WO2012101991A1 - Pre-preg, laminate board, printed wiring board, and semiconductor device - Google Patents

Pre-preg, laminate board, printed wiring board, and semiconductor device Download PDF

Info

Publication number
WO2012101991A1
WO2012101991A1 PCT/JP2012/000316 JP2012000316W WO2012101991A1 WO 2012101991 A1 WO2012101991 A1 WO 2012101991A1 JP 2012000316 W JP2012000316 W JP 2012000316W WO 2012101991 A1 WO2012101991 A1 WO 2012101991A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg
resin
glass
woven fabric
printed wiring
Prior art date
Application number
PCT/JP2012/000316
Other languages
French (fr)
Japanese (ja)
Inventor
大東 範行
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN201280006279.3A priority Critical patent/CN103347938B/en
Priority to KR1020137022082A priority patent/KR101355777B1/en
Publication of WO2012101991A1 publication Critical patent/WO2012101991A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile

Definitions

  • the present invention relates to a prepreg, a laminated board, a printed wiring board, and a semiconductor device.
  • the through hole and the via hole are formed using a drill or a laser such as a carbon dioxide laser, but a laser is used particularly for drilling a small diameter.
  • a laser is used particularly for drilling a small diameter.
  • the insulating layer of the printed wiring board can be formed by heating and pressing one or a plurality of prepregs stacked together.
  • a prepreg is produced by impregnating a base material such as glass cloth with a varnish obtained by containing a resin composition containing a thermosetting resin as a main component in a solvent, and then heating and drying the varnish.
  • a base material such as glass cloth
  • a varnish obtained by containing a resin composition containing a thermosetting resin as a main component in a solvent
  • Patent Documents 1 and 2 it is possible to improve the drilling workability of the insulating layer by laser
  • a semiconductor device semiconductor package
  • the semiconductor element has a coefficient of thermal expansion of 3 to 6 ppm / ° C., and the coefficient of thermal expansion of a general printed wiring board for a semiconductor package. Smaller than. Therefore, when a thermal shock is applied to the semiconductor package, the semiconductor package may be warped due to a difference in thermal expansion coefficient between the semiconductor element and the printed wiring board for the semiconductor package.
  • a connection failure may occur between the semiconductor element and the printed wiring board for a semiconductor package or between the semiconductor package and the printed wiring board to be mounted.
  • an insulating material having a low coefficient of thermal expansion for the insulating layer warpage due to thermal expansion of the printed wiring board can be reduced.
  • a resin composition that is highly filled with an inorganic filler is used as a resin composition used in the manufacture of the prepreg (Patent Document 3).
  • JP 2001-38836 A Japanese Patent Laid-Open No. 2000-22302 JP 2009-138075 A
  • the impregnation property of the resin composition to the base material is inferior.
  • the filler is between the fibers of the base material. Since it cannot enter, impregnation of the resin composition becomes difficult. Further, for example, when the content of the filler is reduced in order to improve the impregnation property, it may be difficult to maintain other characteristics of the prepreg.
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to improve the impregnation property of the thermosetting resin composition to the fiber woven fabric while maintaining various properties of the prepreg. Prepreg. Another object of the present invention is to provide a metal-clad laminate using the prepreg, a printed wiring board and a semiconductor device obtained using the metal-clad laminate.
  • a prepreg obtained by impregnating a fiber woven fabric composed of strands with a resin composition, wherein silica particles are present in the strands.
  • the prepreg excellent in the impregnation property of the thermosetting resin composition with respect to a fiber woven fabric can be provided, maintaining the various characteristics which a prepreg has.
  • a printed wiring board and a semiconductor device can be manufactured using the said prepreg and / or the metal-clad laminated board manufactured using the said prepreg.
  • FIG. 1 is a photograph of a cross-sectional view of a prepreg obtained in Example 1.
  • FIG. 6 is a photograph of a cross-sectional view of a prepreg obtained in Comparative Example 4.
  • 4 is a photograph of the surface of the metal-clad laminate obtained in Example 1 that has been entirely etched. It is the photograph of the surface which etched the copper foil of the metal clad laminated board obtained by the comparative example 6 whole surface. It is a SEM photograph of the enlarged view of the void observed in FIG.
  • FIG. 2 It is a SEM photograph of the enlarged view of the cross section of the void observed in FIG. 2 is an SEM photograph of a cross-sectional view showing a part of a strand constituting the prepreg fiber woven fabric obtained in Example 1.
  • FIG. 2 is an SEM photograph of a cross-sectional view showing a part of a strand constituting the prepreg fiber woven fabric obtained in Example 1.
  • FIG. 2 is an SEM photograph of a cross-sectional view showing a part of a strand constituting the prepreg fiber woven fabric obtained in Example 1.
  • FIG. 2 is an SEM photograph of a cross-sectional view showing a part of a strand constituting the prepreg fiber woven fabric obtained in Example 1.
  • the prepreg of the present invention is a prepreg formed by impregnating a fiber woven fabric composed of strands with a resin composition. Silica particles are present in the strands constituting the fiber woven fabric.
  • the strand is a bundle of fibers constituting the fiber woven fabric.
  • a fiber woven fabric is formed by weaving the strands so as to have a woven structure described later. The present inventor has found that when the prepreg is formed so that the silica particles are present in the strand, the impregnation property of the resin composition into the fiber woven fabric can be improved while maintaining various properties of the prepreg. .
  • the various characteristics include, for example, insulation reliability of a printed wiring board to be described later, laser workability of a prepreg, or low thermal expansion of a prepreg.
  • the impregnation property of the resin composition into the fiber woven fabric is good, generation of voids in the resulting prepreg can be suppressed.
  • the insulation reliability can be improved.
  • the prepreg excellent in laser workability can be formed using a high-density fiber woven fabric.
  • the resin composition constituting the prepreg is a thermosetting resin composition (hereinafter sometimes simply referred to as “resin composition”) including at least a thermosetting resin and a filler.
  • the resin composition constituting the prepreg preferably contains, for example, silica particles having an average particle size of 5 to 100 nm in a proportion of 1 to 20% by mass of the filler.
  • the inventor of the present invention has an average particle diameter of 5 to 1% by mass in the filler even in the case of a prepreg obtained by impregnating a high-density fiber woven fabric with a resin composition containing a large amount of filler. It has been found that the impregnation property of the resin composition is improved by incorporating silica particles of ⁇ 100 nm.
  • silica particles having an average particle diameter of 5 to 100 nm enter between the fibers of the fiber woven fabric, that is, spread between the fibers by spreading into the strands. This is thought to be because it becomes possible to get into.
  • a prepreg having silica particles in the strand can be obtained.
  • the silica particles having an average particle diameter of 5 to 100 nm and the filler are attracted by interaction.
  • silica particles having an average particle diameter of 5 to 100 nm are present around the filler, and the silica particles having an average particle diameter of 5 to 100 nm have a spacer action.
  • silica particles having an average particle size of 5 to 100 nm are present around the filler and act as a spacer, thereby reducing the attractive force of the filler due to van der Waals force and preventing aggregation. To do. This makes the filler more highly dispersed and prevents fluidity from being lowered.
  • the silica particles having an average particle diameter of 5 to 100 nm are preferably used as a slurry previously dispersed in an organic solvent.
  • the dispersibility of a filler can be improved and the fall of the fluidity
  • the reason is considered as follows.
  • nano-sized particles such as nano-sized silica tend to aggregate and often form secondary aggregates when blended into the resin composition. Such secondary agglomeration can be prevented, thereby preventing the fluidity from being lowered.
  • the filler used in the present invention is preferably subjected to surface treatment in advance in order to prevent aggregation and improve dispersibility.
  • the high-density fiber woven fabric refers to a fiber that has been treated not only to increase the number of yarns to be driven, but also to uniformly and highly open each fiber and reduce the thickness by flattening.
  • the high-density fiber woven fabric has, for example, a bulk density of 1.05 g / cm 3 or more.
  • the resin composition can be further impregnated between the fibers one by one, the filler can be further highly filled.
  • the amount of resin on the fiber woven fabric can be secured sufficiently, the moldability is maintained when copper foil is laminated on a prepreg to make a copper-clad laminate or when the surface of a copper-clad laminate is smoothed. can do.
  • the prepreg of this invention since the prepreg of this invention has the favorable impregnation property of the resin composition with respect to a fiber woven fabric, there is little generation
  • the thermal expansibility of a prepreg means the thermal expansibility in the state which hardened the prepreg.
  • the prepreg of the present invention has excellent heat resistance and high rigidity due to high filling of the filler.
  • the bulk density of the fiber woven fabric constituting the prepreg of the present invention is preferably 1.05 to 1.30 g / cm 3 .
  • a high-density fiber woven fabric with a bulk density of 1.05 to 1.30 g / cm 3 when used as an insulating layer of a printed wiring board, the accuracy of the hole diameter and shape is improved by laser processing. And the hole which suppressed the protrusion of the fiber can be formed.
  • a prepreg obtained by using a resin composition containing a large amount of a filler deteriorates the impregnation property of the resin composition with respect to the base material, so that the base material has a uniform thickness.
  • the insulating layer is inferior in surface smoothness and adhesion to the conductor layer, and the fine wiring process is difficult. There is a point.
  • the prepreg of the present invention since the prepreg of the present invention has a good impregnation property of the resin composition with respect to the fiber woven fabric, the fiber woven fabric can hold the resin composition with a uniform thickness, The adhesiveness is good, and it is also possible to cope with thinning. Moreover, the prepreg of the present invention has high heat resistance and high rigidity by using a resin composition containing a large amount of a filler.
  • the fiber woven fabric used in the present invention is not particularly limited.
  • a fiber woven fabric made of synthetic fiber such as glass fiber, aramid, polyester, aromatic polyester, fluororesin, metal fiber, carbon fiber, mineral fiber, etc. Is mentioned.
  • a glass fiber woven fabric made of glass fibers is preferable because of its low thermal expansion, high rigidity, and excellent dimensional stability.
  • the glass fiber is not particularly limited, but contains at least SiO 2 in a proportion of 50% by mass to 100% by mass, Al 2 O 3 in a proportion of 0% by mass to 30% by mass, and CaO in a proportion of 0% by mass to 30% by mass.
  • T glass (S glass), quartz glass, and D glass are more preferable, and T glass (S glass) and quartz glass are more preferable from the viewpoint of excellent low thermal expansion and high strength.
  • T glass means SiO 2 62 mass% to 65 mass%, Al 2 O 3 20 mass% to 25 mass%, and CaO 0 mass% to 0.01 mass%.
  • MgO is contained in an amount of 10% by mass to 15% by mass
  • B 2 O 3 is contained in an amount of 0% by mass to 0.01% by mass
  • Na 2 O and K 2 O are combined in a proportion of 0% by mass to 1% by mass.
  • D glass is SiO 2 72 mass% to 76 mass%, Al 2 O 3 0 mass% to 5 mass%, CaO 0 mass% to 1 mass%, MgO 0 mass% to 1 mass.
  • the quartz glass is a glass having a composition containing SiO 2 at a ratio of 99.0% by mass to 100% by mass.
  • the glass fiber is not particularly limited, but the Young's modulus when formed into a plate is 50 to 100 GPa, the tensile strength when formed into a plate is 25 GPa or more, and the tensile strength in the longitudinal direction when formed into a fiber woven fabric is 30 N / It is preferably 25 mm or more, more preferably, the Young's modulus when plate-shaped is 80 to 100 GPa, the tensile strength when plate-shaped is 35 GPa or more, and the tensile strength in the longitudinal direction when fiber woven fabric is formed. It is 45 N / 25 mm or more. Thereby, the prepreg excellent in dimensional stability is obtained.
  • the Young's modulus is a value measured by a commonly used known three-point bending tester in accordance with JIS R1602, and the tensile strength is in accordance with JIS R3420 and commonly used. It is a value measured by a constant speed extension type tensile tester, and the tensile strength in the longitudinal direction conforms to JIS R3420, and is measured by a constant speed extension type tensile tester similar to the above using glass fiber as a woven fabric. Value.
  • “plate shape” means a state in which a glass composition having the same composition as the glass fiber is formed into a glass plate having a thickness of 0.5 to 1.0 mm.
  • the “longitudinal direction” means the warp (warp) direction.
  • the glass fiber is not particularly limited, but the thermal expansion coefficient in the warp direction measured according to JIS R3102 is preferably 10 ppm / ° C. or less, and particularly preferably 3 ppm / ° C. or less. Thereby, the curvature by the thermal expansion of a printed wiring board can be made small.
  • the thickness of the fiber woven fabric is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 10 to 140 ⁇ m, and still more preferably 20 to 90 ⁇ m. Thereby, the impregnation property of the resin composition with respect to the fiber woven fabric becomes good, and it becomes possible to cope with the thinning.
  • the bulk density of the fiber woven fabric is preferably 1.05 to 1.30 g / cm 3 , and more preferably 1.10 to 1.25 g / cm 3 .
  • the bulk density of the fiber woven fabric is adjusted by adjusting the number of warps and wefts to be driven and the thickness of the fiber that has been subjected to the opening and flattening treatment.
  • the fiber woven fabric is not particularly limited, but the air permeability is preferably 1 to 80 cc / cm 2 / sec, and particularly preferably 3 to 50 cc / cm 2 / sec.
  • the air permeability is less than the lower limit, the impregnation property of the resin composition with respect to the fiber woven fabric is deteriorated, and when the air permeability exceeds the upper limit, the laser processability of the insulating layer is inferior.
  • the fiber fabric is not particularly limited, it is preferable that a basis weight of 10 ⁇ 160g / m 2, and particularly preferably 15 ⁇ 130g / m 2.
  • a basis weight of 10 ⁇ 160g / m 2, and particularly preferably 15 ⁇ 130g / m 2.
  • the basis weight is less than the lower limit value, the low thermal expansion property of the prepreg is inferior, and when the upper limit value is exceeded, the impregnation property of the resin composition to the fiber woven fabric is deteriorated, or the laser processability of the insulating layer is inferior.
  • the fiber used for the fiber woven fabric is not particularly limited, but the aspect ratio is preferably 1: 2 to 1:50, particularly preferably 1: 5 to 1:30.
  • the flatness of the fiber used in the fiber woven fabric is within the above range, the impregnation and wettability of the resin composition to the fiber woven fabric is further improved, so that the insulation reliability between the through holes is improved, and the insulation The laser processability of the layer can be improved.
  • the flatness is a value represented by the thickness of the yarn: the width of the yarn.
  • the weaving structure of the fiber woven fabric is not particularly limited, and examples thereof include plain weaving, nanako weaving, satin weaving, twill weaving, and the like. Among them, laser workability, strength, interlayer insulation reliability of via holes, etc. From the viewpoint of excellent properties, a plain weave structure is preferable.
  • thermosetting resin composition used in the present invention includes at least a thermosetting resin and a filler.
  • the filler is contained in a proportion of 50 to 85% by mass of the solid content of the thermosetting resin composition.
  • the thermosetting resin composition contains silica particles having an average particle size of 5 to 100 nm in a proportion of 1 to 20% by mass of the filler.
  • the thermosetting resin composition may further contain a curing agent, a coupling agent, and the like, if necessary.
  • the filler contains silica particles having an average particle diameter of 5 to 100 nm in a proportion of 1 to 20% by mass of the whole filler.
  • the silica particles are not particularly limited.
  • combustion methods such as VMC (Vaporized Metal Combustion) method, PVS (Physical Vapor Synthesis) method, methods such as melting method, fusing method, precipitation method, gel method, etc.
  • VMC method is particularly preferable.
  • the VMC method is a method in which silica powder is formed by putting silicon powder into a chemical flame formed in an oxygen-containing gas, burning it, and then cooling it.
  • the particle diameter of the silica fine particles to be obtained can be adjusted by adjusting the particle diameter of the silicon powder to be input, the input amount, the flame temperature and the like.
  • the silica particles commercially available products such as NSS-5N (manufactured by Tokuyama Co., Ltd.), Sicastar 43-00-501 (manufactured by Micromod) can also be used.
  • the silica particles having an average particle size of 5 to 100 nm are particularly preferably an average particle size of 10 to 75 nm from the viewpoint of impregnation. If the average particle diameter of the silica particles is less than 5 nm, it is considered that the space between the fibers of the fiber woven fabric cannot be expanded, and if it is greater than 100 nm, it may not be possible to enter between the fibers.
  • the average particle diameter of the silica particles can be measured by, for example, a laser diffraction scattering method and a dynamic light scattering method.
  • the particles are dispersed by ultrasonic waves in water, and the particle size distribution of the particles on a volume basis is measured by a dynamic light scattering particle size distribution analyzer (manufactured by HORIBA, LB-550). Measure and use the median diameter (D50) as the average particle diameter.
  • the silica particles are not particularly limited, but are preferably hydrophobic. Thereby, aggregation of a silica particle can be suppressed and a silica particle can be favorably disperse
  • the affinity between the thermosetting resin and the silica particles is improved and the surface adhesion between the thermosetting resin and the silica particles is improved, an insulating layer having excellent mechanical strength can be obtained.
  • Examples of a method for making silica particles hydrophobic include a method in which silica particles are surface-treated with functional group-containing silanes and / or alkylsilazanes in advance.
  • Known functional group-containing silanes can be used, and examples include epoxy silane, amino silane, vinyl silane, acrylic silane, mercapto silane, isocyanate silane, sulfide silane, and ureido silane.
  • alkylsilazanes examples include hexamethyldisilazane (HMDS), 1,3-divinyl-1,1,3,3-tetramethyldisilazane, octamethyltrisilazane, hexamethylcyclotrisilazane, and the like.
  • HMDS hexamethyldisilazane
  • 1,3-divinyl-1,1,3,3-tetramethyldisilazane 1,3-divinyl-1,1,3,3-tetramethyldisilazane
  • octamethyltrisilazane hexamethylcyclotrisilazane
  • the amount of functional group-containing silanes and / or alkylsilazanes to be surface-treated in advance on the silica particles is not particularly limited, but is 0.01 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the silica particles. It is preferable. More preferably, it is 0.1 to 3 parts by weight. If the content of the functional group-containing silanes and / or alkylsilazanes exceeds the upper limit, the insulating layer may crack when the printed wiring board is produced. If the content is less than the lower limit, the resin component and silica The bond strength with the particles may be reduced.
  • the method for surface-treating the silica particles with functional group-containing silanes and / or alkylsilazanes in advance is not particularly limited, but a wet method or a dry method is preferable.
  • the wet method is particularly preferable.
  • the surface of the silica particles can be uniformly processed.
  • the surface treatment is preferably performed on 50% or more of the specific surface area.
  • the silica particles having an average particle diameter of 5 to 100 nm are contained in a proportion of 1 to 20% by mass of the whole filler.
  • the content of silica particles having an average particle size of 5 to 100 nm is more preferably 3 to 15% by mass of the whole filler.
  • the filler used in the present invention is not particularly limited in addition to the silica particles having an average particle diameter of 5 to 100 nm.
  • magnesium hydroxide, aluminum hydroxide, boehmite, spherical silica particles having an average particle diameter larger than 100 nm, talc, calcined talc, and alumina are preferable, and boehmite and average particle diameter are particularly low in terms of low thermal expansion and impregnation.
  • Spherical silica particles larger than 100 nm and spherical alumina are preferred.
  • the inorganic filler other than silica particles having an average particle diameter of 5 to 100 nm is not particularly limited, but the inorganic filler has a monodisperse average particle diameter.
  • a material can also be used, and an inorganic filler having a polydispersed average particle diameter can also be used.
  • one type or two or more types of inorganic fillers having an average particle size of monodisperse and / or polydisperse can be used in combination.
  • the average particle size is monodispersed means that the standard deviation of the particle size is 10% or less
  • the polydispersed means that the standard deviation of the particle size is 10% or more. means.
  • the average particle diameter of the other inorganic filler is not particularly limited, but is preferably 0.1 ⁇ m to 5.0 ⁇ m, and particularly preferably 0.1 ⁇ m to 3.0 ⁇ m. If the particle size of the other inorganic filler is less than the lower limit, the viscosity of the resin composition becomes high, which may affect the workability during prepreg production. When the upper limit is exceeded, phenomena such as sedimentation of the inorganic filler may occur in the resin composition.
  • the average particle diameter can be measured using a laser diffraction / scattering particle size distribution measuring apparatus (a general instrument such as Shimadzu SALD-7000).
  • the other inorganic fillers are coarsely cut.
  • coarse grain cut means that coarse grains having a size equal to or larger than the grain size are excluded.
  • the filler used for this invention contains organic fillers, such as a rubber particle other than the said inorganic filler.
  • organic fillers such as a rubber particle other than the said inorganic filler.
  • the rubber particles that can be used in the present invention include core-shell type rubber particles, cross-linked acrylonitrile butadiene rubber particles, cross-linked styrene butadiene rubber particles, acrylic rubber particles, and silicone particles.
  • the core-shell type rubber particles are rubber particles having a core layer and a shell layer.
  • a two-layer structure in which an outer shell layer is formed of a glassy polymer and an inner core layer is formed of a rubbery polymer or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer.
  • the glassy polymer layer is made of, for example, a polymer of methyl methacrylate
  • the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber).
  • core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade name, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade name, manufactured by Mitsubishi Rayon Co., Ltd.).
  • NBR crosslinked acrylonitrile butadiene rubber
  • SBR crosslinked styrene butadiene rubber
  • the acrylic rubber particles include methabrene W300A (average particle size 0.1 ⁇ m), W450A (average particle size 0.2 ⁇ m) (manufactured by Mitsubishi Rayon Co., Ltd.), and the like.
  • the silicone particles are not particularly limited as long as they are rubber elastic fine particles formed of organopolysiloxane.
  • silicone particles examples include KMP-605, KMP-600, KMP-597, KMP-594 (manufactured by Shin-Etsu Chemical Co., Ltd.), Trefil E-500, Trefil E-600 (manufactured by Toray Dow Corning Co., Ltd.), etc. Commercial products can be used.
  • fillers other than silica particles having an average particle diameter of 5 to 100 nm are preferably preliminarily surface-treated in order to prevent aggregation and improve dispersibility.
  • a known silane coupling agent can be used, and examples thereof include epoxy silane, amino silane, vinyl silane, acrylic silane, and mercapto silane.
  • the surface treatment is preferably 50% or more of the specific surface area.
  • the content of the filler in the resin composition used in the present invention is preferably 50 to 85% by mass, particularly 65 to 75% by mass, based on the solid content of the entire resin composition. If the filler content exceeds the upper limit, the fluidity of the resin composition is extremely poor, and the workability during prepreg production is poor. If it is less than the lower limit, the coefficient of thermal expansion is high and the strength of the insulating layer may not be sufficient.
