer composition
US9631067B2 (en) Carbon fiber composite coated with silicon carbide and production method for same
CN103073849B (en) For the insulation layer composition of substrate and the prepreg and the substrate that use it
JP2021091604A (en) Hexagonal boron nitride powder and its manufacturing method, as well as composition and heat dissipation material using the same
JP6125273B2 (en) Boron nitride molded body, production method and use thereof
CN105008440B (en) Prepreg, metal-coated laminated board and printed substrate
JP4460968B2 (en) Method for producing resin composition
JPH0773151B2 (en) Polymer composite material containing fluorinated granular carbon and method of manufacturing substrate coated with such material
TW201815957A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
TWI745158B (en) Method for producing silicon-containing oxide-coated aluminum nitride particles and method for producing exothermic resin composition
JP2010132894A (en) Organic-inorganic composite and manufacturing method therefor
CN106893259B (en) A kind of compositions of thermosetting resin and application thereof
TWI543312B (en) Method for manufacturing parts for laminated bodies and power semiconductor modules
JP5370129B2 (en) Thermosetting resin composition, prepreg and laminate
JP2022097544A (en) Boron nitride particle aggregate and thermosetting material
TWI833923B (en) Slurry composition, cured product of the slurry composition, substrate, film and prepreg using the cured product
JP6347644B2 (en) Surface-modified silica powder and slurry composition
JP2022180564A (en) Thermosetting sheet, and method of producing cured sheet
Kushwaha et al. Fabrication and characterization of hexagonal boron nitride/polyester composites to study the effect of filler loading and surface modification for microelectronic applications
Saidina et al. Dielectric and thermal properties of CCTO/epoxy composites for embedded capacitor applications: mixing and fabrication methods
Liao et al. Regulating surface energy and establishing covalent bonds to enhance interface interaction between m‐BN and polyphenylene oxide for 5G applications
JP2006312751A (en) Resin composition, prepreg and copper-clad laminate using the prepreg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Ref document number: 4903989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term