  • thermosetting resin is not particularly limited, and epoxy resin, cyanate resin, bismaleimide resin, phenol resin, benzoxazine resin, vinyl benzyl ether resin, benzocyclobutene resin, etc. are used. Other thermosetting resins are used in appropriate combination.
  • the epoxy resin is not particularly limited but is preferably substantially free of halogen atoms.
  • substantially free of halogen atoms means that the halogen derived from the halogen-based component used in the epoxy resin synthesis process remains in the epoxy resin even after the halogen removal step. Means to allow. Usually, it is preferable that the epoxy resin does not contain a halogen atom exceeding 30 ppm.
  • Examples of the epoxy resin substantially free of halogen atoms include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol Z type epoxy resin (4,4'- Cyclohexyldiene bisphenol type epoxy resin), bisphenol P type epoxy resin (4,4 '-(1,4) -phenylenediisopropylidene) bisphenol type epoxy resin), bisphenol M type epoxy resin (4,4'-(1 , 3-phenylenediisopropylidene) bisphenol type epoxy resin), phenol novolac type epoxy resin, cresol novolac type epoxy resin and other novolak type epoxy resin, biphenyl type epoxy resin, xylylene type Poxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, biphenyl dimethylene type epoxy resin, trisphenol methane novolak type epoxy resin, glycidyl ethers of 1,1,2,2- (tetraphenol) ethane
  • One of these epoxy resins can be used alone, or two or more types of epoxy resins having different weight average molecular weights can be used in combination.
  • One or more types of epoxy resins and epoxy A resin prepolymer can also be used in combination.
  • these epoxy resins at least one selected from the group consisting of biphenyl dimethylene type epoxy resins, novolac type epoxy resins, naphthalene-modified cresol novolac epoxy resins, and anthracene type epoxy resins is preferable.
  • the naphthylene ether type epoxy resin can be represented by, for example, the following general formula (1).
  • R1 represents a hydrogen atom or a methyl group
  • R2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group, a naphthalene group, or a glycidyl ether group-containing naphthalene group
  • m are each an integer of 0 to 2, and either o or m is 1 or more.
  • the content of the epoxy resin is not particularly limited, but is preferably 5 to 60% by weight based on the solid content of the entire resin composition. If the content is less than the lower limit, the curability of the resin composition may be reduced, or the moisture resistance of a prepreg or printed wiring board obtained using the resin composition may be reduced. Moreover, when the said upper limit is exceeded, the linear thermal expansion coefficient of a prepreg or a printed wiring board may become large, or heat resistance may fall.
  • the content of the epoxy resin is particularly preferably 10 to 50% by weight based on the solid content of the entire resin composition.
  • the weight average molecular weight of the epoxy resin is not particularly limited, but is preferably 1.0 ⁇ 10 2 to 2.0 ⁇ 10 4 .
  • the weight average molecular weight is less than the lower limit, tackiness may occur on the surface of the prepreg, and when the upper limit is exceeded, the solder heat resistance of the prepreg may decrease.
  • the weight average molecular weight of the epoxy resin can be measured, for example, by gel permeation chromatography (GPC) and specified as a weight molecular weight in terms of polystyrene.
  • the resin composition is not particularly limited.
  • a cyanate resin By including a cyanate resin, the flame retardancy is improved, the thermal expansion coefficient is reduced, and the electrical properties (low dielectric constant, low dielectric loss tangent) of the prepreg are improved.
  • the cyanate resin is not particularly limited, and can be obtained, for example, by reacting a halogenated cyanide compound with phenols or naphthols, and prepolymerizing by a method such as heating as necessary.
  • the commercial item prepared in this way can also be used.
  • cyanate resin such as novolak-type cyanate resin, bisphenol A-type cyanate resin, bisphenol E-type cyanate resin, tetramethylbisphenol F-type cyanate resin, etc.
  • novolak-type cyanate resin bisphenol A-type cyanate resin
  • bisphenol E-type cyanate resin bisphenol E-type cyanate resin
  • tetramethylbisphenol F-type cyanate resin etc.
  • the cyanate resin preferably has two or more cyanate groups (—O—CN) in the molecule.
  • cyanate groups —O—CN
  • phenol novolac-type cyanate resin is excellent in flame retardancy and low thermal expansion
  • 2,2′-bis (4-cyanatophenyl) isopropylidene and dicyclopentadiene-type cyanate ester control the crosslinking density.
  • a phenol novolac type cyanate resin is preferred from the viewpoint of low thermal expansion.
  • other cyanate resins may be used alone or in combination of two or more, and are not particularly limited.
  • the cyanate resin may be used alone. Two or more cyanate resins having different weight average molecular weights may be used in combination, or the cyanate resin and its prepolymer may be used in combination.
  • the prepolymer is usually obtained by, for example, trimerizing the cyanate resin by a heat reaction or the like, and is preferably used for adjusting the moldability and fluidity of the resin composition.
  • the prepolymer is not particularly limited. For example, when a prepolymer having a trimerization ratio of 20 to 50% by weight is used, good moldability and fluidity can be exhibited.
  • the content of the cyanate resin is not particularly limited, but is preferably 5 to 60% by weight, more preferably 10 to 50% by weight, based on the solid content of the entire resin composition.
  • the content of the cyanate resin is within the above range, the heat resistance and flame retardancy of the prepreg can be more effectively improved.
  • the content of the cyanate resin is less than the lower limit, the thermal expansion of the prepreg may be increased and the heat resistance may be decreased.
  • the upper limit is exceeded, the strength of the prepreg may be decreased.
  • the weight average molecular weight of the cyanate resin is not particularly limited, but is preferably 5.0 ⁇ 10 2 to 4.5 ⁇ 10 3 , particularly preferably 6.0 ⁇ 10 2 to 3.0 ⁇ 10 3 . If the weight average molecular weight is less than the lower limit, tackiness may occur on the surface of the prepreg or the mechanical strength may be reduced. Moreover, when a weight average molecular weight exceeds the said upper limit, the hardening reaction of a resin composition will become quick and adhesiveness with a conductor layer may deteriorate.
  • the weight average molecular weight of the cyanate resin can be measured, for example, by gel permeation chromatography (GPC) and specified as a weight molecular weight in terms of polystyrene.
  • the said resin composition is not specifically limited, Heat resistance can be improved by including a bismaleimide resin.
  • the bismaleimide resin is not particularly limited, but N, N ′-(4,4′-diphenylmethane) bismaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,2-bis And bismaleimide resins such as [4- (4-maleimidophenoxy) phenyl] propane.
  • the bismaleimide resin may be used in combination with one or more other bismaleimide resins, and is not particularly limited.
  • the bismaleimide resin may be used alone.
  • the bismaleimide resin from which a weight average molecular weight differs can be used together, or the said bismaleimide resin and its prepolymer can also be used together.
  • the content of the bismaleimide resin is not particularly limited, but is preferably 1 to 35% by weight, particularly preferably 5 to 20% by weight, based on the solid content of the entire resin composition.
  • the resin composition used in the present invention may be used in combination with a curing agent.
  • the curing agent is not particularly limited.
  • a phenolic curing agent generally used as a curing agent for the epoxy resin
  • an aliphatic amine, an aromatic amine, dicyandiamide, Dicarboxylic acid dihydrazide compounds, acid anhydrides, and the like can be used.
  • a curing accelerator can be added to the resin composition used in the present invention as necessary.
  • the curing accelerator is not particularly limited, and examples thereof include organic metal salts, tertiary amines, imidazoles, organic acids, onium salt compounds, and the like.
  • 1 type can also be used independently including the derivative in these, and 2 or more types can also be used together including these derivatives.
  • the resin composition may further contain a coupling agent.
  • the coupling agent is blended to improve the wettability of the interface between the thermosetting resin and the filler. Thereby, the resin and the filler can be uniformly fixed to the fiber woven fabric, and the heat resistance of the prepreg, particularly the solder heat resistance after moisture absorption can be improved.
  • the said coupling agent is not specifically limited, For example, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, a silicone oil type coupling agent etc. are mentioned. Thereby, wettability with the interface of a filler can be made high, and, thereby, the heat resistance of a prepreg can be improved more.
  • the amount of the coupling agent to be added is not particularly limited, but is preferably 0.05 to 3 parts by weight, particularly preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the filler. If the content is less than the lower limit, the filler cannot be sufficiently covered, and the effect of improving heat resistance may be reduced. Moreover, when content exceeds the said upper limit, reaction will be affected and bending strength etc. may fall.
  • the resin composition may include an antifoaming agent, a leveling agent, an ultraviolet absorber, a foaming agent, an antioxidant, a flame retardant, a phosphorus-based, phosphazene or other flame retardant aid, an ion scavenger, etc. Additives other than the above components may be added.
  • the prepreg of the present invention is obtained by holding a varnish containing the above-mentioned thermosetting resin composition in a solvent on a fiber woven fabric and then removing the solvent.
  • the method for preparing the varnish is not particularly limited. For example, a slurry in which a thermosetting resin and a filler are dispersed in a solvent is prepared, the other resin composition components are added to the slurry, and the solvent is further added. The method of dissolving and mixing is preferable. As a result, the dispersibility of the filler can be improved, and the silica particles having an average particle size of 5 to 100 nm contained in the filler can be easily introduced into the fiber woven fabric, and the resin composition can be impregnated into the fiber woven fabric.
  • the term “containing a thermosetting resin composition in a solvent” means that a soluble resin or the like contained in the thermosetting resin composition is dissolved in a solvent, and an insoluble filler or the like is dispersed in the solvent. Means that.
  • the solvent is not particularly limited, but a solvent that exhibits good solubility in the resin composition is preferable.
  • a solvent that exhibits good solubility in the resin composition is preferable.
  • acetone methyl ethyl ketone (MEK), cyclohexanone (ANON), methyl isobutyl ketone (MIBK), cyclopenta Non, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like.
  • MEK methyl ethyl ketone
  • ANON cyclohexanone
  • MIBK methyl isobutyl ketone
  • cyclopenta Non, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like you may use a poor solvent in the range which does not exert a bad influence.
  • the solid content of the resin composition contained in the varnish is not particularly limited, but is preferably 30 to 80% by weight, particularly preferably 40 to 70% by weight. Thereby, the impregnation property to the fiber woven fabric of the resin composition is improved. Moreover, the surface smoothness at the time of coating, thickness variation, etc. can be suppressed.
  • the method of impregnating the fiber woven fabric with the varnish includes, for example, a method of immersing the fiber woven fabric in the varnish, a method of applying with various coaters, a method of spraying with a spray, and applying and drying the varnish on a substrate to produce a resin sheet And the method of arrange
  • the method of immersing the fiber woven fabric in the varnish is preferable. Thereby, the impregnation property of the thermosetting resin composition with respect to the fiber woven fabric can be improved.
  • a fiber woven fabric is immersed in a varnish
  • a normal impregnation coating equipment can be used.
  • a semi-cured prepreg can be obtained by drying the solvent of the varnish at, for example, 90 to 180 ° C. for 1 to 10 minutes.
  • the prepreg includes a fiber woven fabric layer made of a fiber woven fabric and a resin layer made of a resin composition formed on both surfaces of the fiber woven fabric layer.
  • the thickness of the fiber woven fabric layer is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 10 to 140 ⁇ m, and still more preferably 20 to 90 ⁇ m.
  • the thickness of the resin layer (thickness on one side only) is not particularly limited, but is preferably 0.5 to 20 ⁇ m, particularly preferably 2 to 10 ⁇ m. When the thickness of the fiber woven fabric layer and the thickness of the resin layer are within the above ranges, the adhesion to the conductor layer and the surface smoothness are further improved.
  • the total thickness of the prepreg is not particularly limited, but is preferably 30 to 220 ⁇ m, and particularly preferably 40 to 165 ⁇ m. Thereby, the handleability of a prepreg is favorable and it can respond also to thickness reduction.
  • the strands constituting the fiber woven fabric there are no voids having a length of 50 ⁇ m or more in the extending direction of the fibers constituting the strands. Thereby, the insulation reliability of the printed wiring board which used the prepreg for the insulating layer can be improved. Furthermore, it is preferable that the strands constituting the fiber woven fabric do not have voids having a length of 20 ⁇ m or more, particularly 10 ⁇ m or more in the direction in which the fibers constituting the strands are stretched. In the prepreg, the number density of voids having a diameter of 50 ⁇ m or more in the strand constituting the fiber woven fabric is 50 cm ⁇ 1 or less.
  • the insulation reliability of the printed wiring board using the prepreg as the insulating layer can be improved.
  • the number density of voids having a diameter of 50 ⁇ m or more in the strands constituting the fiber woven fabric is preferably 20 cm ⁇ 1 or less, particularly preferably 10 cm ⁇ 1 or less.
  • the length and number density of the voids in the above-described strand are realized by appropriately adjusting the average particle diameter of silica particles present in the strand, the bulk density of the fiber woven fabric, and the like.
  • the laminate of the present invention is obtained by curing the prepreg according to the present invention.
  • the laminated board of this invention has a conductor layer installed in the at least one outer surface of the said prepreg based on this invention.
  • One prepreg may be used, or a laminate in which two or more prepregs are stacked may be used.
  • a laminated board hereinafter sometimes referred to as “metal-clad laminated board” in which a conductor layer is installed, a metal foil is laminated on the above-mentioned prepreg and obtained by heating and pressing.
  • the metal foil When using a single prepreg, the metal foil is stacked on both upper and lower surfaces or one side, and when using a laminate in which two or more prepregs are stacked, the metal foil is stacked on the outermost upper and lower surfaces or one side of the laminate. .
  • a metal-clad laminate can be obtained by heat-pressing a laminate of a prepreg and a metal foil.
  • metal foil examples include copper, copper alloy, aluminum, aluminum alloy, silver, silver alloy, gold, gold alloy, zinc, zinc alloy, nickel, nickel alloy, tin, tin alloy, Metal foils, such as iron and an iron-type alloy, are mentioned. Moreover, you may form conductor layers, such as the above coppers and copper-type alloys, by plating.
  • the heating temperature is not particularly limited, but is preferably 120 to 220 ° C, particularly preferably 150 to 200 ° C.
  • the pressure to be applied is not particularly limited, but is preferably 0.5 to 5 MPa, and particularly preferably 1 to 3 MPa. If necessary, post-curing may be performed at a temperature of 150 to 300 ° C. in a high-temperature bath or the like.
  • a method for producing a metal-clad laminate using the metal foil with a resin layer shown in FIG. First, a metal foil 10 with a resin layer in which a uniform resin layer 12 is coated on a metal foil 11 with a coater is prepared. Next, the metal foils 10 and 10 with the resin layer are arranged on both sides of the fiber woven fabric 20 with the resin layer 12 inside (FIG. 1 (a)), heated in a vacuum at 60 to 130 ° C., pressure 0. The laminate is impregnated at 1 to 5 MPa. Thereby, the prepreg 41 with a metal foil is obtained (FIG. 1B). Next, the metal-clad laminate 51 can be obtained by directly heating and pressing the prepreg 41 with metal foil (FIG. 1C).
  • another method for producing the metal-clad laminate of the present invention includes a method for producing a metal-clad laminate using the polymer film sheet with a resin layer shown in FIG.
  • a polymer film sheet 30 with a resin layer in which a uniform resin layer 32 is coated on a polymer film sheet 31 with a coater is prepared.
  • polymer film sheets 30 and 30 with a resin layer are arranged on both sides of the fiber woven fabric 20 with the resin layer 32 inside (FIG. 2A), heated in a vacuum at 60 to 130 ° C., and pressurized 0 Impregnation with laminate at 1-5 MPa.
  • the prepreg 42 with a polymer film sheet can be obtained (FIG.2 (b)).
  • the metal foil 11 is arranged on the surface from which the polymer film sheet 31 is peeled ( FIG. 2 (d)), heating and pressing. Thereby, the metal-clad laminated board 52 can be obtained (FIG.2 (e)). Furthermore, when peeling a double-sided polymer film sheet, two or more sheets can be laminated
  • a metal-clad laminate When two or more prepregs are laminated, a metal-clad laminate can be obtained by placing a metal foil or a polymer film sheet on the upper and lower surfaces or one side of the outermost side of the laminated prepreg and then heat-pressing it.
  • the metal-clad laminate obtained by such a manufacturing method has high thickness accuracy, uniform thickness, and excellent surface smoothness.
  • a metal-clad laminate having a small molding strain can be obtained, a printed wiring board and a semiconductor device manufactured using the metal-clad laminate obtained by the manufacturing method have small warpage and small warpage variation. Furthermore, a printed wiring board and a semiconductor device can be manufactured with high yield.
  • the conditions for the heat and pressure molding are not particularly limited, but are preferably 120 to 250 ° C, and more preferably 150 to 220 ° C.
  • the pressure to be pressurized is not particularly limited, but is preferably 0.1 to 5 MPa, and particularly preferably 0.5 to 3 MPa. Further, if necessary, post-curing may be performed at a temperature of 150 to 300 ° C. in a high-temperature bath or the like.
  • the metal-clad laminate shown in FIGS. 1 and 2 is not particularly limited.
  • the metal-clad laminate is produced using an apparatus for producing a metal foil with a resin layer and an apparatus for producing a metal-clad laminate.
  • the metal foil can be supplied by, for example, using a long sheet product in the form of a roll, and thereby continuously unwinding.
  • a predetermined amount of the resin varnish is continuously supplied onto the metal foil by the resin supply device.
  • the resin varnish a coating solution in which the resin composition of the present invention is dissolved and dispersed in a solvent is used as the resin varnish.
  • the coating amount of the resin varnish can be controlled by the clearance between the comma roll and the backup roll of the comma roll.
  • the metal foil coated with a predetermined amount of the resin varnish is transferred inside the horizontal conveyance type hot air drying device, and substantially removes and removes the organic solvent contained in the resin varnish. It can be set as the metal foil with a resin layer which advanced the hardening reaction to the middle.
  • the metal foil with the resin layer can be wound up as it is, but with a laminate roll, a protective film is superimposed on the side on which the resin layer is formed, and the metal foil with the resin layer on which the protective film is laminated is wound up, A metal foil with an insulating resin layer is obtained.
  • the printed wiring board of the present invention uses the above prepreg and / or the above laminated board as an inner layer circuit board. Or the printed wiring board of this invention uses said prepreg for the insulating layer on an inner-layer circuit.
  • the layer formed by curing the prepreg in the inner layer circuit board is an insulating layer.
  • the printed wiring board is a conductor circuit layer formed by providing a conductive layer such as a metal foil on an insulating layer.
  • a single-sided printed wiring board single-layer board
  • double-sided printed wiring board double-layer board
  • multilayer printed wiring boards multilayer boards.
  • a multilayer printed wiring board is a printed wiring board that is laminated in three or more layers by a plated through hole method, a build-up method, or the like, and can be obtained by heating and press-molding an insulating layer on an inner circuit board. .
  • As said inner-layer circuit board what uses the laminated board of this invention and / or the prepreg of this invention can be used, for example.
  • a conductive circuit having a predetermined pattern is formed on the laminated board of the present invention having no metal foil by a semi-additive method, and the conductive circuit portion is blackened.
  • the conductor circuit of a predetermined pattern is formed on the metal foil of the metal-clad laminate of the present invention, and the conductor circuit portion is blackened.
  • electric / electronic parts such as capacitors, resistors, and chips are mounted on an insulating support made of a cured resin, and the prepreg of the present invention is mounted thereon.
  • the prepreg of the present invention is further laminated on the inner layer circuit board using the laminate of the present invention and / or the prepreg of the present invention, or a conductor circuit of a conventionally known inner layer circuit board. And what was heat-pressed-hardened can also be used as an inner-layer circuit board.
  • the insulating layer on the inner layer circuit the prepreg of the present invention can be used.
  • the said inner layer circuit board does not need to consist of the prepreg or laminated board of this invention.
  • the inner layer circuit board is produced by forming a conductor circuit of a predetermined pattern on one side or both sides of the metal-clad laminate and blackening the conductor circuit portion.
  • the formation method of the said conductor circuit is not specifically limited, It can carry out by well-known methods, such as a subtractive method, an additive method, and a semi-additive method.
  • through holes can be formed in the inner layer circuit board by drilling, laser processing or the like, and electrical connection on both sides can be established by plating or the like. Since the inner layer circuit board is made of the metal-clad laminate of the present invention, it is possible to form through holes with excellent accuracy in hole diameter, shape, etc., particularly by laser processing.
  • the laser an excimer laser, a UV laser, a carbon dioxide gas laser, or the like can be used.
  • the prepreg is superposed on the inner layer circuit board, heat-pressed, and further heat-cured to form an insulating layer.
  • the prepreg and the inner layer circuit board are overlapped and vacuum heated and pressed using a vacuum pressurizing laminator device or the like, and then the insulating layer is heated and cured with a hot air dryer or the like.
  • the conditions for heat and pressure molding are not particularly limited, but for example, it can be carried out at a temperature of 60 to 160 ° C. and a pressure of 0.2 to 3 MPa.
  • the conditions for heat curing are not particularly limited, but for example, it can be carried out at a temperature of 140 to 240 ° C. for a time of 30 to 120 minutes.
  • the laminated insulating layer is irradiated with laser to form an opening (via hole).
  • the said laser can use the thing similar to the laser used for through-hole formation. Since the insulating layer is made of the prepreg of the present invention, it is possible to form an aperture having excellent precision such as hole diameter and shape by laser processing.
  • the resin residue (smear) after laser irradiation is preferably removed by an oxidizing agent such as permanganate or dichromate, that is, desmear treatment. If the desmear treatment is insufficient and the desmear property is not sufficiently secured, even if metal plating is applied to the aperture, the electrical conductivity between the upper and lower conductor circuit layers is sufficient due to smear. May not be secured. Also, since the surface of the smooth insulating layer can be roughened at the same time by performing desmear treatment, when the conductor layer is formed on the surface of the insulating layer by metal plating, the adhesion between the surface of the insulating layer and the conductor layer Excellent in properties. Note that a conductor layer may be formed on the surface of the insulating layer before the opening is formed by laser irradiation.
  • a metal plating process is performed on the opening portion and the insulating layer surface to form a conductor layer.
  • a conductor circuit is further formed on the surface of the insulating layer by the above-described known method.
  • continuity with an upper conductor circuit layer and a lower conductor circuit layer can be aimed at by performing a metal plating process to an opening part and forming a conductor layer.
  • an insulating layer may be further laminated and a conductor circuit may be formed in the same manner as described above.
  • a solder resist film is formed on the outermost layer after the conductor circuit is formed.
  • the method for forming the solder resist film is not particularly limited. For example, a method of forming a dry film type solder resist by laminating (laminating), exposing and developing, or printing a liquid resist by exposing and developing. This is done by the forming method.
  • a connection electrode portion is provided for mounting a semiconductor element.
  • the connection electrode portion can be appropriately coated with a metal film such as gold plating, nickel plating, or solder plating.
  • a semiconductor element having solder bumps is mounted on the printed wiring board obtained above, and connection to the printed wiring board is attempted through the solder bumps. Then, a sealing resin is filled between the printed wiring board and the semiconductor element to form a semiconductor device.
  • the solder bump is preferably made of an alloy made of tin, lead, silver, copper, bismuth or the like.
  • the method for connecting the semiconductor element and the printed wiring board is to use a flip chip bonder or the like to align the connection electrode portion on the printed wiring board with the solder bumps of the semiconductor element, and then the IR reflow apparatus, the hot plate
  • the solder bumps are heated to the melting point or higher by using other heating devices, and the printed wiring board and the solder bumps are connected by fusion bonding.
  • a metal layer having a relatively low melting point such as solder paste, may be formed in advance on the connection electrode portion on the printed wiring board.
  • the connection reliability can be improved by applying a flux to the surface layer of the connection electrode portion on the solder bump and / or printed wiring board.
  • the fiber woven fabrics used in the examples and comparative examples are woven fabrics obtained by weaving glass fibers stipulated in JIS R3413, and are the following glass fiber woven fabrics A to L.
  • A Glass fiber yarn of T glass and E110 1/0 was used, and the number of warps and wefts to be driven per 25 mm was 44.5 and 42, the thickness was 130 ⁇ m after opening and flattening, and the basis weight was 155 g / m 2.
  • B Using E glass, DE150 1/0 glass fiber yarn, the number of warps and wefts to be driven per 25 mm is 46.5, 44, the thickness is 95 ⁇ m after opening and flattening, and the basis weight is 121 g / m 2.
  • C T glass, using a glass fiber yarn E 225 1/0, implantation number per warp and weft of 25mm is 65 present, 64, opening-flattened treated thickness 95 .mu.m, basis weight 121g / m 2
  • D D glass, glass fiber yarn of E225 1/0, the number of warps and wefts to be driven per 25 mm is 65 or 64, the thickness is 95 ⁇ m after opening and flattening, and the basis weight is 121 g / m 2
  • E Glass fiber yarn of T glass and D450 1/0 was used, and the number of warps and wefts to be driven per 25 mm was 59, 59, the thickness was 46 ⁇ m after opening and flattening, and the basis weight was 53 g / m 2.
  • T glass, BC1500 1/0 glass fiber yarn Using T glass, BC1500 1/0 glass fiber yarn, the number of warps and wefts to be driven per 25 mm is 90, 90, thickness 20 ⁇ m after opening and flattening, basis weight 24 g / m 2
  • G T glass, C1200 1/0 glass fiber yarn is used, and the number of warps and wefts to be driven per 25 mm is 74, 77, the thickness is 25 ⁇ m after opening and flattening, and the basis weight is 31 g / m 2.
  • T glass, glass fiber yarn of E110 1/0 was used, and the number of warps and wefts driven per 25 mm was 44.5, 42, the thickness was 115 ⁇ m after opening and flattening, and the basis weight was 155 g / m 2.
  • J T glass, E225 1/0 glass fiber yarn, 59 and 54 warp yarns and weft yarns per 25 mm, thickness of 97 ⁇ m after opening and flattening, basis weight of 100 g / m 2
  • K T glass, D450 1/0 glass fiber yarn, the number of warps and wefts to be driven per 25 mm was 60, 47, the thickness was 50 ⁇ m after opening and flattening, and the basis weight was 48 g / m 2.
  • L T glass, glass fiber yarn of C1200 1/0, the number of warps and wefts to be driven per 25 mm is 68 or 72, the thickness is 27 ⁇ m after opening and flattening, and the basis weight is 25 g / m 2.
  • varnishes used in the examples and comparative examples were produced by containing and mixing the resin composition in a solvent according to the following varnish production examples 1 to 7.
  • varnish production example 1 6 parts by weight of an epoxy resin (HP-5000 manufactured by DIC), 12 parts by weight of a phenol novolac cyanate resin (PT30 manufactured by Lonza), 6 parts by weight of a phenol-based curing agent (MEH-7851-4L manufactured by Meiwa Kasei Co., Ltd.) 10 parts by weight of silica particles (NSS-5N manufactured by Tokuyama Corporation, average particle size 70 nm), 65 parts by weight of spherical silica (SO-31R manufactured by Admatechs, average particle diameter 1.0 ⁇ m), epoxy silane (Shin-Etsu Chemical Co., Ltd.) (Production KBM-403E) 1.0 part by weight was contained and mixed in methyl ethyl ketone and stirred using a high-speed stirrer to obtain a varnish whose epoxy resin composition was
  • epoxy resins 9 parts by weight of biphenyl aralkyl type epoxy resin (NC-3000, manufactured by Nippon Kayaku Co., Ltd.), 17 parts by weight of bismaleimide resin (BMI-70, manufactured by Keiai Chemical Industry Co., Ltd.), 3 parts by weight of 4,4′-diaminodiphenylmethane 10 parts by weight of silica particles (NSS-5N manufactured by Tokuyama Corporation, average particle size 70 nm), 60 parts by weight of boehmite (BMB manufactured by Kawai Lime Co., Ltd., average particle size 0.5 ⁇ m), epoxy silane (KBM- manufactured by Shin-Etsu Chemical Co., Ltd.) 403E) 1.0 part by weight was contained and mixed in dimethylformamide.
  • NC-3000 manufactured by Nippon Kayaku Co., Ltd.
  • BMI-70 bismaleimide resin
  • BMI-70 manufactured by Keiai Chemical Industry Co., Ltd.
  • Biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd. NC-3000FH) 20 parts by weight, Naphthalene type epoxy resin (DIC Co., Ltd. HP4032D) 5 parts by weight, Cyanate resin (Toto Kasei Co., Ltd.
  • epoxy resin 18.5 parts by weight of a biphenyl aralkyl type epoxy resin (NC-3000 manufactured by Nippon Kayaku Co., Ltd.), 34.9 parts by weight of a bismaleimide resin (BMI-70 manufactured by Keiai Kasei Kogyo Co., Ltd.), 4,4′-diamino 6.1 parts by weight of diphenylmethane, 5 parts by weight of silica particles (NSS-5N manufactured by Tokuyama Co., Ltd., average particle size 70 nm), 35 parts by weight of boehmite (BMB manufactured by Kawai Lime Co., Ltd., average particle size 0.5 ⁇ m), epoxy silane (Shin-Etsu) 0.5 parts by weight of KBM-403E manufactured by Kagaku Kogyo Co., Ltd.
  • NSS-5N manufactured by Tokuyama Co., Ltd., average particle size 70 nm
  • boehmite BMB manufactured by Kawai Lime Co., Ltd., average particle size
  • epoxy resins biphenyl aralkyl type epoxy resin (NC-3000 manufactured by Nippon Kayaku Co., Ltd.) 2.80 parts by weight, bismaleimide resin (BMI-70 manufactured by KAI Kasei Kogyo Co., Ltd.) 5.27 parts by weight, 4,4′-diamino 0.93 parts by weight of diphenylmethane, 10 parts by weight of silica particles (NSS-5N manufactured by Tokuyama Corporation, average particle size 70 nm), 80 parts by weight of boehmite (BMB manufactured by Kawai Lime Co., Ltd., average particle size 0.5 ⁇ m), epoxy silane (Shin-Etsu) 1.0 part by weight of KBM-403E manufactured by Kagaku Kogyo Co., Ltd.
  • the mixture was stirred using a high-speed stirrer to obtain a varnish having an epoxy resin composition having a solid content of 70% by weight.
  • the whole filler contained in the resin composition contained / mixed in the varnish was 100% by mass
  • the silica particles contained in the filler were 0% by mass
  • the spherical silica was 100% by mass.
  • Table 1 shows the compositions of the resin compositions used in Varnish Production Examples 1 to 7. In addition, the compounding quantity of each component is shown by a weight part.
  • a prepreg Using the glass fiber woven fabric and the varnish, a prepreg, a metal-clad laminate, a printed wiring board (inner layer circuit board), a multilayer printed wiring board, and a semiconductor device were produced.
  • Example 1 (1) Preparation of prepreg
  • the varnish obtained in Production Example 1 was cast coated on a 38 ⁇ m thick polyethylene terephthalate substrate (hereinafter referred to as “PET substrate”), and the solvent was evaporated and dried at a temperature of 140 ° C. for 10 minutes.
  • the thickness of the resin layer was 30 ⁇ m.
  • the base material with the resin layer is arranged on both surfaces of the glass woven fabric A so that the resin layer is in contact with the glass woven fabric, and a vacuum and pressure laminator (Meiki Seisakusho Co., Ltd.) under the conditions of a pressure of 0.5 MPa and a temperature of 140 ° C. for 1 minute.
  • the resin composition was impregnated by heating and pressing with MLVP-500).
  • a 150 ⁇ m-thick prepreg resin layer (one side): 10 ⁇ m, fiber woven fabric layer: 130 ⁇ m
  • a PET substrate a 38 ⁇ m thick polyethylene terephthalate substrate
  • the glass woven fabric is made of glass fiber having a Young's modulus of 93 GPa when formed into a plate, a tensile strength of 48 GPa when formed into a plate, and a tensile strength of 90 N / 25 mm in the longitudinal direction when formed into a fiber woven fabric. It was.
  • the glass mask was used for exposure with an exposure apparatus (Ono Sokki EV-0800), followed by development with an aqueous sodium carbonate solution to form a resist mask.
  • electrolytic copper plating (Okuno Pharmaceutical 81-HL) was performed at 3 A / dm 2 for 25 minutes using the electroless plating layer as a power feeding layer electrode. Thus, a copper wiring pattern having a thickness of about 20 ⁇ m was formed.
  • the resist mask was peeled off with a monoethanolamine solution (R-100, manufactured by Mitsubishi Gas Chemical Company) using a peeling machine.
  • the printed wiring board obtained above is used as an inner layer circuit board, and the multilayer printed wiring board insulating layer prepreg and a 2 ⁇ m copper foil with a carrier (Mitsui Metal Mining Co., Ltd.) Manufactured by Micro Thin MT18Ex-2), stacked using a stacking vacuum stacking apparatus, and cured by heating at a temperature of 200 ° C., a pressure of 3 MPa, and a time of 120 minutes to obtain a multilayer stack.
  • a carrier Mitsubishi Metal Mining Co., Ltd.
  • outer layer circuit formation is performed in the same manner as in the method for producing the printed wiring board (inner layer circuit board) (4), and finally a solder resist (manufactured by Taiyo Ink, PSR4000 / AUS308) is formed on the circuit surface.
  • a solder resist manufactured by Taiyo Ink, PSR4000 / AUS308 is formed on the circuit surface.
  • a printed wiring board was obtained.
  • the multilayer printed wiring board was subjected to the ENEPIG treatment on the connection electrode portion corresponding to the solder bump arrangement of the semiconductor element.
  • ENEPIG treatment includes [1] cleaner treatment, [2] soft etching treatment, [3] pickling treatment, [4] pre-dip treatment, [5] palladium catalyst application, [6] electroless nickel plating treatment, [7] The electroless palladium plating treatment and [8] electroless gold plating treatment were performed.
  • a semiconductor device is a semiconductor device (TEG chip, size 10 mm ⁇ 10 mm, thickness 0.1 mm) having solder bumps on a printed wiring board subjected to ENEPIG processing, by a flip chip bonder device. After mounting by thermocompression bonding, solder bumps were melt-bonded in an IR reflow furnace, and then liquid sealing resin (manufactured by Sumitomo Bakelite Co., Ltd., CRP-4152S) was filled and the liquid sealing resin was cured. . The liquid sealing resin was cured at a temperature of 150 ° C. for 120 minutes. In addition, the solder bump of the said semiconductor element used what was formed with the eutectic of Sn / Pb composition. Finally, it was separated into pieces of 14 mm ⁇ 14 mm with a router to obtain a semiconductor device.
  • Examples 2 to 3 and Comparative Examples 1 to 6> Using the woven fabric and the varnish obtained by the production example of varnish shown in Table 4, a prepreg as in Example 1, a metal-clad laminate having copper foil on both surfaces of an insulating layer having a thickness of 150 ⁇ m, and a printed wiring board (Inner layer circuit board), multilayer printed wiring board and semiconductor device were obtained.
  • Example 1 using the varnish obtained by the production example of the fiber woven fabric and the varnish shown in Table 5 except that the thickness of the resin layer of the substrate with the resin layer was set as shown in Table 5 at the time of preparing the prepreg.
  • a prepreg, a metal-clad laminate having copper foil on both sides of an insulating layer having a thickness of 100 ⁇ m, a printed wiring board (inner circuit board), a multilayer printed wiring board, and a semiconductor device were obtained.
  • the through-hole formation of the printed wiring board was performed using a carbon dioxide laser (Mitsubishi Electric Corporation, ML605GTX3-5100U2) under the conditions of an aperture ⁇ 1.1 mm, a beam diameter of about 110 ⁇ m, energy 7 to 9 mJ, and shot number 6. A through-hole having a diameter of 100 ⁇ m was formed.
  • a carbon dioxide laser Mitsubishi Electric Corporation, ML605GTX3-5100U2
  • Example 7 and Comparative Example 8 are obtained by the production examples of the fiber woven fabric and varnish shown in Table 6 except that the thickness of the resin layer of the substrate with the resin layer is as shown in Table 6 at the time of preparing the prepreg.
  • a prepreg, a metal-clad laminate having copper foil on both sides of an insulating layer having a thickness of 60 ⁇ m, a printed wiring board (inner circuit board), a multilayer printed wiring board, and a semiconductor device were obtained. It was.
  • Example 8 uses the varnish obtained by the production example of the fiber woven fabric and the varnish shown in Table 6 except that the thickness of the resin layer of the substrate with the resin layer is as shown in Table 6 at the time of preparing the prepreg.
  • a prepreg total thickness 30 ⁇ m
  • a metal-clad laminate having copper foil on both sides of a 60 ⁇ m thick insulating layer obtained by laminating and curing two 30 ⁇ m prepregs, an inner circuit board A multilayer printed wiring board and a semiconductor device were obtained.
  • the through-hole formation of the printed wiring board was performed using a carbon dioxide gas laser (ML605GTX3-5100U2 manufactured by Mitsubishi Electric Corporation) under the conditions of an aperture ⁇ 1.1 mm, a beam diameter of about 110 ⁇ m, energy 6 to 8 mJ, and shot number 6 A through-hole having a diameter of 100 ⁇ m was formed.
  • a carbon dioxide gas laser ML605GTX3-5100U2 manufactured by Mitsubishi Electric Corporation
  • the through-hole formation of the printed wiring board was performed using a carbon dioxide gas laser (ML605GTX3-5100U2 manufactured by Mitsubishi Electric Corporation) under the conditions of an aperture ⁇ 1.1 mm, a beam diameter of about 110 ⁇ m, energy 6 to 8 mJ, and shot number 6 A through-hole having a diameter of 100 ⁇ m was formed.
  • a carbon dioxide gas laser ML605GTX3-5100U2 manufactured by Mitsubishi Electric Corporation
  • Table 7 shows the evaluation results of Examples and Comparative Examples in which the thickness of the insulating layer of the metal-clad laminate is 40 ⁇ m.
  • the amount of filler (% by mass) in the resin composition indicates the amount of filler when the entire resin composition is 100% by mass.
  • (Mass)% shows the ratio of each component when the whole filler is 100 mass%.
  • Impregnation of resin composition The prepregs obtained in the examples and comparative examples were cured for 1 hour at a temperature of 170 ° C., and then the cross section (about the range of the cross section 300 mm in the width direction) was SEM (scanning electron) And the presence or absence of voids inside the fiber was evaluated. Voids are observed as white granular points on the fiber cross section on the image.
  • Each code is as follows. ⁇ : When the resin composition is fully impregnated and there is no void inside the fiber ⁇ : When there is a void inside the fiber
  • the cross protrusion amount of through-through holes and the roundness of the hole diameter after carbonic acid laser processing were measured.
  • the cross protrusion amount and roundness are measured using a color 3D laser microscope (manufactured by Keyence Corporation, device name VK-9710), and the cross protrusion amount is measured from directly above the hole on the laser incident side.
  • the roundness is measured by observing from above the hole on the laser incident side, measuring the major axis and minor axis of the hole top diameter, and calculating the major axis ⁇ minor axis. Went by.
  • the sample used the printed wiring board (inner layer circuit board) obtained by the said Example and the comparative example, and observed the board
  • Each code is as follows. ⁇ : When the cross protrusion amount is within 10 ⁇ m and the roundness is 0.85 or more ⁇ : When the cross protrusion amount is 10 ⁇ m or more, or the roundness is less than 0.85 ⁇ : Cross protrusion amount When the diameter is 10 ⁇ m or more and the roundness is less than 0.85
  • Example 1 As a representative example of the observation result of the impregnating property of the resin composition (1), a photograph of a sectional view of the prepreg obtained in Example 1 is shown in FIG. 3, and a photograph of a sectional view of the prepreg obtained in Comparative Example 4 Is shown in FIG.
  • FIG. 4 In Comparative Example 4, voids were observed in the fiber woven fabric because the impregnation property of the resin composition was poor.
  • FIG. 3 in Example 1, since the impregnation property of the resin composition was good, there was no void in the fiber woven fabric. In Example 1, it is considered that the impregnation property of the resin composition was improved by the nano-sized silica particles entering the strand.
  • Comparative Example 4 did not contain nano-sized silica particles, so that the impregnation of the resin composition could not be improved.
  • FIG. 5 shows a photograph of the surface of the metal-clad laminate obtained in Example 1 which has been entirely etched, and obtained in Comparative Example 6.
  • FIG. 6 shows a photograph of the entire surface of the copper foil of the metal-clad laminate obtained by etching
  • FIG. 7 shows an SEM photograph of an enlarged view of voids (white granular points on the image) observed in FIG.
  • the SEM photograph of the enlarged view of the cross section of the void observed in FIG. 7 is shown in FIG.
  • FIGS. 6, 7, and 8 in Comparative Example 6, voids were observed on the surface where the entire surface of the metal-clad laminate was etched.
  • FIG. 5 in Example 1, there was no void on the etched surface.
  • FIGS. 9 to 12 are SEM photographs of cross-sectional views showing a part of the strands constituting the prepreg fiber woven fabric obtained in Example 1.
  • FIG. 9 shows a cross section parallel to the drawing direction of the strand.
  • 10 to 12 show cross sections perpendicular to the strand drawing direction.
  • FIGS. 9 to 12 it can be seen that in the prepreg obtained in Example 1, silica particles are present in the strand.
  • the resin composition contained in the varnish contains 50 to 85% by mass of the filler in the whole resin composition, and the average particle size of the filler Silica particles having a diameter of 5 to 100 nm were contained in an amount of 1 to 20% by mass, and the bulk density of the fiber woven fabric was 1.05 to 1.30 g / cm 3 .
  • excellent evaluation results were obtained for all the above evaluation items. That is, the prepreg according to the present example was excellent in the impregnation property of the resin composition with respect to the fiber woven fabric, had low thermal expansibility, had excellent laser processability when used as an insulating layer of a printed wiring board, and was formed by a laser.
  • the hole can form a hole with good hole diameter and shape accuracy and with suppressed fiber protrusion. Furthermore, since the prepreg according to the present example is excellent in moisture-absorbing solder heat resistance, it has high heat resistance and excellent moldability, so it can be said that it has excellent surface smoothness and thus excellent adhesion to the conductor layer. . Further, since the PKG warpage in the semiconductor device of the present invention is small, it can be seen that the prepreg according to the present example has low thermal expansion and high rigidity.
  • Comparative Examples 1 and 6 good prepreg impregnation properties were obtained. However, in Comparative Example 1, good results were not obtained in CTE and package warpage. This seems to be because the silica particles are prevented from entering the strands because only the resin component of the resin composition enters the strands because the content of the filler is low. As a result, it is considered that the filler could not be highly filled, the CTE of the prepreg was increased, and the package warp occurred. In Comparative Example 6, good results were not obtained. This is because a sufficient amount of the resin composition can be impregnated due to the low bulk density, so that the silica particles contained in the resin composition are also suppressed from entering the strand. Seem.
  • the bulk density of the fiber woven fabric is small, it becomes a thick fiber base material, so that the thickness of the resin layer on the surface layer of the prepreg becomes thin. For this reason, it is considered that the PKG warp occurred although the moldability and moisture absorption solder heat resistance were poor and the CTE was good.
  • Comparative Examples 4 and 7 to 9 good results were not obtained with respect to the impregnation property of the prepreg.
  • Comparative Examples 4 and 7 to 9 nano-sized silica particles are not contained in the resin composition constituting the prepreg. For this reason, it is considered that the silica particles could not enter the strands and the impregnation of the resin composition could not be improved.
  • good results were not obtained in other characteristics such as CTE and package warpage.
  • Comparative Example 7 since the bulk density of the fiber woven fabric is small, the laser processability is inferior, and since the impregnation property is poor, the insulation reliability of the through-hole is inferior.
  • Comparative Examples 2, 3, and 5 good results were not obtained with respect to the impregnation property of the prepreg. Also, good results were not obtained for other characteristics.
  • Comparative Example 2 since the filler content is too high, the fluidity of the silica particles in the resin composition cannot be obtained, and as a result, it is considered that the silica particles are prevented from entering the strands.
  • Comparative Example 3 since the content of the nano-sized silica particles is high, the nano-sized silica particles are aggregated. As a result, it seems that the silica particles are prevented from entering the strand. In Comparative Example 5, since the bulk density of the fiber woven fabric is large, it seems that the silica particles are prevented from entering the strand.
  • Comparative Example 5 since the bulk density of the fiber woven fabric was too large, the impregnation property of the resin composition was poor, the moisture absorption solder heat resistance was poor, and the laser processability and the through-hole insulation reliability were also poor.
  • Comparative Example 6 since the bulk density of the fiber woven fabric was small, the laser processability and the through-hole insulation reliability were poor. Furthermore, since the bulk density of the fiber woven fabric is small, it becomes a thick fiber base material, so that the thickness of the resin layer on the surface layer of the prepreg becomes thin. For this reason, it was inferior to a moldability and moisture absorption solder heat resistance, and PKG curvature occurred.

Abstract

This pre-preg (40) is formed by impregnating a woven fiber constituted of strands with a resin composition. In this pre-preg, silica particles are present in the strands. This makes it possible to obtain a pre-preg having a superior ability for woven fiber to be impregnated with the resin composition. It is further possible to use this pre-preg and/or a metal-clad laminate board produced using this pre-preg to produce a printed wiring board and a semiconductor device.

Description

プリプレグ、積層板、プリント配線板及び半導体装置Prepreg, laminated board, printed wiring board, and semiconductor device
本発明は、プリプレグ、積層板、プリント配線板及び半導体装置に関する。 The present invention relates to a prepreg, a laminated board, a printed wiring board, and a semiconductor device.
 近年、電子機器の高機能化等の要求に伴い、電子部品の高密度集積化、更には高密度実装化等が進んでいる。そのため、これらに使用される高密度実装対応のプリント配線板は、回路配線の微細化、並びに、スルーホール及びビア孔の縮小化が求められている。
 スルーホール及びビア孔は、ドリルや、炭酸ガスレーザー等のレーザーを用いて形成されるが、特に小径の穴あけには、レーザーが用いられる。レーザーによる穴あけ加工では、穴を形成する絶縁層壁面の凹凸が大きい程、穴径や形状がばらつきやすく、加工の精度が低下してしまう。
 プリント配線板の絶縁層は、プリプレグを1枚又は複数枚重ね合わせたものを加熱加圧することにより形成することができる。プリプレグは、一般的に、熱硬化性樹脂を主成分とする樹脂組成物を溶剤に含有させてなるワニスをガラスクロス等の基材に含浸させ、これを加熱乾燥させることにより作製される。レーザー加工によって穴を形成する絶縁層壁面のうち、基材部分と樹脂組成物部分とで、レーザーによる溶融性に差がある。このため、基材の密度が小さく目が粗いと、穴径、形状がばらつきやすくなる傾向がある。一方、目の詰まった高密度の基材を用いることで、絶縁層のレーザーによる穴あけ加工性を向上させることができる(特許文献1、2)。
2. Description of the Related Art In recent years, with the demand for higher functionality of electronic devices and the like, electronic components have been integrated at a high density and further at a high density mounting. For this reason, printed wiring boards for high-density mounting used for these are required to have finer circuit wiring and reduced through holes and via holes.
The through hole and the via hole are formed using a drill or a laser such as a carbon dioxide laser, but a laser is used particularly for drilling a small diameter. In laser drilling, the larger the unevenness of the wall surface of the insulating layer that forms the hole, the more easily the hole diameter and shape vary, and the processing accuracy decreases.
The insulating layer of the printed wiring board can be formed by heating and pressing one or a plurality of prepregs stacked together. In general, a prepreg is produced by impregnating a base material such as glass cloth with a varnish obtained by containing a resin composition containing a thermosetting resin as a main component in a solvent, and then heating and drying the varnish. Among the insulating layer wall surfaces in which holes are formed by laser processing, there is a difference in meltability by laser between the base material portion and the resin composition portion. For this reason, when the density of the base material is small and the eyes are rough, the hole diameter and shape tend to vary. On the other hand, by using a high-density base material with closed eyes, it is possible to improve the drilling workability of the insulating layer by laser (Patent Documents 1 and 2).
 また、プリント配線板上への部品実装の高密度化に対応するために、プリント配線板の熱膨張による反りを小さくして接続信頼性を確保することが求められている。半導体装置(半導体パッケージ)は、プリント配線板に半導体素子を搭載してなるが、半導体素子は、熱膨張率が3~6ppm/℃であり、一般的な半導体パッケージ用プリント配線板の熱膨張率より小さい。そのため、半導体パッケージに熱衝撃が加わったときに、半導体素子と半導体パッケージ用プリント配線板の熱膨張率差により、半導体パッケージに反りが発生してしまう場合がある。この場合、半導体素子と半導体パッケージ用プリント配線板との間や、半導体パッケージと実装されるプリント配線板との間で接続不良が生じることがある。
 熱膨張率が小さい絶縁性材料を絶縁層に用いることで、プリント配線板の熱膨張による反りを小さくすることができる。絶縁性材料となるプリプレグを低線膨張化するために、プリプレグの製造に用いられる樹脂組成物として、無機充填材を高充填化させたものが用いられている(特許文献3)。
Further, in order to cope with the higher density of component mounting on the printed wiring board, it is required to reduce the warp due to thermal expansion of the printed wiring board and ensure connection reliability. A semiconductor device (semiconductor package) has a semiconductor element mounted on a printed wiring board, and the semiconductor element has a coefficient of thermal expansion of 3 to 6 ppm / ° C., and the coefficient of thermal expansion of a general printed wiring board for a semiconductor package. Smaller than. Therefore, when a thermal shock is applied to the semiconductor package, the semiconductor package may be warped due to a difference in thermal expansion coefficient between the semiconductor element and the printed wiring board for the semiconductor package. In this case, a connection failure may occur between the semiconductor element and the printed wiring board for a semiconductor package or between the semiconductor package and the printed wiring board to be mounted.
By using an insulating material having a low coefficient of thermal expansion for the insulating layer, warpage due to thermal expansion of the printed wiring board can be reduced. In order to reduce the linear expansion of a prepreg serving as an insulating material, a resin composition that is highly filled with an inorganic filler is used as a resin composition used in the manufacture of the prepreg (Patent Document 3).
特開2001-38836号公報JP 2001-38836 A 特開2000-22302号公報Japanese Patent Laid-Open No. 2000-22302 特開2009-138075号公報JP 2009-138075 A
 しかしながら、高密度の基材を用いてプリプレグを作製すると、基材への樹脂組成物の含浸性が劣り、特に充填材を多量に含有した樹脂組成物では、充填材が基材の繊維間に入り込めないため樹脂組成物の含浸が困難となる。また、含浸性を向上させるために、例えば充填材の含有量の低減等を行った場合、プリプレグが有する他の諸特性を維持することが困難となることがある。 However, when a prepreg is produced using a high-density base material, the impregnation property of the resin composition to the base material is inferior. Especially in a resin composition containing a large amount of filler, the filler is between the fibers of the base material. Since it cannot enter, impregnation of the resin composition becomes difficult. Further, for example, when the content of the filler is reduced in order to improve the impregnation property, it may be difficult to maintain other characteristics of the prepreg.
 本発明は、上記問題点を解消するためになされたものであって、本発明の目的は、プリプレグが有する諸特性を維持しつつ、繊維織布に対する熱硬化性樹脂組成物の含浸性に優れたプリプレグを提供することである。また、本発明の目的は、当該プリプレグを用いた金属張積層板、さらにこれらを用いて得られるプリント配線板並びに半導体装置を提供することである。 The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to improve the impregnation property of the thermosetting resin composition to the fiber woven fabric while maintaining various properties of the prepreg. Prepreg. Another object of the present invention is to provide a metal-clad laminate using the prepreg, a printed wiring board and a semiconductor device obtained using the metal-clad laminate.
 本発明によれば、ストランドにより構成される繊維織布に樹脂組成物を含浸させてなるプリプレグであって、前記ストランド中にはシリカ粒子が存在するプリプレグが提供される。 According to the present invention, there is provided a prepreg obtained by impregnating a fiber woven fabric composed of strands with a resin composition, wherein silica particles are present in the strands.
 本発明によれば、プリプレグが有する諸特性を維持しつつ、繊維織布に対する熱硬化性樹脂組成物の含浸性に優れるプリプレグを提供することができる。
 また、本発明によれば、前記プリプレグ及び/又は前記プリプレグを用いて製造した金属張積層板を用いて、プリント配線板、及び、半導体装置を製造することができる。
ADVANTAGE OF THE INVENTION According to this invention, the prepreg excellent in the impregnation property of the thermosetting resin composition with respect to a fiber woven fabric can be provided, maintaining the various characteristics which a prepreg has.
Moreover, according to this invention, a printed wiring board and a semiconductor device can be manufactured using the said prepreg and / or the metal-clad laminated board manufactured using the said prepreg.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本発明の金属張積層板の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of the metal-clad laminated board of this invention. 本発明の金属張積層板の製造方法の他の一例を示す概略図である。It is the schematic which shows another example of the manufacturing method of the metal-clad laminated board of this invention. 実施例1で得られたプリプレグの断面図の写真である。2 is a photograph of a cross-sectional view of a prepreg obtained in Example 1. FIG. 比較例4で得られたプリプレグの断面図の写真である。6 is a photograph of a cross-sectional view of a prepreg obtained in Comparative Example 4. 実施例1で得られた金属張積層板の銅箔を全面エッチングした表面の写真である。4 is a photograph of the surface of the metal-clad laminate obtained in Example 1 that has been entirely etched. 比較例6で得られた金属張積層板の銅箔を全面エッチングした表面の写真である。It is the photograph of the surface which etched the copper foil of the metal clad laminated board obtained by the comparative example 6 whole surface. 図6で観察されるボイドの拡大図のSEM写真である。It is a SEM photograph of the enlarged view of the void observed in FIG. 図7で観察されるボイドの断面の拡大図のSEM写真である。It is a SEM photograph of the enlarged view of the cross section of the void observed in FIG. 実施例1で得られたプリプレグの繊維織布を構成するストランドの一部を示す断面図のSEM写真である。2 is an SEM photograph of a cross-sectional view showing a part of a strand constituting the prepreg fiber woven fabric obtained in Example 1. FIG. 実施例1で得られたプリプレグの繊維織布を構成するストランドの一部を示す断面図のSEM写真である。2 is an SEM photograph of a cross-sectional view showing a part of a strand constituting the prepreg fiber woven fabric obtained in Example 1. FIG. 実施例1で得られたプリプレグの繊維織布を構成するストランドの一部を示す断面図のSEM写真である。2 is an SEM photograph of a cross-sectional view showing a part of a strand constituting the prepreg fiber woven fabric obtained in Example 1. FIG. 実施例1で得られたプリプレグの繊維織布を構成するストランドの一部を示す断面図のSEM写真である。2 is an SEM photograph of a cross-sectional view showing a part of a strand constituting the prepreg fiber woven fabric obtained in Example 1. FIG.
 以下に、本発明のプリプレグ、金属張積層板、プリント配線板及び半導体装置について詳細に説明する。 Hereinafter, the prepreg, metal-clad laminate, printed wiring board, and semiconductor device of the present invention will be described in detail.
1.プリプレグ
 本発明のプリプレグは、ストランドにより構成される繊維織布に樹脂組成物を含浸させてなるプリプレグである。また、繊維織布を構成するストランド中にはシリカ粒子が存在する。なお、ストランドとは、繊維織布を構成する繊維の束である。ストランドを後述する織り構造となるように織ることで、繊維織布が形成される。
 本発明者は、ストランド中にシリカ粒子が存在するようプリプレグを形成した場合、プリプレグが有する諸特性を維持しつつ、繊維織布への樹脂組成物の含浸性が向上させることができることを見出した。ここで、諸特性とは、例えば後述するプリント配線板の絶縁信頼性、プリプレグのレーザー加工性、またはプリプレグの低熱膨張性等である。
 繊維織布への樹脂組成物の含浸性が良好である場合、得られるプリプレグにボイドが発生することを抑制できる。これにより、当該プリプレグを絶縁層に用いたプリント配線板において、絶縁信頼性の向上を図ることができる。
 また、高密度の繊維織布を使用した場合においても、高い含浸性を得ることができる。このため、高密度の繊維織布を使用して、レーザー加工性に優れたプリプレグを形成することができる。
 さらに、繊維織布への樹脂組成物の含浸性を向上させることで、繊維織布内に充填材を高充填することが可能となる。このため、プリプレグの低熱膨張化を図ることができる。これにより、当該プリプレグを絶縁層に用いたプリント配線板に反りが発生することを抑制することができる。従って、半導体装置における接続信頼性を向上させることが可能となる。
1. Prepreg The prepreg of the present invention is a prepreg formed by impregnating a fiber woven fabric composed of strands with a resin composition. Silica particles are present in the strands constituting the fiber woven fabric. The strand is a bundle of fibers constituting the fiber woven fabric. A fiber woven fabric is formed by weaving the strands so as to have a woven structure described later.
The present inventor has found that when the prepreg is formed so that the silica particles are present in the strand, the impregnation property of the resin composition into the fiber woven fabric can be improved while maintaining various properties of the prepreg. . Here, the various characteristics include, for example, insulation reliability of a printed wiring board to be described later, laser workability of a prepreg, or low thermal expansion of a prepreg.
When the impregnation property of the resin composition into the fiber woven fabric is good, generation of voids in the resulting prepreg can be suppressed. Thereby, in the printed wiring board using the prepreg as an insulating layer, the insulation reliability can be improved.
Further, even when a high-density fiber woven fabric is used, high impregnation properties can be obtained. For this reason, the prepreg excellent in laser workability can be formed using a high-density fiber woven fabric.
Furthermore, by improving the impregnation property of the resin composition into the fiber woven fabric, it becomes possible to highly fill the filler into the fiber woven fabric. For this reason, low thermal expansion of the prepreg can be achieved. Thereby, it can suppress that curvature generate | occur | produces in the printed wiring board which used the said prepreg for the insulating layer. Therefore, connection reliability in the semiconductor device can be improved.
 プリプレグを構成する樹脂組成物は、少なくとも熱硬化性樹脂及び充填材を含む熱硬化性樹脂組成物(以下、単に「樹脂組成物」と称することがある。)である。
 プリプレグを構成する樹脂組成物は、例えば平均粒径5~100nmのシリカ粒子を、充填材の1~20質量%の割合で含有していることが好ましい。本発明者は、多量の充填材を含有する樹脂組成物を高密度の繊維織布に含浸させて得られるプリプレグであっても、前記充填材に1~20質量%の割合で平均粒径5~100nmのシリカ粒子を含有させることにより、樹脂組成物の含浸性が良好となることを見出した。これは、前記平均粒径5~100nmのシリカ粒子が繊維織布の繊維間、すなわちストランド内に入り込んで繊維間を広げるため、平均粒径5~100nmのシリカ粒子以外の充填材も繊維織布に入り込むことができるようになるからであると考えられる。このように、平均粒径5~100nmのナノサイズのシリカ粒子を充填材として使用することで、ストランド中にシリカ粒子を有するプリプレグを得ることができる。
 また、平均粒径5~100nmのシリカ粒子の表面電位と、その他の充填材の表面電位との相違より、平均粒径5~100nmのシリカ粒子と前記充填材とが相互作用により引き付けられる。そのため、平均粒径5~100nmのシリカ粒子が、前記充填材の周囲に存在することになり、平均粒径5~100nmのシリカ粒子がスペーサー的な作用を有する。このように、平均粒径5~100nmのシリカ粒子が前記充填材の周囲に存在して、スペーサーとして作用することにより、前記充填材のファンデルワールス力による引き付け合う力を低減させ、凝集を防止する。これによって、前記充填材が、より高分散状態となり、流動性の低下を防止することができる。
 前記平均粒径5~100nmのシリカ粒子は、予め有機溶媒に分散したスラリーとして用いることが好ましい。これにより、充填材の分散性を向上することができ、その他の充填材を用いた際に生じる流動性の低下を抑制することができる。この理由は次のように考えられる。まず、ナノサイズのシリカのようなナノサイズの粒子は、凝集し易く、樹脂組成物に配合する際に2次凝集体等を形成してしまうことが多いが、スラリー状のものを用いることで、このような2次凝集を防止することができ、それによって流動性が低下するのを防止することができる。また、本発明に用いられる充填材は、凝集防止、および分散性を高めるため、予め表面処理を施されていることが好ましい。
 なお、本発明において高密度の繊維織布とは、ヤーンの打込み本数を上げるだけでなく、繊維1本1本を均質に高開繊化し、扁平化により厚みを低減させるなどの処理をした繊維織布を意味する。高密度の繊維織布は、例えばかさ密度が1.05g/cm以上である。これにより、より繊維1本1本の間に樹脂組成物を含浸させることができるため、更に充填材の高充填化を図ることができる。さらには、繊維織布上の樹脂量を十分確保できるため、プリプレグの上に銅箔を積層して銅張積層板とする時、または銅張積層板の表面の平滑化時の成形性を維持することができる。
The resin composition constituting the prepreg is a thermosetting resin composition (hereinafter sometimes simply referred to as “resin composition”) including at least a thermosetting resin and a filler.
The resin composition constituting the prepreg preferably contains, for example, silica particles having an average particle size of 5 to 100 nm in a proportion of 1 to 20% by mass of the filler. The inventor of the present invention has an average particle diameter of 5 to 1% by mass in the filler even in the case of a prepreg obtained by impregnating a high-density fiber woven fabric with a resin composition containing a large amount of filler. It has been found that the impregnation property of the resin composition is improved by incorporating silica particles of ˜100 nm. This is because the silica particles having an average particle diameter of 5 to 100 nm enter between the fibers of the fiber woven fabric, that is, spread between the fibers by spreading into the strands. This is thought to be because it becomes possible to get into. Thus, by using nano-sized silica particles having an average particle size of 5 to 100 nm as a filler, a prepreg having silica particles in the strand can be obtained.
Further, due to the difference between the surface potential of silica particles having an average particle diameter of 5 to 100 nm and the surface potential of other fillers, the silica particles having an average particle diameter of 5 to 100 nm and the filler are attracted by interaction. Therefore, silica particles having an average particle diameter of 5 to 100 nm are present around the filler, and the silica particles having an average particle diameter of 5 to 100 nm have a spacer action. In this way, silica particles having an average particle size of 5 to 100 nm are present around the filler and act as a spacer, thereby reducing the attractive force of the filler due to van der Waals force and preventing aggregation. To do. This makes the filler more highly dispersed and prevents fluidity from being lowered.
The silica particles having an average particle diameter of 5 to 100 nm are preferably used as a slurry previously dispersed in an organic solvent. Thereby, the dispersibility of a filler can be improved and the fall of the fluidity | liquidity which arises when using another filler can be suppressed. The reason is considered as follows. First, nano-sized particles such as nano-sized silica tend to aggregate and often form secondary aggregates when blended into the resin composition. Such secondary agglomeration can be prevented, thereby preventing the fluidity from being lowered. In addition, the filler used in the present invention is preferably subjected to surface treatment in advance in order to prevent aggregation and improve dispersibility.
In the present invention, the high-density fiber woven fabric refers to a fiber that has been treated not only to increase the number of yarns to be driven, but also to uniformly and highly open each fiber and reduce the thickness by flattening. Means woven fabric. The high-density fiber woven fabric has, for example, a bulk density of 1.05 g / cm 3 or more. Thereby, since the resin composition can be further impregnated between the fibers one by one, the filler can be further highly filled. Furthermore, since the amount of resin on the fiber woven fabric can be secured sufficiently, the moldability is maintained when copper foil is laminated on a prepreg to make a copper-clad laminate or when the surface of a copper-clad laminate is smoothed. can do.
 このように、本発明のプリプレグは、繊維織布に対する樹脂組成物の含浸性が良好であるため、ボイドの発生が少ない。また、樹脂組成物中に多量の充填材が含有されているため、低熱膨張性であり、本発明のプリプレグを用いて得られるプリント配線板は反りが小さい。なお、本発明においてプリプレグの熱膨張性とは、プリプレグを硬化させた状態における熱膨張性を意味する。
 また、本発明のプリプレグは、充填材を高充填化させたことにより、耐熱性に優れ、高剛性である。さらに、本発明のプリプレグを構成する繊維織布のかさ密度は、1.05~1.30g/cmであることが好ましい。かさ密度が1.05~1.30g/cmと高密度の繊維織布を用いることにより、プリント配線板の絶縁層として用いたときに、レーザー加工により、穴径および形状の精度が良く、且つ、繊維の突出を抑制した穴を形成することができる。
 また、一般的に、充填材を多量に含有した樹脂組成物を用いて得られるプリプレグは、基材に対する樹脂組成物の含浸性が悪化することから、基材が樹脂組成物を均一の厚さで保持することが難しく、当該プリプレグを絶縁層に用いてプリント配線板を作成する際に、前記絶縁層が表面平滑性や導体層との密着性に劣り、微細配線加工が困難であるという問題点がある。これは、プリプレグを薄型化させると、さらに悪化する傾向がある。一方、本発明のプリプレグは、繊維織布に対する樹脂組成物の含浸性が良好であるため、繊維織布が樹脂組成物を均一の厚さで保持することができ、表面平滑性や導体層との密着性は良好であり、さらに薄型化にも対応可能である。また、本発明のプリプレグは、充填材を多量に含有した樹脂組成物を用いることにより、高耐熱性、高剛性となる。
Thus, since the prepreg of this invention has the favorable impregnation property of the resin composition with respect to a fiber woven fabric, there is little generation | occurrence | production of a void. Further, since a large amount of filler is contained in the resin composition, it has low thermal expansion and the printed wiring board obtained using the prepreg of the present invention has little warpage. In addition, in this invention, the thermal expansibility of a prepreg means the thermal expansibility in the state which hardened the prepreg.
In addition, the prepreg of the present invention has excellent heat resistance and high rigidity due to high filling of the filler. Furthermore, the bulk density of the fiber woven fabric constituting the prepreg of the present invention is preferably 1.05 to 1.30 g / cm 3 . By using a high-density fiber woven fabric with a bulk density of 1.05 to 1.30 g / cm 3 , when used as an insulating layer of a printed wiring board, the accuracy of the hole diameter and shape is improved by laser processing. And the hole which suppressed the protrusion of the fiber can be formed.
In general, a prepreg obtained by using a resin composition containing a large amount of a filler deteriorates the impregnation property of the resin composition with respect to the base material, so that the base material has a uniform thickness. When the printed wiring board is produced using the prepreg as an insulating layer, the insulating layer is inferior in surface smoothness and adhesion to the conductor layer, and the fine wiring process is difficult. There is a point. This tends to get worse when the prepreg is made thinner. On the other hand, since the prepreg of the present invention has a good impregnation property of the resin composition with respect to the fiber woven fabric, the fiber woven fabric can hold the resin composition with a uniform thickness, The adhesiveness is good, and it is also possible to cope with thinning. Moreover, the prepreg of the present invention has high heat resistance and high rigidity by using a resin composition containing a large amount of a filler.
 まず、本発明に用いられる繊維織布について説明する。
 本発明に用いられる繊維織布としては、特に限定されないが、例えば、ガラス繊維、アラミド、ポリエステル、芳香族ポリエステル、フッ素樹脂等の合成繊維、金属繊維、カーボン繊維、鉱物繊維等からなる繊維織布が挙げられる。中でも、低熱膨張性、高剛性であり、寸法安定性に優れることから、ガラス繊維からなるガラス繊維織布が好ましい。
First, the fiber woven fabric used in the present invention will be described.
The fiber woven fabric used in the present invention is not particularly limited. For example, a fiber woven fabric made of synthetic fiber such as glass fiber, aramid, polyester, aromatic polyester, fluororesin, metal fiber, carbon fiber, mineral fiber, etc. Is mentioned. Among them, a glass fiber woven fabric made of glass fibers is preferable because of its low thermal expansion, high rigidity, and excellent dimensional stability.
 前記ガラス繊維は、特に限定されないが、少なくともSiOを50質量%~100質量%、Alを0質量%~30質量%、CaOを0質量%~30質量%の割合で含有することが好ましく、特にTガラス(「Sガラス」と称される場合もある。)、Dガラス、Eガラス、NEガラス、石英ガラスよりなる群から選ばれる少なくとも1種類のガラスを用いてなることが好ましく、中でも、Tガラス(Sガラス)、石英ガラス、Dガラスがより好ましく、低熱膨張性に優れ、高強度である点から、Tガラス(Sガラス)、石英ガラスがさらに好ましい。
 なお、本発明において、Tガラス(Sガラス)とは、SiOを62質量%~65質量%、Alを20質量%~25質量%、CaOを0質量%~0.01質量%、MgOを10質量%~15質量%、Bを0質量%~0.01質量%、NaO及びKOを合わせて0質量%~1質量%の割合で含有した組成のガラスであり、Dガラスとは、SiOを72質量%~76質量%、Alを0質量%~5質量%、CaOを0質量%~1質量%、MgOを0質量%~1質量%、Bを20質量%~25質量%、NaO及びKOを合わせて3質量%~5質量%の割合で含有した組成のガラスであり、Eガラスとは、SiOを52質量%~56質量%、Alを12質量%~16質量%、CaOを15質量%~25質量%、MgOを0質量%~6質量%、Bを5質量%~10質量%、NaO及びKOを合わせて0~0.8質量%の割合で含有した組成のガラスであり、NEガラスとは、SiOを52質量%~56質量%、Alを10質量%~15質量%、CaOを0質量%~10質量%、MgOを0質量%~5質量%、Bを15質量%~20質量%、NaO及びKOを合わせて0質量%~1質量%、TiOを0.05質量%~5質量%の割合で含有した組成のガラスであり、石英ガラスとは、SiOを99.0質量%~100質量%の割合で含有した組成のガラスである。
The glass fiber is not particularly limited, but contains at least SiO 2 in a proportion of 50% by mass to 100% by mass, Al 2 O 3 in a proportion of 0% by mass to 30% by mass, and CaO in a proportion of 0% by mass to 30% by mass. In particular, it is preferable to use at least one glass selected from the group consisting of T glass (sometimes referred to as “S glass”), D glass, E glass, NE glass, and quartz glass. Among these, T glass (S glass), quartz glass, and D glass are more preferable, and T glass (S glass) and quartz glass are more preferable from the viewpoint of excellent low thermal expansion and high strength.
In the present invention, T glass (S glass) means SiO 2 62 mass% to 65 mass%, Al 2 O 3 20 mass% to 25 mass%, and CaO 0 mass% to 0.01 mass%. MgO is contained in an amount of 10% by mass to 15% by mass, B 2 O 3 is contained in an amount of 0% by mass to 0.01% by mass, and Na 2 O and K 2 O are combined in a proportion of 0% by mass to 1% by mass. D glass is SiO 2 72 mass% to 76 mass%, Al 2 O 3 0 mass% to 5 mass%, CaO 0 mass% to 1 mass%, MgO 0 mass% to 1 mass. mass%, the B 2 O 3 20 wt% to 25 wt%, a glass having a composition in a proportion of 3% to 5% by weight combined Na 2 O and K 2 O, and the E-glass, SiO 2 52 wt% to 56 wt%, the Al 2 O 3 12 wt% to 16 wt%, the CaO 1 % To 25 wt%, the MgO 0% to 6 wt%, B a 2 O 3 5 wt% to 10 wt%, in a proportion of from 0 to 0.8 weight% combined Na 2 O and K 2 O NE glass is composed of 52 mass% to 56 mass% of SiO 2 , 10 mass% to 15 mass% of Al 2 O 3 , 0 mass% to 10 mass% of CaO, and 0 mass% of MgO. % By mass to 5% by mass, 15% by mass to 20% by mass of B 2 O 3 , 0% by mass to 1% by mass of Na 2 O and K 2 O, 0.05% by mass to 5% by mass of TiO 2 The quartz glass is a glass having a composition containing SiO 2 at a ratio of 99.0% by mass to 100% by mass.
 前記ガラス繊維は、特に限定されないが、板状にした際のヤング率が50~100GPa、板状にした際の引張強度が25GPa以上、繊維織布にした際の長手方向の引張強度が30N/25mm以上であることが好ましく、より好ましくは、板状にした際のヤング率が80~100GPa、板状にした際の引張強度が35GPa以上、繊維織布にした際の長手方向の引張強度が45N/25mm以上である。これにより、寸法安定性に優れたプリプレグが得られる。なお、前記ヤング率は、JIS R1602に準拠し、一般的に用いられる公知の3点曲げ試験機により測定される値であり、前記引張強度はJIS R3420に準拠し、一般的に用いられる公知の定速伸長形引張試験機により測定される値であり、前記長手方向の引張強度はJIS R3420に準拠し、ガラス繊維を織布にして、前記と同様の定速伸長形引張試験機により測定される値である。
 なお、前記ヤング率の測定及び前記引張強度の測定において、「板状」とは、ガラス繊維と同じ組成のガラス組成物を厚さ0.5~1.0mmのガラス板にした状態を意味する。また、前記長手方向の引張強度の測定において「長手方向」とは、経糸(縦糸)方向を意味する。
The glass fiber is not particularly limited, but the Young's modulus when formed into a plate is 50 to 100 GPa, the tensile strength when formed into a plate is 25 GPa or more, and the tensile strength in the longitudinal direction when formed into a fiber woven fabric is 30 N / It is preferably 25 mm or more, more preferably, the Young's modulus when plate-shaped is 80 to 100 GPa, the tensile strength when plate-shaped is 35 GPa or more, and the tensile strength in the longitudinal direction when fiber woven fabric is formed. It is 45 N / 25 mm or more. Thereby, the prepreg excellent in dimensional stability is obtained. The Young's modulus is a value measured by a commonly used known three-point bending tester in accordance with JIS R1602, and the tensile strength is in accordance with JIS R3420 and commonly used. It is a value measured by a constant speed extension type tensile tester, and the tensile strength in the longitudinal direction conforms to JIS R3420, and is measured by a constant speed extension type tensile tester similar to the above using glass fiber as a woven fabric. Value.
In the measurement of the Young's modulus and the measurement of the tensile strength, “plate shape” means a state in which a glass composition having the same composition as the glass fiber is formed into a glass plate having a thickness of 0.5 to 1.0 mm. . In the measurement of the tensile strength in the longitudinal direction, the “longitudinal direction” means the warp (warp) direction.
 前記ガラス繊維は、特に限定されないが、JIS R3102に準拠して測定される経糸方向の熱膨張係数が10ppm/℃以下であることが好ましく、特に3ppm/℃以下であることが好ましい。これによりプリント配線板の熱膨張による反りを小さくすることができる。 The glass fiber is not particularly limited, but the thermal expansion coefficient in the warp direction measured according to JIS R3102 is preferably 10 ppm / ° C. or less, and particularly preferably 3 ppm / ° C. or less. Thereby, the curvature by the thermal expansion of a printed wiring board can be made small.
 前記繊維織布の厚みは、特に限定されないが、10~200μmであることが好ましく、より好ましくは10~140μmであり、さらに好ましくは20~90μmである。これにより、繊維織布に対する樹脂組成物の含浸性が良好となり、薄型化にも対応可能となる。 The thickness of the fiber woven fabric is not particularly limited, but is preferably 10 to 200 μm, more preferably 10 to 140 μm, and still more preferably 20 to 90 μm. Thereby, the impregnation property of the resin composition with respect to the fiber woven fabric becomes good, and it becomes possible to cope with the thinning.
 前記繊維織布のかさ密度は、1.05~1.30g/cmであることが好ましく、特に1.10~1.25g/cmであることが好ましい。かさ密度が前記下限値未満であると、絶縁層のレーザー加工性に劣り、前記上限値を超えると繊維織布に対する樹脂組成物の含浸性が悪化する。なお、繊維織布のかさ密度の調整は、経糸と横糸の打込み本数と、開繊・扁平処理した繊維の厚みを調整することによって行う。 The bulk density of the fiber woven fabric is preferably 1.05 to 1.30 g / cm 3 , and more preferably 1.10 to 1.25 g / cm 3 . When the bulk density is less than the lower limit, the laser processability of the insulating layer is inferior, and when the upper limit is exceeded, the impregnation property of the resin composition with respect to the fiber woven fabric is deteriorated. The bulk density of the fiber woven fabric is adjusted by adjusting the number of warps and wefts to be driven and the thickness of the fiber that has been subjected to the opening and flattening treatment.
 前記繊維織布は、特に限定されないが、通気度が1~80cc/cm/secであることが好ましく、3~50cc/cm/secであることが特に好ましい。通気度が前記下限値未満であると、繊維織布に対する樹脂組成物の含浸性が悪化し、前記上限値を超えると絶縁層のレーザー加工性に劣る。 The fiber woven fabric is not particularly limited, but the air permeability is preferably 1 to 80 cc / cm 2 / sec, and particularly preferably 3 to 50 cc / cm 2 / sec. When the air permeability is less than the lower limit, the impregnation property of the resin composition with respect to the fiber woven fabric is deteriorated, and when the air permeability exceeds the upper limit, the laser processability of the insulating layer is inferior.
 前記繊維織布は、特に限定されないが、坪量が10~160g/mであることが好ましく、15~130g/mであることが特に好ましい。坪量が前記下限値未満であると、プリプレグの低熱膨張性に劣り、前記上限値を超えると繊維織布に対する樹脂組成物の含浸性が悪化したり、絶縁層のレーザー加工性に劣ったりする。 The fiber fabric is not particularly limited, it is preferable that a basis weight of 10 ~ 160g / m 2, and particularly preferably 15 ~ 130g / m 2. When the basis weight is less than the lower limit value, the low thermal expansion property of the prepreg is inferior, and when the upper limit value is exceeded, the impregnation property of the resin composition to the fiber woven fabric is deteriorated, or the laser processability of the insulating layer is inferior. .
 また、前記繊維織布に用いられる繊維は、特に限定されないが、扁平率が1:2~1:50であることが好ましく、1:5~1:30であることが特に好ましい。繊維織布に用いられる繊維の扁平率が前記範囲内であることにより、さらに前記繊維織布への樹脂組成物の含浸性・濡れ性が優れるためスルーホール間の絶縁信頼性を向上、および絶縁層のレーザー加工性を向上させることができる。なお、本発明において扁平率とは、糸の厚さ:糸の幅で表わされる値である。 Further, the fiber used for the fiber woven fabric is not particularly limited, but the aspect ratio is preferably 1: 2 to 1:50, particularly preferably 1: 5 to 1:30. When the flatness of the fiber used in the fiber woven fabric is within the above range, the impregnation and wettability of the resin composition to the fiber woven fabric is further improved, so that the insulation reliability between the through holes is improved, and the insulation The laser processability of the layer can be improved. In the present invention, the flatness is a value represented by the thickness of the yarn: the width of the yarn.
 また、前記繊維織布の織り構造は、特に限定されないが、例えば、平織り、ななこ織り、朱子織り、綾織り等の織り構造等が挙げられ、中でもレーザー加工性、強度、ビア孔の層間絶縁信頼性に優れる点から、平織り構造が好ましい。 The weaving structure of the fiber woven fabric is not particularly limited, and examples thereof include plain weaving, nanako weaving, satin weaving, twill weaving, and the like. Among them, laser workability, strength, interlayer insulation reliability of via holes, etc. From the viewpoint of excellent properties, a plain weave structure is preferable.
 次に、本発明に用いられる熱硬化性樹脂組成物について説明する。
 本発明に用いられる熱硬化性樹脂組成物は、少なくとも熱硬化性樹脂及び充填材を含む。前記充填材は、前記熱硬化性樹脂組成物の固形分の50~85質量%の割合で含有される。また、前記熱硬化性樹脂組成物は、平均粒径5~100nmのシリカ粒子を前記充填材の1~20質量%の割合で含有する。さらに、前記熱硬化性樹脂組成物は、さらに必要に応じて、硬化剤、カップリング剤等を含んでいてもよい。
Next, the thermosetting resin composition used in the present invention will be described.
The thermosetting resin composition used in the present invention includes at least a thermosetting resin and a filler. The filler is contained in a proportion of 50 to 85% by mass of the solid content of the thermosetting resin composition. The thermosetting resin composition contains silica particles having an average particle size of 5 to 100 nm in a proportion of 1 to 20% by mass of the filler. Furthermore, the thermosetting resin composition may further contain a curing agent, a coupling agent, and the like, if necessary.
(充填材)
 前記充填材は、平均粒径5~100nmのシリカ粒子を前記充填材全体の1~20質量%の割合で含有する。
 前記シリカ粒子としては、特に限定されないが、例えば、VMC(Vaporized Metal Combustion)法、PVS(Physical Vapor Synthesis)法等の燃焼法、破砕シリカを火炎溶融する溶融法、沈降法、ゲル法等の方法によって製造したものを用いることができる。これらの中でもVMC法が特に好ましい。前記VMC法とは、酸素含有ガス中で形成させた化学炎中にシリコン粉末を投入し、燃焼させた後、冷却することで、シリカ微粒子を形成させる方法である。前記VMC法では、投入するシリコン粉末の粒子径、投入量、火炎温度等を調整することにより、得られるシリカ微粒子の粒子径を調整できる。また、前記シリカ粒子としては、NSS-5N(トクヤマ(株)製)、Sicastar43-00-501(Micromod社製)等の市販品を用いることもできる。
(Filler)
The filler contains silica particles having an average particle diameter of 5 to 100 nm in a proportion of 1 to 20% by mass of the whole filler.
The silica particles are not particularly limited. For example, combustion methods such as VMC (Vaporized Metal Combustion) method, PVS (Physical Vapor Synthesis) method, methods such as melting method, fusing method, precipitation method, gel method, etc. Can be used. Among these, the VMC method is particularly preferable. The VMC method is a method in which silica powder is formed by putting silicon powder into a chemical flame formed in an oxygen-containing gas, burning it, and then cooling it. In the VMC method, the particle diameter of the silica fine particles to be obtained can be adjusted by adjusting the particle diameter of the silicon powder to be input, the input amount, the flame temperature and the like. In addition, as the silica particles, commercially available products such as NSS-5N (manufactured by Tokuyama Co., Ltd.), Sicastar 43-00-501 (manufactured by Micromod) can also be used.
 前記平均粒径5~100nmシリカ粒子は、含浸性の点から、特に平均粒径10~75nmであることが特に好ましい。シリカ粒子の平均粒子径が5nm未満では、繊維織布の繊維間を広げることができず、また100nmより大きい場合は、繊維間に入り込むことができない場合があると考えられる。 The silica particles having an average particle size of 5 to 100 nm are particularly preferably an average particle size of 10 to 75 nm from the viewpoint of impregnation. If the average particle diameter of the silica particles is less than 5 nm, it is considered that the space between the fibers of the fiber woven fabric cannot be expanded, and if it is greater than 100 nm, it may not be possible to enter between the fibers.
 前記シリカ粒子の平均粒径は、例えば、レーザー回折散乱法、および動的光散乱法等により測定することができる。前記平均粒径5~100nmシリカ粒子の場合は、粒子を水中で超音波により分散させ、動的光散乱式粒度分布測定装置(HORIBA製、LB-550)により、粒子の粒度分布を体積基準で測定し、そのメディアン径(D50)を平均粒径とする。 The average particle diameter of the silica particles can be measured by, for example, a laser diffraction scattering method and a dynamic light scattering method. In the case of silica particles having an average particle size of 5 to 100 nm, the particles are dispersed by ultrasonic waves in water, and the particle size distribution of the particles on a volume basis is measured by a dynamic light scattering particle size distribution analyzer (manufactured by HORIBA, LB-550). Measure and use the median diameter (D50) as the average particle diameter.
 また、前記シリカ粒子は、特に限定されないが、疎水性であることが好ましい。これにより、シリカ粒子の凝集を抑制することができ、本発明の樹脂組成物中にシリカ粒子を良好に分散させることができる。また、熱硬化性樹脂とシリカ粒子との親和性が向上し、前記熱硬化性樹脂と前記シリカ粒子との表面の密着性が向上するため、機械強度に優れる絶縁層が得られる。 The silica particles are not particularly limited, but are preferably hydrophobic. Thereby, aggregation of a silica particle can be suppressed and a silica particle can be favorably disperse | distributed in the resin composition of this invention. In addition, since the affinity between the thermosetting resin and the silica particles is improved and the surface adhesion between the thermosetting resin and the silica particles is improved, an insulating layer having excellent mechanical strength can be obtained.
 シリカ粒子を疎水性にする方法としては、例えば、シリカ粒子を予め官能基含有シラン類及び/又はアルキルシラザン類で表面処理する方法等が挙げられる。前記官能基含有シラン類としては公知のものを使用することができ、例えば、エポキシシラン、アミノシラン、ビニルシラン、アクリルシラン、メルカプトシラン、イソシアネートシラン、スルフィドシラン、ウレイドシラン等が挙げられる。前記アルキルシラザン類としては、例えば、ヘキサメチルジシラザン(HMDS)、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、オクタメチルトリシラザン、ヘキサメチルシクロトリシラザン等が挙げられる。また、シリカ粒子に前記表面処理をすることにより、充填材の凝集防止、および分散性を高める効果も発揮する。 Examples of a method for making silica particles hydrophobic include a method in which silica particles are surface-treated with functional group-containing silanes and / or alkylsilazanes in advance. Known functional group-containing silanes can be used, and examples include epoxy silane, amino silane, vinyl silane, acrylic silane, mercapto silane, isocyanate silane, sulfide silane, and ureido silane. Examples of the alkylsilazanes include hexamethyldisilazane (HMDS), 1,3-divinyl-1,1,3,3-tetramethyldisilazane, octamethyltrisilazane, hexamethylcyclotrisilazane, and the like. . In addition, by performing the surface treatment on the silica particles, the effect of preventing the filler from agglomerating and improving the dispersibility is also exhibited.
 前記シリカ粒子へ予め表面処理する官能基含有シラン類及び/又はアルキルシラザン類の量は、特に限定しないが、前記シリカ粒子100重量部に対して0.01重量部以上、5重量部以下であることが好ましい。さらに好ましくは0.1重量部以上、3重量部以下が好ましい。官能基含有シラン類及び/又はアルキルシラザン類の含有量が前記上限値を超えると、プリント配線板製造時において絶縁層にクラックが入る場合があり、前記下限値未満であると、樹脂成分とシリカ粒子との結合力が低下する場合がある。 The amount of functional group-containing silanes and / or alkylsilazanes to be surface-treated in advance on the silica particles is not particularly limited, but is 0.01 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the silica particles. It is preferable. More preferably, it is 0.1 to 3 parts by weight. If the content of the functional group-containing silanes and / or alkylsilazanes exceeds the upper limit, the insulating layer may crack when the printed wiring board is produced. If the content is less than the lower limit, the resin component and silica The bond strength with the particles may be reduced.
 前記シリカ粒子を予め官能基含有シラン類及び/又はアルキルシラザン類で表面処理する方法は、特に限定されないが、湿式方式または乾式方式が好ましい。特に好ましくは湿式方式が好ましい。湿式方式の方が、乾式方式と比較した場合、前記シリカ粒子の表面へ均一に処理することができる。
 また、前記表面処理は、比表面積の50%以上に行うことが好ましい。
The method for surface-treating the silica particles with functional group-containing silanes and / or alkylsilazanes in advance is not particularly limited, but a wet method or a dry method is preferable. The wet method is particularly preferable. When the wet method is compared with the dry method, the surface of the silica particles can be uniformly processed.
The surface treatment is preferably performed on 50% or more of the specific surface area.
 前記平均粒径5~100nmのシリカ粒子は、充填材全体の1~20質量%の割合で含有される。含有量が前記下限値未満であると、含浸性を向上させる効果が不充分となり、含有量が前記上限値を超えると、逆に含浸性の悪化や、プリプレグの成形性に劣る恐れがある。なお、前記平均粒径5~100nmのシリカ粒子の含有量は、充填材全体の3~15質量%であることがより好ましい。 The silica particles having an average particle diameter of 5 to 100 nm are contained in a proportion of 1 to 20% by mass of the whole filler. When the content is less than the lower limit, the effect of improving the impregnation property is insufficient, and when the content exceeds the upper limit, the impregnation property may be deteriorated or the prepreg may be inferior. The content of silica particles having an average particle size of 5 to 100 nm is more preferably 3 to 15% by mass of the whole filler.
 本発明に用いられる充填材は、前記平均粒径5~100nmのシリカ粒子の他に、特に限定されないが、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、平均粒径が100nmよりも大きいシリカ粒子等の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化アルミニウム、ベーマイト(AlO(OH)、「擬」ベーマイトと通常呼ばれるベーマイト(すなわち、Al・xHO、ここで、x=1から2))、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物、チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等の無機充填材を含有することができる。前記無機充填材は、これらの中の1種類を単独で用いることもできるし、2種類以上を併用することもできる。これらの中でも水酸化マグネシウム、水酸化アルミニウム、ベーマイト、平均粒径が100nmよりも大きい球状シリカ粒子、タルク、焼成タルク、アルミナが好ましく、低熱膨張性、含浸性の点で特にベーマイト、平均粒径が100nmよりも大きい球状シリカ粒子、球状アルミナが好ましい。 The filler used in the present invention is not particularly limited in addition to the silica particles having an average particle diameter of 5 to 100 nm. For example, silicates such as talc, fired clay, unfired clay, mica, glass, and titanium oxide , Alumina, oxides such as silica particles with an average particle size greater than 100 nm, carbonates such as calcium carbonate, magnesium carbonate, hydrotalcite, aluminum hydroxide, boehmite (AlO (OH), usually called “pseudo” boehmite) boehmite (i.e., Al 2 O 3 · xH 2 O, where, x = 1 to 2)), magnesium hydroxide, metal hydroxides such as calcium hydroxide, barium sulfate, calcium sulfate, sulfates such as calcium sulfite Or sulfite, zinc borate, barium metaborate, aluminum borate, calcium borate, sodium borate Borates like can contain aluminum nitride, boron nitride, silicon nitride, nitrides such as carbon nitride, strontium titanate, an inorganic filler such as titanates such as barium titanate. One of these inorganic fillers can be used alone, or two or more of them can be used in combination. Among these, magnesium hydroxide, aluminum hydroxide, boehmite, spherical silica particles having an average particle diameter larger than 100 nm, talc, calcined talc, and alumina are preferable, and boehmite and average particle diameter are particularly low in terms of low thermal expansion and impregnation. Spherical silica particles larger than 100 nm and spherical alumina are preferred.
 前述の平均粒径5~100nmのシリカ粒子以外の無機充填材(以下、「その他の無機充填材」と称することがある。)としては、特に限定されないが、平均粒径が単分散の無機充填材を用いることもできるし、平均粒径が多分散の無機充填材を用いることもできる。さらに、平均粒径が単分散及び/または多分散の無機充填材を、1種類または2種類以上併用することもできる。本発明において平均粒径が単分散であるとは、粒径の標準偏差が10%以下であるものを意味し、多分散であるとは、粒径の標準偏差が10%以上であるものを意味する。
 前記その他の無機充填材の平均粒径は、特に限定されないが、0.1μm~5.0μmが好ましく、特に0.1μm~3.0μmが好ましい。その他の無機充填材の粒径が前記下限値未満であると樹脂組成物の粘度が高くなるため、プリプレグ作製時の作業性に影響を与える場合がある。また、前記上限値を超えると、樹脂組成物中で無機充填材の沈降等の現象が起こる場合がある。尚、平均粒径は、レーザー回折/散乱式粒度分布測定装置(島津製作所SALD-7000等の一般的な機器)を用いて測定することができる。
The inorganic filler other than silica particles having an average particle diameter of 5 to 100 nm (hereinafter sometimes referred to as “other inorganic fillers”) is not particularly limited, but the inorganic filler has a monodisperse average particle diameter. A material can also be used, and an inorganic filler having a polydispersed average particle diameter can also be used. Furthermore, one type or two or more types of inorganic fillers having an average particle size of monodisperse and / or polydisperse can be used in combination. In the present invention, the average particle size is monodispersed means that the standard deviation of the particle size is 10% or less, and the polydispersed means that the standard deviation of the particle size is 10% or more. means.
The average particle diameter of the other inorganic filler is not particularly limited, but is preferably 0.1 μm to 5.0 μm, and particularly preferably 0.1 μm to 3.0 μm. If the particle size of the other inorganic filler is less than the lower limit, the viscosity of the resin composition becomes high, which may affect the workability during prepreg production. When the upper limit is exceeded, phenomena such as sedimentation of the inorganic filler may occur in the resin composition. The average particle diameter can be measured using a laser diffraction / scattering particle size distribution measuring apparatus (a general instrument such as Shimadzu SALD-7000).
 さらに、小径孔の加工、孔の狭ピッチ加工、および細線加工をする場合は、前記その他の無機充填材は、粗粒カットされていることが好ましい。中でも45μm以上の粗粒カットをされていることが好ましく、20μm以上の粗粒カットをされているがさらに好ましく、10μm以上の粗粒カットをされていることが特に好ましい。尚、「粗粒カット」とは、その粒径以上の大きさの粗粒が排除されていることを意味する。 Furthermore, in the case of performing processing of small-diameter holes, narrow pitch processing of holes, and fine wire processing, it is preferable that the other inorganic fillers are coarsely cut. Among them, it is preferable to have a coarse grain cut of 45 μm or more, more preferably a coarse grain cut of 20 μm or more, and particularly preferably a coarse grain cut of 10 μm or more. Incidentally, “coarse grain cut” means that coarse grains having a size equal to or larger than the grain size are excluded.
 また、本発明に用いられる充填材は、前記無機充填材以外にゴム粒子等の有機充填材なども含有することが好ましい。本発明で使用され得るゴム粒子の好ましい例としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子、シリコーン粒子等が挙げられる。
 コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のもの等が挙げられる。ガラス状ポリマー層は、例えば、メタクリル酸メチルの重合物等で構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)等で構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N(商品名、ガンツ化成(株)製)、メタブレンKW-4426(商品名、三菱レイヨン(株)製)が挙げられる。架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(平均粒子径0.5μm、JSR(株)製)等が挙げられる。
 架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(平均粒子径0.5μm、JSR(株)製)等が挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒子径0.1μm)、W450A(平均粒子径0.2μm)(三菱レイヨン(株)製)等が挙げられる。
 前記シリコーン粒子は、オルガノポリシロキサンで形成されたゴム弾性微粒子であれば特に限定されず、例えば、シリコーンゴム(オルガノポリシロキサン架橋エラストマー)そのものからなる微粒子、及び二次元架橋主体のシリコーンからなるコア部を三次元架橋型主体のシリコーンで被覆したコアシェル構造粒子等が挙げられる。前記シリコーン粒子としては、KMP-605、KMP-600、KMP-597、KMP-594(信越化学(株)製)、トレフィルE-500、トレフィルE-600(東レ・ダウコーニング(株)製)等の市販品を用いることができる。
Moreover, it is preferable that the filler used for this invention contains organic fillers, such as a rubber particle other than the said inorganic filler. Preferable examples of the rubber particles that can be used in the present invention include core-shell type rubber particles, cross-linked acrylonitrile butadiene rubber particles, cross-linked styrene butadiene rubber particles, acrylic rubber particles, and silicone particles.
The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, a two-layer structure in which an outer shell layer is formed of a glassy polymer and an inner core layer is formed of a rubbery polymer, or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer. The glassy polymer layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber). Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade name, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade name, manufactured by Mitsubishi Rayon Co., Ltd.). Specific examples of the crosslinked acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size 0.5 μm, manufactured by JSR Corporation).
Specific examples of the crosslinked styrene butadiene rubber (SBR) particles include XSK-500 (average particle size: 0.5 μm, manufactured by JSR Corporation). Specific examples of the acrylic rubber particles include methabrene W300A (average particle size 0.1 μm), W450A (average particle size 0.2 μm) (manufactured by Mitsubishi Rayon Co., Ltd.), and the like.
The silicone particles are not particularly limited as long as they are rubber elastic fine particles formed of organopolysiloxane. For example, fine particles made of silicone rubber (organopolysiloxane crosslinked elastomer) itself, and a core portion made of two-dimensionally crosslinked silicone. And core-shell structured particles coated with silicone mainly composed of a three-dimensional crosslinking type. Examples of the silicone particles include KMP-605, KMP-600, KMP-597, KMP-594 (manufactured by Shin-Etsu Chemical Co., Ltd.), Trefil E-500, Trefil E-600 (manufactured by Toray Dow Corning Co., Ltd.), etc. Commercial products can be used.
 本発明に用いられる充填材のうち、平均粒径が5~100nmのシリカ粒子以外の充填材においても、凝集防止、および分散性を高めるため、予め表面処理を施されていることが好ましい。表面処理剤は、公知のシランカップリング剤を用いることができ、例えば、エポキシシラン、アミノシラン、ビニルシラン、アクリルシラン、メルカプトシラン等が挙げられる。また、表面処理は、比表面積の50%以上が好ましい。 Of the fillers used in the present invention, fillers other than silica particles having an average particle diameter of 5 to 100 nm are preferably preliminarily surface-treated in order to prevent aggregation and improve dispersibility. As the surface treatment agent, a known silane coupling agent can be used, and examples thereof include epoxy silane, amino silane, vinyl silane, acrylic silane, and mercapto silane. The surface treatment is preferably 50% or more of the specific surface area.
 本発明に用いられる樹脂組成物中の充填材の含有量は、樹脂組成物全体の固形分基準で50~85質量%であることが好ましく、特に65~75質量%であることが好ましい。充填材含有量が前記上限値を超えると樹脂組成物の流動性が極めて悪く、プリプレグ製造の際の作業性に劣る。上記下限値未満であると熱膨張率が高く、絶縁層の強度が十分でない場合がある。 The content of the filler in the resin composition used in the present invention is preferably 50 to 85% by mass, particularly 65 to 75% by mass, based on the solid content of the entire resin composition. If the filler content exceeds the upper limit, the fluidity of the resin composition is extremely poor, and the workability during prepreg production is poor. If it is less than the lower limit, the coefficient of thermal expansion is high and the strength of the insulating layer may not be sufficient.
(熱硬化性樹脂)
 前記熱硬化性樹脂としては、特に限定されないが、エポキシ樹脂、シアネート樹脂、ビスマレイミド樹脂、フェノール樹脂、ベンゾオキサジン樹脂、ビニルベンジルエーテル樹脂、ベンゾシクロブテン樹脂等が用いられ、通常は、エポキシ樹脂に他の熱硬化性樹脂を適宜組み合わせて用いられる。
(Thermosetting resin)
The thermosetting resin is not particularly limited, and epoxy resin, cyanate resin, bismaleimide resin, phenol resin, benzoxazine resin, vinyl benzyl ether resin, benzocyclobutene resin, etc. are used. Other thermosetting resins are used in appropriate combination.
 前記エポキシ樹脂としては、特に限定されないが、実質的にハロゲン原子を含まないものが好ましい。ここで、「実質的にハロゲン原子を含まない」とは、エポキシ樹脂の合成過程において使用されたハロゲン系成分に由来するハロゲンが、ハロゲン除去工程を経ても尚、エポキシ樹脂に残存していることを許容することを意味する。通常、エポキシ樹脂中に30ppmを超えるハロゲン原子を含まないことが好ましい。 The epoxy resin is not particularly limited but is preferably substantially free of halogen atoms. Here, “substantially free of halogen atoms” means that the halogen derived from the halogen-based component used in the epoxy resin synthesis process remains in the epoxy resin even after the halogen removal step. Means to allow. Usually, it is preferable that the epoxy resin does not contain a halogen atom exceeding 30 ppm.
 前記実質的にハロゲン原子を含まないエポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂(4,4'-シクロヘキシジエンビスフェノール型エポキシ樹脂)、ビスフェノールP型エポキシ樹脂(4,4'-(1,4)-フェニレンジイソプロピリデン)ビスフェノール型エポキシ樹脂)、ビスフェノールM型エポキシ樹脂(4,4'-(1,3-フェニレンジイソプロピリデン)ビスフェノール型エポキシ樹脂)等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂、トリスフェノールメタンノボラック型エポキシ樹脂、1,1,2,2-(テトラフェノール)エタンのグリシジルエーテル類、3官能、または4官能のグリシジルアミン類、テトラメチルビフェニル型エポキシ樹脂等のアリールアルキレン型エポキシ樹脂、ナフタレン骨格変性エポキシ樹脂、メトキシナフタレン変性クレゾールノボラック型エポキシ樹脂、メトキシナフタレンジメチレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂等のナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、上記エポキシ樹脂をハロゲン化した難燃化エポキシ樹脂等が挙げられる。
 これらの中の1種類のエポキシ樹脂を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上のエポキシ樹脂を併用することもできるし、1種類または2種類以上のエポキシ樹脂と、エポキシ樹脂のプレポリマーを併用することもできる。
 これらエポキシ樹脂の中でも特に、ビフェニルジメチレン型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン変性クレゾールノボラックエポキシ樹脂、およびアントラセン型エポキシ樹脂よりなる群から選ばれる少なくとも1種が好ましい。これらのエポキシ樹脂を用いることにより、得られる積層板及びプリント配線板の吸湿半田耐熱性および難燃性を向上させることができる。
 また、これらのエポキシ樹脂の中でも、ナフチレンエーテル型エポキシ樹脂を用いることにより、得られる積層板及びプリント配線板の耐熱性、低熱膨張性、および低熱収縮性を向上させることができる。
 ナフチレンエーテル型エポキシ樹脂は、例えば下記一般式(1)で示すことができる。
Examples of the epoxy resin substantially free of halogen atoms include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol Z type epoxy resin (4,4'- Cyclohexyldiene bisphenol type epoxy resin), bisphenol P type epoxy resin (4,4 '-(1,4) -phenylenediisopropylidene) bisphenol type epoxy resin), bisphenol M type epoxy resin (4,4'-(1 , 3-phenylenediisopropylidene) bisphenol type epoxy resin), phenol novolac type epoxy resin, cresol novolac type epoxy resin and other novolak type epoxy resin, biphenyl type epoxy resin, xylylene type Poxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, biphenyl dimethylene type epoxy resin, trisphenol methane novolak type epoxy resin, glycidyl ethers of 1,1,2,2- (tetraphenol) ethane, trifunctional , Or tetrafunctional glycidylamines, arylalkylene type epoxy resins such as tetramethylbiphenyl type epoxy resin, naphthalene skeleton modified epoxy resin, methoxynaphthalene modified cresol novolak type epoxy resin, methoxynaphthalenediethylene type epoxy resin, naphthylene ether type Naphthalene type epoxy resin such as epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, Adamantane type epoxy resin, fluorene type epoxy resins, flame-retarded epoxy resin or the like halogenated epoxy resins.
One of these epoxy resins can be used alone, or two or more types of epoxy resins having different weight average molecular weights can be used in combination. One or more types of epoxy resins and epoxy A resin prepolymer can also be used in combination.
Among these epoxy resins, at least one selected from the group consisting of biphenyl dimethylene type epoxy resins, novolac type epoxy resins, naphthalene-modified cresol novolac epoxy resins, and anthracene type epoxy resins is preferable. By using these epoxy resins, the moisture-absorbing solder heat resistance and flame retardancy of the resulting laminate and printed wiring board can be improved.
Moreover, among these epoxy resins, by using a naphthylene ether type epoxy resin, it is possible to improve the heat resistance, the low thermal expansion property, and the low thermal contraction property of the obtained laminated board and printed wiring board.
The naphthylene ether type epoxy resin can be represented by, for example, the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
(式中、R1は水素原子又はメチル基を表し、R2はそれぞれ独立的に水素原子、炭素原子数1~4のアルキル基、アラルキル基、ナフタレン基、又はグリシジルエーテル基含有ナフタレン基を表し、o及びmはそれぞれ0~2の整数であって、かつo又はmの何れか一方は1以上である。)
Figure JPOXMLDOC01-appb-C000001
(Wherein R1 represents a hydrogen atom or a methyl group, R2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group, a naphthalene group, or a glycidyl ether group-containing naphthalene group; And m are each an integer of 0 to 2, and either o or m is 1 or more.)
 前記エポキシ樹脂の含有量は、特に限定されないが、前記樹脂組成物全体の固形分基準で5~60重量%とすることが好ましい。含有量が前記下限値未満であると樹脂組成物の硬化性が低下したり、当該樹脂組成物を用いて得られるプリプレグ、またはプリント配線板の耐湿性が低下したりする場合がある。また、前記上限値を超えるとプリプレグ、またはプリント配線板の線熱膨張率が大きくなったり、耐熱性が低下したりする場合がある。前記エポキシ樹脂の含有量は、特に好ましくは樹脂組成物全体の固形分基準で10~50重量%である。 The content of the epoxy resin is not particularly limited, but is preferably 5 to 60% by weight based on the solid content of the entire resin composition. If the content is less than the lower limit, the curability of the resin composition may be reduced, or the moisture resistance of a prepreg or printed wiring board obtained using the resin composition may be reduced. Moreover, when the said upper limit is exceeded, the linear thermal expansion coefficient of a prepreg or a printed wiring board may become large, or heat resistance may fall. The content of the epoxy resin is particularly preferably 10 to 50% by weight based on the solid content of the entire resin composition.
 前記エポキシ樹脂の重量平均分子量は、特に限定されないが、1.0×10~2.0×10が好ましい。重量平均分子量が前記下限値未満であるとプリプレグの表面にタック性が生じる場合が有り、前記上限値を超えるとプリプレグの半田耐熱性が低下する場合がある。重量平均分子量を前記範囲内とすることにより、これらの特性のバランスに優れたものとすることができる。
 本発明において、前記エポキシ樹脂の重量平均分子量は、例えばゲル浸透クロマトグラフィー(GPC)で測定し、ポリスチレン換算の重量分子量として特定することができる。
The weight average molecular weight of the epoxy resin is not particularly limited, but is preferably 1.0 × 10 2 to 2.0 × 10 4 . When the weight average molecular weight is less than the lower limit, tackiness may occur on the surface of the prepreg, and when the upper limit is exceeded, the solder heat resistance of the prepreg may decrease. By setting the weight average molecular weight within the above range, it is possible to achieve an excellent balance of these characteristics.
In the present invention, the weight average molecular weight of the epoxy resin can be measured, for example, by gel permeation chromatography (GPC) and specified as a weight molecular weight in terms of polystyrene.
 前記樹脂組成物は、特に限定されないが、シアネート樹脂を含むことにより、難燃性を向上させ、熱膨張係数を小さくし、さらに、プリプレグの電気特性(低誘電率、低誘電正接)等を向上させることができる。
 前記シアネート樹脂は、特に限定されないが、例えば、ハロゲン化シアン化合物とフェノール類やナフトール類とを反応させ、必要に応じて加熱等の方法でプレポリマー化することにより得ることができる。また、このようにして調製された市販品を用いることもできる。
The resin composition is not particularly limited. By including a cyanate resin, the flame retardancy is improved, the thermal expansion coefficient is reduced, and the electrical properties (low dielectric constant, low dielectric loss tangent) of the prepreg are improved. Can be made.
The cyanate resin is not particularly limited, and can be obtained, for example, by reacting a halogenated cyanide compound with phenols or naphthols, and prepolymerizing by a method such as heating as necessary. Moreover, the commercial item prepared in this way can also be used.
 前記シアネート樹脂の種類としては特に限定されないが、例えば、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂などを挙げることができる。 Although it does not specifically limit as a kind of said cyanate resin, For example, bisphenol-type cyanate resin, such as novolak-type cyanate resin, bisphenol A-type cyanate resin, bisphenol E-type cyanate resin, tetramethylbisphenol F-type cyanate resin, etc. can be mentioned. .
 前記シアネート樹脂は、分子内に2個以上のシアネート基(-O-CN)を有することが好ましい。例えば、2,2'-ビス(4-シアナトフェニル)イソプロピリデン、1,1'-ビス(4-シアナトフェニル)エタン、ビス(4-シアナト-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアナトフェニル-1-(1-メチルエチリデン))ベンゼン、ジシクロペンタジエン型シアネートエステル、フェノールノボラック型シアネートエステル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)エーテル、1,1,1-トリス(4-シアナトフェニル)エタン、トリス(4-シアナトフェニル)ホスファイト、ビス(4-シアナトフェニル)スルホン、2,2-ビス(4-シアナトフェニル)プロパン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4,4-ジシアナトビフェニル、及びフェノールノボラック型、クレゾールノボラック型の多価フェノール類と、ハロゲン化シアンとの反応で得られるシアネート樹脂、ナフトールアラルキル型の多価ナフトール類と、ハロゲン化シアンとの反応で得られるシアネート樹脂等が挙げられる。
 これらの中で、フェノールノボラック型シアネート樹脂が難燃性、および低熱膨張性に優れ、2,2'-ビス(4-シアナトフェニル)イソプロピリデン、およびジシクロペンタジエン型シアネートエステルが架橋密度の制御、および耐湿信頼性に優れている。特に、フェノールノボラック型シアネート樹脂が低熱膨張性の点から好ましい。また、更に他のシアネート樹脂を1種類あるいは2種類以上併用したりすることもでき、特に限定されない。
The cyanate resin preferably has two or more cyanate groups (—O—CN) in the molecule. For example, 2,2′-bis (4-cyanatophenyl) isopropylidene, 1,1′-bis (4-cyanatophenyl) ethane, bis (4-cyanato-3,5-dimethylphenyl) methane, 3-bis (4-cyanatophenyl-1- (1-methylethylidene)) benzene, dicyclopentadiene type cyanate ester, phenol novolac type cyanate ester, bis (4-cyanatophenyl) thioether, bis (4-cyanato) Phenyl) ether, 1,1,1-tris (4-cyanatophenyl) ethane, tris (4-cyanatophenyl) phosphite, bis (4-cyanatophenyl) sulfone, 2,2-bis (4-si Anatophenyl) propane, 1,3-, 1,4-, 1,6-, 1,8-, 2,6- or 2,7-dicyanatonaphthalene, 1, , 6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, phenol novolak-type, cresol novolak-type polyhydric phenols, cyanate resins obtained by the reaction of cyanogen halides, naphthol aralkyl-type polyvalent naphthols And cyanate resin obtained by reaction with cyanogen halide.
Among these, phenol novolac-type cyanate resin is excellent in flame retardancy and low thermal expansion, and 2,2′-bis (4-cyanatophenyl) isopropylidene and dicyclopentadiene-type cyanate ester control the crosslinking density. Excellent in moisture resistance and reliability. In particular, a phenol novolac type cyanate resin is preferred from the viewpoint of low thermal expansion. Furthermore, other cyanate resins may be used alone or in combination of two or more, and are not particularly limited.
 前記シアネート樹脂は、単独で用いてもよい。また、重量平均分子量の異なるシアネート樹脂を2種以上併用したり、前記シアネート樹脂とそのプレポリマーとを併用したりすることもできる。
 前記プレポリマーは、通常、前記シアネート樹脂を加熱反応などにより、例えば3量化することで得られるものであり、樹脂組成物の成形性、流動性を調整するために好ましく使用されるものである。
 前記プレポリマーは、特に限定されないが、例えば3量化率が20~50重量%のプレポリマーを用いた場合、良好な成形性、流動性を発現できる。
The cyanate resin may be used alone. Two or more cyanate resins having different weight average molecular weights may be used in combination, or the cyanate resin and its prepolymer may be used in combination.
The prepolymer is usually obtained by, for example, trimerizing the cyanate resin by a heat reaction or the like, and is preferably used for adjusting the moldability and fluidity of the resin composition.
The prepolymer is not particularly limited. For example, when a prepolymer having a trimerization ratio of 20 to 50% by weight is used, good moldability and fluidity can be exhibited.
 前記シアネート樹脂の含有量は、特に限定されないが、樹脂組成物全体の固形分基準で5~60重量%であることが好ましく、より好ましくは10~50重量%である。シアネート樹脂の含有量が前記範囲内であると、より効果的にプリプレグの耐熱性及び難燃性を向上させることができる。シアネート樹脂の含有量が前記下限未満であるとプリプレグの熱膨張性が大きくなり、耐熱性が低下する場合があり、前記上限値を超えるとプリプレグの強度が低下する場合がある。 The content of the cyanate resin is not particularly limited, but is preferably 5 to 60% by weight, more preferably 10 to 50% by weight, based on the solid content of the entire resin composition. When the content of the cyanate resin is within the above range, the heat resistance and flame retardancy of the prepreg can be more effectively improved. When the content of the cyanate resin is less than the lower limit, the thermal expansion of the prepreg may be increased and the heat resistance may be decreased. When the upper limit is exceeded, the strength of the prepreg may be decreased.
 前記シアネート樹脂の重量平均分子量は、特に限定されないが、5.0×10~4.5×10が好ましく、特に6.0×10~3.0×10が好ましい。重量平均分子量が前記下限値未満であると、プリプレグの表面にタック性が生じたり、機械的強度が低下したりする場合が有る。また、重量平均分子量が前記上限値を超えると、樹脂組成物の硬化反応が速くなり、導体層との密着性が悪化する場合がある。
 本発明において、前記シアネート樹脂の重量平均分子量は、例えばゲル浸透クロマトグラフィー(GPC)で測定し、ポリスチレン換算の重量分子量として特定することができる。
The weight average molecular weight of the cyanate resin is not particularly limited, but is preferably 5.0 × 10 2 to 4.5 × 10 3 , particularly preferably 6.0 × 10 2 to 3.0 × 10 3 . If the weight average molecular weight is less than the lower limit, tackiness may occur on the surface of the prepreg or the mechanical strength may be reduced. Moreover, when a weight average molecular weight exceeds the said upper limit, the hardening reaction of a resin composition will become quick and adhesiveness with a conductor layer may deteriorate.
In the present invention, the weight average molecular weight of the cyanate resin can be measured, for example, by gel permeation chromatography (GPC) and specified as a weight molecular weight in terms of polystyrene.
 前記樹脂組成物は、特に限定されないが、ビスマレイミド樹脂を含むことにより、耐熱性を向上させることができる。
 前記ビスマレイミド樹脂としては、特に限定されないが、N,N'-(4,4'-ジフェニルメタン)ビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン等のビスマレイミド樹脂が挙げられる。前記ビスマレイミド樹脂は、更に他のビスマレイミド樹脂を1種類あるいは2種類以上併用したりすることもでき、特に限定されない。また、前記ビスマレイミド樹脂は、単独で用いてもよい。また、重量平均分子量の異なるビスマレイミド樹脂を併用したり、前記ビスマレイミド樹脂とそのプレポリマーとを併用したりすることもできる。
Although the said resin composition is not specifically limited, Heat resistance can be improved by including a bismaleimide resin.
The bismaleimide resin is not particularly limited, but N, N ′-(4,4′-diphenylmethane) bismaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,2-bis And bismaleimide resins such as [4- (4-maleimidophenoxy) phenyl] propane. The bismaleimide resin may be used in combination with one or more other bismaleimide resins, and is not particularly limited. The bismaleimide resin may be used alone. Moreover, the bismaleimide resin from which a weight average molecular weight differs can be used together, or the said bismaleimide resin and its prepolymer can also be used together.
 前記ビスマレイミド樹脂の含有量は、特に限定されないが、樹脂組成物全体の固形分基準で1~35重量%であることが好ましく、特に5~20重量%が好ましい。 The content of the bismaleimide resin is not particularly limited, but is preferably 1 to 35% by weight, particularly preferably 5 to 20% by weight, based on the solid content of the entire resin composition.
(硬化剤、硬化促進剤)
 本発明に用いられる樹脂組成物は、硬化剤を併用しても良い。硬化剤としては、特に限定されず、例えば前記熱硬化性樹脂としてエポキシ樹脂を用いる場合は、エポキシ樹脂の硬化剤として一般的に用いられるフェノール系硬化剤、脂肪族アミン、芳香族アミン、ジシアンジアミド、ジカルボン酸ジヒドラジド化合物、酸無水物等を用いることができる。
(Curing agent, curing accelerator)
The resin composition used in the present invention may be used in combination with a curing agent. The curing agent is not particularly limited. For example, when an epoxy resin is used as the thermosetting resin, a phenolic curing agent generally used as a curing agent for the epoxy resin, an aliphatic amine, an aromatic amine, dicyandiamide, Dicarboxylic acid dihydrazide compounds, acid anhydrides, and the like can be used.
 また、本発明に用いられる樹脂組成物は、必要に応じて硬化促進剤を添加することができる。前記硬化促進剤は、特に限定されないが、例えば、有機金属塩、3級アミン類、イミダゾール類、有機酸、オニウム塩化合物等が挙げられる。硬化促進剤としては、これらの中の誘導体も含めて1種類を単独で用いることもできるし、これらの誘導体も含めて2種類以上を併用したりすることもできる。 Moreover, a curing accelerator can be added to the resin composition used in the present invention as necessary. The curing accelerator is not particularly limited, and examples thereof include organic metal salts, tertiary amines, imidazoles, organic acids, onium salt compounds, and the like. As a hardening accelerator, 1 type can also be used independently including the derivative in these, and 2 or more types can also be used together including these derivatives.
(カップリング剤)
 前記樹脂組成物は、更にカップリング剤を含有しても良い。カップリング剤は、熱硬化性樹脂と充填材との界面の濡れ性を向上させるために配合される。これにより、繊維織布に対して樹脂および充填材を均一に定着させ、プリプレグの耐熱性、特に吸湿後の半田耐熱性を改良することができる。
 前記カップリング剤は、特に限定されないが、例えば、エポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤、シリコーンオイル型カップリング剤等が挙げられる。これにより、充填材の界面との濡れ性を高くすることができ、それによってプリプレグの耐熱性をより向上させることできる。
(Coupling agent)
The resin composition may further contain a coupling agent. The coupling agent is blended to improve the wettability of the interface between the thermosetting resin and the filler. Thereby, the resin and the filler can be uniformly fixed to the fiber woven fabric, and the heat resistance of the prepreg, particularly the solder heat resistance after moisture absorption can be improved.
Although the said coupling agent is not specifically limited, For example, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, a silicone oil type coupling agent etc. are mentioned. Thereby, wettability with the interface of a filler can be made high, and, thereby, the heat resistance of a prepreg can be improved more.
 前記カップリング剤の添加量は、特に限定されないが、充填材100重量部に対して0.05~3重量部が好ましく、特に0.1~2重量部が好ましい。含有量が前記下限値未満であると、充填材を十分に被覆できないため耐熱性を向上する効果が低下する場合がある。また、含有量が前記上限値を超えると、反応に影響を与え、曲げ強度等が低下する場合がある。 The amount of the coupling agent to be added is not particularly limited, but is preferably 0.05 to 3 parts by weight, particularly preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the filler. If the content is less than the lower limit, the filler cannot be sufficiently covered, and the effect of improving heat resistance may be reduced. Moreover, when content exceeds the said upper limit, reaction will be affected and bending strength etc. may fall.
(その他)
 また、前記樹脂組成物には、必要に応じて、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、リン系、フォスファゼン等の難燃助剤、イオン捕捉剤等の上記成分以外の添加物を添加しても良い。
(Other)
In addition, the resin composition may include an antifoaming agent, a leveling agent, an ultraviolet absorber, a foaming agent, an antioxidant, a flame retardant, a phosphorus-based, phosphazene or other flame retardant aid, an ion scavenger, etc. Additives other than the above components may be added.
 本発明のプリプレグは、上述の熱硬化性樹脂組成物を溶剤に含有したワニスを繊維織布に保持させた後、前記溶剤を除去することにより得られる。前記ワニスの調製方法は、特に限定されないが、例えば、熱硬化性樹脂及び充填材を溶媒に分散したスラリーを調製し、当該スラリーにその他の樹脂組成物の成分を添加し、さらに前記溶媒を加えて溶解・混合させる方法が好ましい。これにより、充填材の分散性を向上させ、前記充填材に含まれる平均粒径5~100nmのシリカ粒子を繊維織布に入り込みやすくすることができ、繊維織布に対する樹脂組成物の含浸性を向上させることができる。
 なお、本発明において熱硬化性樹脂組成物を溶剤に含有するとは、前記熱硬化性樹脂組成物に含まれる可溶性の樹脂等は溶剤に溶解し、不溶性の充填材等は溶剤に分散していることを意味する。
The prepreg of the present invention is obtained by holding a varnish containing the above-mentioned thermosetting resin composition in a solvent on a fiber woven fabric and then removing the solvent. The method for preparing the varnish is not particularly limited. For example, a slurry in which a thermosetting resin and a filler are dispersed in a solvent is prepared, the other resin composition components are added to the slurry, and the solvent is further added. The method of dissolving and mixing is preferable. As a result, the dispersibility of the filler can be improved, and the silica particles having an average particle size of 5 to 100 nm contained in the filler can be easily introduced into the fiber woven fabric, and the resin composition can be impregnated into the fiber woven fabric. Can be improved.
In the present invention, the term “containing a thermosetting resin composition in a solvent” means that a soluble resin or the like contained in the thermosetting resin composition is dissolved in a solvent, and an insoluble filler or the like is dispersed in the solvent. Means that.
 前記溶媒としては、特に限定されないが、前記樹脂組成物に対して良好な溶解性を示す溶媒が好ましく、例えば、アセトン、メチルエチルケトン(MEK)、シクロヘキサノン(ANON)、メチルイソブチルケトン(MIBK)、シクロペンタノン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。なお、悪影響を及ぼさない範囲で貧溶媒を使用しても構わない。 The solvent is not particularly limited, but a solvent that exhibits good solubility in the resin composition is preferable. For example, acetone, methyl ethyl ketone (MEK), cyclohexanone (ANON), methyl isobutyl ketone (MIBK), cyclopenta Non, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. In addition, you may use a poor solvent in the range which does not exert a bad influence.
 前記ワニスが含む樹脂組成物の固形分(ワニスから溶剤を除いた成分)は、特に限定されないが、30~80重量%が好ましく、特に40~70重量%が好ましい。これにより、樹脂組成物の繊維織布への含浸性が向上される。また、コーティング時の表面平滑性、厚みばらつき等を抑制することができる。 The solid content of the resin composition contained in the varnish (a component obtained by removing the solvent from the varnish) is not particularly limited, but is preferably 30 to 80% by weight, particularly preferably 40 to 70% by weight. Thereby, the impregnation property to the fiber woven fabric of the resin composition is improved. Moreover, the surface smoothness at the time of coating, thickness variation, etc. can be suppressed.
 前記ワニスを前記繊維織布に含浸させる方法は、例えば繊維織布をワニスに浸漬する方法、各種コーターによる塗布する方法、スプレーによる吹き付ける方法、ワニスを基材に塗布・乾燥させて樹脂シートを作製し、当該樹脂シートを樹脂層が繊維織布に接するように配して圧着させる方法等が挙げられる。これらの中でも、繊維織布をワニスに浸漬する方法が好ましい。これにより、繊維織布に対する熱硬化性樹脂組成物の含浸性を向上させることができる。尚、繊維織布をワニスに浸漬する場合、通常の含浸塗布設備を使用することができる。また、前記ワニスの溶剤を、例えば90~180℃で、1~10分間乾燥させることにより半硬化のプリプレグを得ることができる。 The method of impregnating the fiber woven fabric with the varnish includes, for example, a method of immersing the fiber woven fabric in the varnish, a method of applying with various coaters, a method of spraying with a spray, and applying and drying the varnish on a substrate to produce a resin sheet And the method of arrange | positioning the said resin sheet so that a resin layer may contact | connect a fiber woven fabric, and crimping | bonding it is mentioned. Among these, the method of immersing the fiber woven fabric in the varnish is preferable. Thereby, the impregnation property of the thermosetting resin composition with respect to the fiber woven fabric can be improved. In addition, when a fiber woven fabric is immersed in a varnish, a normal impregnation coating equipment can be used. Further, a semi-cured prepreg can be obtained by drying the solvent of the varnish at, for example, 90 to 180 ° C. for 1 to 10 minutes.
 前記プリプレグは、繊維織布からなる繊維織布層と、当該繊維織布層の両面に形成される樹脂組成物からなる樹脂層とで構成される。前記繊維織布層の厚みは、特に限定されないが、10~200μmであることが好ましく、より好ましくは、10~140μmであり、さらに好ましくは20~90μmである。前記樹脂層の厚み(片面のみの一層分の厚み)は、特に限定されないが、0.5~20μmであることが好ましく、2~10μmであることが特に好ましい。繊維織布層の厚み及び樹脂層の厚みが前記範囲内であることにより、導体層との密着性及び表面平滑性がさらに良好となる。 The prepreg includes a fiber woven fabric layer made of a fiber woven fabric and a resin layer made of a resin composition formed on both surfaces of the fiber woven fabric layer. The thickness of the fiber woven fabric layer is not particularly limited, but is preferably 10 to 200 μm, more preferably 10 to 140 μm, and still more preferably 20 to 90 μm. The thickness of the resin layer (thickness on one side only) is not particularly limited, but is preferably 0.5 to 20 μm, particularly preferably 2 to 10 μm. When the thickness of the fiber woven fabric layer and the thickness of the resin layer are within the above ranges, the adhesion to the conductor layer and the surface smoothness are further improved.
 前記プリプレグの全体厚みは、特に限定されないが、30~220μmであることが好ましく、特に40~165μmであることが好ましい。これにより、プリプレグの取り扱い性が良好で、薄型化にも対応可能となる。 The total thickness of the prepreg is not particularly limited, but is preferably 30 to 220 μm, and particularly preferably 40 to 165 μm. Thereby, the handleability of a prepreg is favorable and it can respond also to thickness reduction.
 前記プリプレグにおいて、繊維織布を構成するストランド中には、ストランドを構成する繊維が延伸する方向において50μm以上の長さを有する空隙が存在しない。これにより、プリプレグを絶縁層に用いたプリント配線板の絶縁信頼性を向上させることができる。さらには、繊維織布を構成するストランド中には、ストランドを構成する繊維が延伸する方向において20μm以上、特に10μm以上の長さを有する空隙が存在しないことが好ましい。
 また、前記プリプレグにおいて、繊維織布を構成するストランド中における、直径が50μm以上である空隙の数密度は、50cm-1以下である。この場合においても、プリプレグを絶縁層に用いたプリント配線板の絶縁信頼性を向上させることができる。さらには、繊維織布を構成するストランド中における、直径が50μm以上である空隙の数密度は、20cm-1以下、特に10cm-1以下であることが好ましい。
 なお、上述のストランド中における空隙の長さや数密度は、ストランド中に存在するシリカ粒子の平均粒径や繊維織布のかさ密度等を適宜調整することにより実現される。
In the prepreg, in the strands constituting the fiber woven fabric, there are no voids having a length of 50 μm or more in the extending direction of the fibers constituting the strands. Thereby, the insulation reliability of the printed wiring board which used the prepreg for the insulating layer can be improved. Furthermore, it is preferable that the strands constituting the fiber woven fabric do not have voids having a length of 20 μm or more, particularly 10 μm or more in the direction in which the fibers constituting the strands are stretched.
In the prepreg, the number density of voids having a diameter of 50 μm or more in the strand constituting the fiber woven fabric is 50 cm −1 or less. Even in this case, the insulation reliability of the printed wiring board using the prepreg as the insulating layer can be improved. Further, the number density of voids having a diameter of 50 μm or more in the strands constituting the fiber woven fabric is preferably 20 cm −1 or less, particularly preferably 10 cm −1 or less.
The length and number density of the voids in the above-described strand are realized by appropriately adjusting the average particle diameter of silica particles present in the strand, the bulk density of the fiber woven fabric, and the like.
2.積層板
 次に、積層板について説明する。
 本発明の積層板は、前記本発明に係るプリプレグを硬化して得られることを特徴とする。また、本発明の積層板は、前記本発明に係るプリプレグの少なくとも一方の外側の面に導体層が設置されてなることが好ましい。
 前記プリプレグは、1枚で用いても良いし、2枚以上積層した積層体を用いても良い。導体層が設置されてなる積層板(以下、「金属張積層板」と称することがある。)の場合は、上述のプリプレグ上に金属箔を積層し、加熱加圧して得られる。プリプレグを1枚で用いるときは、その上下両面もしくは片面に金属箔を重ね、プリプレグを2枚以上積層した積層体を用いるときは、当該積層体の最も外側の上下両面もしくは片面に金属箔を重ねる。次に、プリプレグと金属箔とを重ねたものを加熱加圧成形することで金属張積層板を得ることができる。
2. Laminated plate Next, the laminated plate will be described.
The laminate of the present invention is obtained by curing the prepreg according to the present invention. Moreover, it is preferable that the laminated board of this invention has a conductor layer installed in the at least one outer surface of the said prepreg based on this invention.
One prepreg may be used, or a laminate in which two or more prepregs are stacked may be used. In the case of a laminated board (hereinafter sometimes referred to as “metal-clad laminated board”) in which a conductor layer is installed, a metal foil is laminated on the above-mentioned prepreg and obtained by heating and pressing. When using a single prepreg, the metal foil is stacked on both upper and lower surfaces or one side, and when using a laminate in which two or more prepregs are stacked, the metal foil is stacked on the outermost upper and lower surfaces or one side of the laminate. . Next, a metal-clad laminate can be obtained by heat-pressing a laminate of a prepreg and a metal foil.
 前記金属箔としては、例えば、銅、銅系合金、アルミ、アルミ系合金、銀、銀系合金、金、金系合金、亜鉛、亜鉛系合金、ニッケル、ニッケル系合金、錫、錫系合金、鉄、鉄系合金等の金属箔が挙げられる。また、上記のような銅、銅系合金等の導体層をめっきにより形成してもよい。 Examples of the metal foil include copper, copper alloy, aluminum, aluminum alloy, silver, silver alloy, gold, gold alloy, zinc, zinc alloy, nickel, nickel alloy, tin, tin alloy, Metal foils, such as iron and an iron-type alloy, are mentioned. Moreover, you may form conductor layers, such as the above coppers and copper-type alloys, by plating.
 金属張積層板の製造の際、加熱する温度は、特に限定されないが、120~220℃が好ましく、特に150~200℃が好ましい。加圧する圧力は、特に限定されないが、0.5~5MPaが好ましく、特に1~3MPaが好ましい。また、必要に応じて高温槽等で150~300℃の温度で後硬化を行ってもかまわない。 In the production of the metal-clad laminate, the heating temperature is not particularly limited, but is preferably 120 to 220 ° C, particularly preferably 150 to 200 ° C. The pressure to be applied is not particularly limited, but is preferably 0.5 to 5 MPa, and particularly preferably 1 to 3 MPa. If necessary, post-curing may be performed at a temperature of 150 to 300 ° C. in a high-temperature bath or the like.
 また、本発明の金属張積層板を製造する別の方法として、図1に示す樹脂層付き金属箔を用いた金属張積層板の製造方法が挙げられる。まず、金属箔11に均一な樹脂層12をコーターで塗工した樹脂層付き金属箔10を準備する。次いで、繊維織布20の両側に、樹脂層付き金属箔10、10を、樹脂層12を内側にして配し(図1(a))、真空中で加熱60~130℃、加圧0.1~5MPaでラミネート含浸させる。これにより、金属箔付きプリプレグ41を得る(図1(b))。次いで、金属箔付きプリプレグ41を直接加熱加圧成形することで、金属張積層板51を得ることができる(図1(c))。 Moreover, as another method for producing the metal-clad laminate of the present invention, a method for producing a metal-clad laminate using the metal foil with a resin layer shown in FIG. First, a metal foil 10 with a resin layer in which a uniform resin layer 12 is coated on a metal foil 11 with a coater is prepared. Next, the metal foils 10 and 10 with the resin layer are arranged on both sides of the fiber woven fabric 20 with the resin layer 12 inside (FIG. 1 (a)), heated in a vacuum at 60 to 130 ° C., pressure 0. The laminate is impregnated at 1 to 5 MPa. Thereby, the prepreg 41 with a metal foil is obtained (FIG. 1B). Next, the metal-clad laminate 51 can be obtained by directly heating and pressing the prepreg 41 with metal foil (FIG. 1C).
 さらに、本発明の金属張積層板を製造する別の方法として、図2に示す樹脂層付き高分子フィルムシートを用いた金属張積層板の製造方法も挙げられる。まず、高分子フィルムシート31に、均一な樹脂層32をコーターで塗工した樹脂層付き高分子フィルムシート30を準備する。次いで、繊維織布20の両側に樹脂層付き高分子フィルムシート30、30を、樹脂層32を内側にして配し(図2(a))、真空中で加熱60~130℃、加圧0.1~5MPaでラミネート含浸させる。これにより、高分子フィルムシート付きプリプレグ42を得ることができる(図2(b))。次いで、高分子フィルムシート付きプリプレグ42の少なくとも片面の高分子フィルムシート31を剥離後(図2(c)では両面を剥離)、高分子フィルムシート31を剥離した面に金属箔11を配し(図2(d))、加熱加圧成形する。これにより、金属張積層板52を得ることができる(図2(e))。さらに、両面の高分子フィルムシートを剥離する場合は、前述のプリプレグ同様に、2枚以上積層することもできる。プリプレグを2枚以上積層するときは、積層したプリプレグの最も外側の上下両面もしくは片面に金属箔または高分子フィルムシートを配し、加熱加圧成形することで金属張積層板を得ることができる。この様な製造方法で得られた金属張積層板は、厚み精度が高く、厚みが均一であり、更には表面平滑性に優れる。また成形歪の小さい金属張積層板を得ることができるため、当該製造方法により得られた金属張積層板を用い作製したプリント配線板、および半導体装置は、反りが小さく、反りばらつきも小さい。さらにプリント配線板、および半導体装置を、歩留り良く製造することができる。 Furthermore, another method for producing the metal-clad laminate of the present invention includes a method for producing a metal-clad laminate using the polymer film sheet with a resin layer shown in FIG. First, a polymer film sheet 30 with a resin layer in which a uniform resin layer 32 is coated on a polymer film sheet 31 with a coater is prepared. Next, polymer film sheets 30 and 30 with a resin layer are arranged on both sides of the fiber woven fabric 20 with the resin layer 32 inside (FIG. 2A), heated in a vacuum at 60 to 130 ° C., and pressurized 0 Impregnation with laminate at 1-5 MPa. Thereby, the prepreg 42 with a polymer film sheet can be obtained (FIG.2 (b)). Next, after peeling the polymer film sheet 31 on at least one side of the prepreg 42 with the polymer film sheet (both sides are peeled in FIG. 2C), the metal foil 11 is arranged on the surface from which the polymer film sheet 31 is peeled ( FIG. 2 (d)), heating and pressing. Thereby, the metal-clad laminated board 52 can be obtained (FIG.2 (e)). Furthermore, when peeling a double-sided polymer film sheet, two or more sheets can be laminated | stacked like the above-mentioned prepreg. When two or more prepregs are laminated, a metal-clad laminate can be obtained by placing a metal foil or a polymer film sheet on the upper and lower surfaces or one side of the outermost side of the laminated prepreg and then heat-pressing it. The metal-clad laminate obtained by such a manufacturing method has high thickness accuracy, uniform thickness, and excellent surface smoothness. In addition, since a metal-clad laminate having a small molding strain can be obtained, a printed wiring board and a semiconductor device manufactured using the metal-clad laminate obtained by the manufacturing method have small warpage and small warpage variation. Furthermore, a printed wiring board and a semiconductor device can be manufactured with high yield.
 前記加熱加圧成形する条件としては、温度は、特に限定されないが、120~250℃が好ましく、特に150~220℃が好ましい。前記加圧する圧力は、特に限定されないが、0.1~5MPaが好ましく、特に0.5~3MPaが好ましい。さらに必要に応じて高温槽等で150~300℃の温度で後硬化を行ってもかまわない。 The conditions for the heat and pressure molding are not particularly limited, but are preferably 120 to 250 ° C, and more preferably 150 to 220 ° C. The pressure to be pressurized is not particularly limited, but is preferably 0.1 to 5 MPa, and particularly preferably 0.5 to 3 MPa. Further, if necessary, post-curing may be performed at a temperature of 150 to 300 ° C. in a high-temperature bath or the like.
 図1~2等の金属張積層板は、特に限定されないが、例えば、樹脂層付き金属箔を製造する装置及び金属張積層板を製造する装置を用いて製造される。
 前記樹脂層付き金属箔を製造する装置において、金属箔は、例えば長尺のシート品を巻物形態にしたもの等を用い、これにより連続的に巻き出すことにより供給することができる。樹脂の供給装置により、樹脂ワニスが所定量連続的に金属箔上に供給される。ここで樹脂ワニスとしては、本発明の樹脂組成物を溶剤に溶解、分散させた塗布液が用いられる。樹脂ワニスの塗工量は、コンマロールと、当該コンマロールのバックアップロールとのクリアランスにより制御することができる。所定量の樹脂ワニスが塗工された金属箔は、横搬送型の熱風乾燥装置の内部を移送し、樹脂ワニス中に含有される有機溶剤等を実質的に乾燥除去し、必要に応じて、硬化反応を途中まで進めた樹脂層付き金属箔とすることができる。樹脂層付き金属箔は、そのまま巻き取ることもできるがラミネートロールにより、樹脂層が形成された側に保護フィルムを重ね合わせ、当該保護フィルムがラミネートされた樹脂層付き金属箔を巻き取って、巻物形態の絶縁樹脂層付き金属箔を得ている。図1~2等の製造方法を用いた場合、従来のワニスを含浸させる製造方法より、均一な樹脂量の制御、および面内厚み精度に優れるため、半導体素子を搭載した半導体装置の反りばらつきが小さく、歩留まりが向上する。
The metal-clad laminate shown in FIGS. 1 and 2 is not particularly limited. For example, the metal-clad laminate is produced using an apparatus for producing a metal foil with a resin layer and an apparatus for producing a metal-clad laminate.
In the apparatus for producing the metal foil with a resin layer, the metal foil can be supplied by, for example, using a long sheet product in the form of a roll, and thereby continuously unwinding. A predetermined amount of the resin varnish is continuously supplied onto the metal foil by the resin supply device. Here, as the resin varnish, a coating solution in which the resin composition of the present invention is dissolved and dispersed in a solvent is used. The coating amount of the resin varnish can be controlled by the clearance between the comma roll and the backup roll of the comma roll. The metal foil coated with a predetermined amount of the resin varnish is transferred inside the horizontal conveyance type hot air drying device, and substantially removes and removes the organic solvent contained in the resin varnish. It can be set as the metal foil with a resin layer which advanced the hardening reaction to the middle. The metal foil with the resin layer can be wound up as it is, but with a laminate roll, a protective film is superimposed on the side on which the resin layer is formed, and the metal foil with the resin layer on which the protective film is laminated is wound up, A metal foil with an insulating resin layer is obtained. When the manufacturing method shown in FIGS. 1 and 2 is used, since the control of the uniform resin amount and the in-plane thickness accuracy are superior to the conventional manufacturing method impregnated with varnish, the variation in warping of the semiconductor device on which the semiconductor element is mounted is reduced. Small and yield is improved.
 また、この様な製造方法により金属張積層板を得た場合、繊維織布への樹脂組成物の含浸性を考慮する必要がある。充填材は、平均粒径5~100nmのシリカ粒子を用いることで、特に繊維基材への含浸性が向上するため、加熱加圧成形時に、金属張積層板内における樹脂組成物のフローを抑え、溶融樹脂の不均一な移動が抑制されるため、金属張積層板表面のスジ状のムラを防止し、且つ均一な厚みとすることができる。 Moreover, when a metal-clad laminate is obtained by such a manufacturing method, it is necessary to consider the impregnation property of the resin composition into the fiber woven fabric. The use of silica particles with an average particle size of 5 to 100 nm as the filler improves the impregnation of the fiber base material in particular, so that the flow of the resin composition in the metal-clad laminate is suppressed during hot pressing. Since uneven movement of the molten resin is suppressed, streaky unevenness on the surface of the metal-clad laminate can be prevented and the thickness can be made uniform.
3.プリント配線板
 次に、本発明のプリント配線板について説明する。
 本発明のプリント配線板は、上記のプリプレグ及び/又は上記の積層板を内層回路基板に用いてなる。
 または、本発明のプリント配線板は、上記のプリプレグを内層回路上の絶縁層に用いてなる。
 なお、内層回路基板に本発明のプリプレグ又は本発明の積層板を用いたプリント配線板の場合、内層回路基板内のプリプレグが硬化してできた層は絶縁層である。
3. Next, the printed wiring board of the present invention will be described.
The printed wiring board of the present invention uses the above prepreg and / or the above laminated board as an inner layer circuit board.
Or the printed wiring board of this invention uses said prepreg for the insulating layer on an inner-layer circuit.
In the case of the printed wiring board using the prepreg of the present invention or the laminated board of the present invention for the inner layer circuit board, the layer formed by curing the prepreg in the inner layer circuit board is an insulating layer.
 本発明においてプリント配線板とは、絶縁層の上に金属箔等の導体層を設けて導体回路層を形成したものであり、片面プリント配線板(一層板)、両面プリント配線板(二層板)、及び多層プリント配線板(多層板)のいずれであってもよい。多層プリント配線板とは、メッキスルーホール法やビルドアップ法等により3層以上に重ねたプリント配線板であり、内層回路基板に絶縁層を重ね合わせて加熱加圧成形することによって得ることができる。前記内層回路基板としては、例えば、本発明の積層板及び/又は本発明のプリプレグを用いてなるものを使用することができる。本発明の積層板を用いてなる内層回路基板としては、例えば、金属箔を有しない本発明の積層板にセミアディティブ法等により所定パターンの導体回路を形成し、当該導体回路部分を黒化処理したものや、本発明の金属張積層板の金属箔に所定パターンの導体回路を形成し、当該導体回路部分を黒化処理したものを好適に用いることができる。
 また、本発明のプリプレグを用いてなる内層回路基板としては、硬化樹脂等からなる絶縁性の支持体上にコンデンサ、抵抗、チップ等の電気/電子部品を搭載し、その上に本発明のプリプレグを積層し、加熱加圧硬化して得られた部品内蔵基板に、セミアディティブ法等により所定パターンの導体回路を形成し、当該導体回路部分を黒化処理したものを用いることもできる。
 さらに、本発明においては、このような本発明の積層板及び/又は本発明のプリプレグを用いてなる内層回路基板や、従来公知の内層回路基板の導体回路上に、さらに本発明のプリプレグを積層し、加熱加圧硬化させたものを内層回路基板とすることもできる。前記内層回路上の絶縁層としては、本発明のプリプレグを用いることができる。尚、前記内層回路上の絶縁層として、本発明のプリプレグを用いる場合は、前記内層回路基板は本発明のプリプレグ又は積層板を用いてなるものでなくてもよい。
In the present invention, the printed wiring board is a conductor circuit layer formed by providing a conductive layer such as a metal foil on an insulating layer. A single-sided printed wiring board (single-layer board), a double-sided printed wiring board (double-layer board) ) And multilayer printed wiring boards (multilayer boards). A multilayer printed wiring board is a printed wiring board that is laminated in three or more layers by a plated through hole method, a build-up method, or the like, and can be obtained by heating and press-molding an insulating layer on an inner circuit board. . As said inner-layer circuit board, what uses the laminated board of this invention and / or the prepreg of this invention can be used, for example. As an inner layer circuit board using the laminated board of the present invention, for example, a conductive circuit having a predetermined pattern is formed on the laminated board of the present invention having no metal foil by a semi-additive method, and the conductive circuit portion is blackened. The conductor circuit of a predetermined pattern is formed on the metal foil of the metal-clad laminate of the present invention, and the conductor circuit portion is blackened.
In addition, as an inner layer circuit board using the prepreg of the present invention, electric / electronic parts such as capacitors, resistors, and chips are mounted on an insulating support made of a cured resin, and the prepreg of the present invention is mounted thereon. It is also possible to use a conductive circuit having a predetermined pattern formed by a semi-additive method or the like on a component-embedded substrate obtained by laminating and curing by heating and pressing and blackening the conductive circuit portion.
Furthermore, in the present invention, the prepreg of the present invention is further laminated on the inner layer circuit board using the laminate of the present invention and / or the prepreg of the present invention, or a conductor circuit of a conventionally known inner layer circuit board. And what was heat-pressed-hardened can also be used as an inner-layer circuit board. As the insulating layer on the inner layer circuit, the prepreg of the present invention can be used. In addition, when using the prepreg of this invention as an insulating layer on the said inner layer circuit, the said inner layer circuit board does not need to consist of the prepreg or laminated board of this invention.
 以下、本発明のプリント配線板の代表例として、本発明の金属張積層板を内層回路基板として用い、本発明のプリプレグを絶縁層として用いる場合の多層プリント配線板について説明する。
 内層回路基板は、前記金属張積層板の片面又は両面に所定パターンの導体回路を形成し、当該導体回路部分を黒化処理することにより作製する。前記導体回路の形成方法は、特に限定されず、サブトラクティブ法、アディティブ法、セミアディティブ法等の公知の方法により行うことができる。また、内層回路基板には、ドリル加工、レーザー加工等によりスルーホールを形成し、メッキ等で両面の電気的接続をとることができる。前記内層回路基板は、本発明の金属張積層板からなるため、特にレーザー加工によって、穴径、形状等の精度に優れたスルーホールを形成することができる。前記レーザーは、エキシマレーザー、UVレーザー及び炭酸ガスレーザー等が使用できる。
Hereinafter, as a representative example of the printed wiring board of the present invention, a multilayer printed wiring board in which the metal-clad laminate of the present invention is used as an inner circuit board and the prepreg of the present invention is used as an insulating layer will be described.
The inner layer circuit board is produced by forming a conductor circuit of a predetermined pattern on one side or both sides of the metal-clad laminate and blackening the conductor circuit portion. The formation method of the said conductor circuit is not specifically limited, It can carry out by well-known methods, such as a subtractive method, an additive method, and a semi-additive method. Further, through holes can be formed in the inner layer circuit board by drilling, laser processing or the like, and electrical connection on both sides can be established by plating or the like. Since the inner layer circuit board is made of the metal-clad laminate of the present invention, it is possible to form through holes with excellent accuracy in hole diameter, shape, etc., particularly by laser processing. As the laser, an excimer laser, a UV laser, a carbon dioxide gas laser, or the like can be used.
 次に、この内層回路基板に前記プリプレグを重ね合わせて加熱加圧成形し、さらに加熱硬化することで絶縁層を形成する。具体的には、前記プリプレグと前記内層回路基板とを重ね合わせて、真空加圧式ラミネーター装置などを用いて真空加熱加圧成形し、その後、熱風乾燥装置等で絶縁層を加熱硬化させる。ここで加熱加圧成形する条件としては、特に限定されないが、一例を挙げると、温度60~160℃、圧力0.2~3MPaで実施することができる。また、加熱硬化させる条件としては、特に限定されないが、一例を挙げると、温度140~240℃、時間30~120分間で実施することができる。 Next, the prepreg is superposed on the inner layer circuit board, heat-pressed, and further heat-cured to form an insulating layer. Specifically, the prepreg and the inner layer circuit board are overlapped and vacuum heated and pressed using a vacuum pressurizing laminator device or the like, and then the insulating layer is heated and cured with a hot air dryer or the like. Here, the conditions for heat and pressure molding are not particularly limited, but for example, it can be carried out at a temperature of 60 to 160 ° C. and a pressure of 0.2 to 3 MPa. Further, the conditions for heat curing are not particularly limited, but for example, it can be carried out at a temperature of 140 to 240 ° C. for a time of 30 to 120 minutes.
 次に、積層した絶縁層にレーザーを照射して、開孔部(ビア孔)を形成する。前記レーザーは、スルーホール形成に用いられるレーザーと同様のものを使用することができる。前記絶縁層は本発明のプリプレグからなるため、レーザー加工により、穴径、形状等の精度に優れた開孔部を形成することができる。 Next, the laminated insulating layer is irradiated with laser to form an opening (via hole). The said laser can use the thing similar to the laser used for through-hole formation. Since the insulating layer is made of the prepreg of the present invention, it is possible to form an aperture having excellent precision such as hole diameter and shape by laser processing.
 レーザー照射後の樹脂残渣(スミア)等は、過マンガン酸塩、重クロム酸塩等の酸化剤等により除去する処理、すなわちデスミア処理を行うことが好ましい。デスミア処理が不十分で、デスミア性が十分に確保されていないと、開孔部に金属メッキ処理を行っても、スミアが原因で上層導体回路層と下層導体回路層との通電性が十分に確保されなくなるおそれがある。また、デスミア処理を行うことで、平滑な絶縁層の表面を同時に粗化することができるため、金属メッキ処理により絶縁層表面に導体層を形成したときに、絶縁層表面と導体層との密着性に優れる。尚、レーザー照射による開孔部形成の前に、絶縁層表面に導体層を形成してもよい。 The resin residue (smear) after laser irradiation is preferably removed by an oxidizing agent such as permanganate or dichromate, that is, desmear treatment. If the desmear treatment is insufficient and the desmear property is not sufficiently secured, even if metal plating is applied to the aperture, the electrical conductivity between the upper and lower conductor circuit layers is sufficient due to smear. May not be secured. Also, since the surface of the smooth insulating layer can be roughened at the same time by performing desmear treatment, when the conductor layer is formed on the surface of the insulating layer by metal plating, the adhesion between the surface of the insulating layer and the conductor layer Excellent in properties. Note that a conductor layer may be formed on the surface of the insulating layer before the opening is formed by laser irradiation.
 次に、開孔部及び絶縁層表面に金属メッキ処理を行い、導体層を形成する。前記絶縁層表面には、さらに前述の公知の方法等により導体回路形成を行う。なお、開孔部に金属メッキ処理を行い、導体層を形成することで、上層導体回路層と下層導体回路層との導通を図ることができる。 Next, a metal plating process is performed on the opening portion and the insulating layer surface to form a conductor layer. A conductor circuit is further formed on the surface of the insulating layer by the above-described known method. In addition, continuity with an upper conductor circuit layer and a lower conductor circuit layer can be aimed at by performing a metal plating process to an opening part and forming a conductor layer.
 さらに絶縁層を積層し、前記同様導体回路形成を行っても良いが、多層プリント配線板では、導体回路形成後、最外層にソルダーレジスト膜を形成する。ソルダーレジスト膜の形成方法は、特に限定されないが、例えば、ドライフィルムタイプのソルダーレジストを積層(ラミネート)し、露光、及び現像により形成する方法、又は液状レジストを印刷したものを露光、及び現像により形成する方法によりなされる。得られた多層プリント配線板を半導体装置に用いる場合は、半導体素子を実装するため接続用電極部を設ける。接続用電極部は、金メッキ、ニッケルメッキ及び半田メッキ等の金属皮膜で適宜被覆することができる。 Further, an insulating layer may be further laminated and a conductor circuit may be formed in the same manner as described above. However, in a multilayer printed wiring board, a solder resist film is formed on the outermost layer after the conductor circuit is formed. The method for forming the solder resist film is not particularly limited. For example, a method of forming a dry film type solder resist by laminating (laminating), exposing and developing, or printing a liquid resist by exposing and developing. This is done by the forming method. When the obtained multilayer printed wiring board is used in a semiconductor device, a connection electrode portion is provided for mounting a semiconductor element. The connection electrode portion can be appropriately coated with a metal film such as gold plating, nickel plating, or solder plating.
4.半導体装置
 次に、本発明の半導体装置について説明する。
 前記で得られたプリント配線板に半田バンプを有する半導体素子を実装し、半田バンプを介して、前記プリント配線板との接続を図る。そして、プリント配線板と半導体素子との間には封止樹脂を充填し、半導体装置を形成する。半田バンプは、錫、鉛、銀、銅、ビスマス等からなる合金で構成されることが好ましい。
4). Semiconductor Device Next, the semiconductor device of the present invention will be described.
A semiconductor element having solder bumps is mounted on the printed wiring board obtained above, and connection to the printed wiring board is attempted through the solder bumps. Then, a sealing resin is filled between the printed wiring board and the semiconductor element to form a semiconductor device. The solder bump is preferably made of an alloy made of tin, lead, silver, copper, bismuth or the like.
 半導体素子とプリント配線板との接続方法は、フリップチップボンダー等を用いて、プリント配線板上の接続用電極部と半導体素子の半田バンプとの位置合わせを行ったあと、IRリフロー装置、熱板、その他加熱装置を用いて半田バンプを融点以上に加熱し、プリント配線板と半田バンプとを溶融接合することにより接続する。尚、接続信頼性を良くするため、予めプリント配線板上の接続用電極部に半田ペースト等、比較的融点の低い金属の層を形成しておいてもよい。この接合工程に先んじて、半田バンプ及び/又はプリント配線板上の接続用電極部の表層にフラックスを塗布することで接続信頼性を向上させることもできる。 The method for connecting the semiconductor element and the printed wiring board is to use a flip chip bonder or the like to align the connection electrode portion on the printed wiring board with the solder bumps of the semiconductor element, and then the IR reflow apparatus, the hot plate In addition, the solder bumps are heated to the melting point or higher by using other heating devices, and the printed wiring board and the solder bumps are connected by fusion bonding. In order to improve connection reliability, a metal layer having a relatively low melting point, such as solder paste, may be formed in advance on the connection electrode portion on the printed wiring board. Prior to this joining step, the connection reliability can be improved by applying a flux to the surface layer of the connection electrode portion on the solder bump and / or printed wiring board.
 以下、本発明を実施例及び比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples and comparative examples, but the present invention is not limited thereto.
 実施例及び比較例において用いた繊維織布は、JIS R3413に規定されるガラス繊維を、平織り製織された織布で、以下のガラス繊維織布A~Lである。
A:Tガラス、E110 1/0のグラスファイバーヤーンを用い、経糸と横糸の25mmあたりの打込み本数が、44.5本、42本、開繊・扁平処理した厚み130μm、坪量155g/m
B:Eガラス、DE150 1/0のグラスファイバーヤーンを用い、経糸と横糸の25mmあたりの打込み本数が、46.5本、44本、開繊・扁平処理した厚み95μm、坪量121g/m
C:Tガラス、E225 1/0のグラスファイバーヤーンを用い、経糸と横糸の25mmあたりの打込み本数が、65本、64本、開繊・扁平処理した厚み95μm、坪量121g/m
D:Dガラス、E225 1/0のグラスファイバーヤーンを用い、経糸と横糸の25mmあたりの打込み本数が、65本、64本、開繊・扁平処理した厚み95μm、坪量121g/m
E:Tガラス、D450 1/0のグラスファイバーヤーンを用い、経糸と横糸の25mmあたりの打込み本数が、59本、59本、開繊・扁平処理した厚み46μm、坪量53g/m
F:Tガラス、BC1500 1/0のグラスファイバーヤーンを用い、経糸と横糸の25mmあたりの打込み本数が、90本、90本、開繊・扁平処理した厚み20μm、坪量24g/m
G:Tガラス、C1200 1/0のグラスファイバーヤーンを用い、経糸と横糸の25mmあたりの打込み本数が、74本、77本、開繊・扁平処理した厚み25μm、坪量31g/m
H:Tガラス、E110 1/0のグラスファイバーヤーンを用い、経糸と横糸の25mmあたりの打込み本数が、44.5本、42本、開繊・扁平処理した厚み115μm、坪量155g/m
I:Tガラス、E110 1/0のグラスファイバーヤーンを用い、経糸と横糸の25mmあたりの打込み本数が、43本、40本、開繊・扁平処理した厚み145μm、坪量150g/m
J:Tガラス、E225 1/0のグラスファイバーヤーンを用い、経糸と横糸の25mmあたりの打込み本数が、59本、54本、開繊・扁平処理した厚み97μm、坪量100g/m
K:Tガラス、D450 1/0のグラスファイバーヤーンを用い、経糸と横糸の25mmあたりの打込み本数が、60本、47本、開繊・扁平処理した厚み50μm、坪量48g/m
L:Tガラス、C1200 1/0のグラスファイバーヤーンを用い、経糸と横糸の25mmあたりの打込み本数が、68本、72本、開繊・扁平処理した厚み27μm、坪量25g/m
The fiber woven fabrics used in the examples and comparative examples are woven fabrics obtained by weaving glass fibers stipulated in JIS R3413, and are the following glass fiber woven fabrics A to L.
A: Glass fiber yarn of T glass and E110 1/0 was used, and the number of warps and wefts to be driven per 25 mm was 44.5 and 42, the thickness was 130 μm after opening and flattening, and the basis weight was 155 g / m 2.
B: Using E glass, DE150 1/0 glass fiber yarn, the number of warps and wefts to be driven per 25 mm is 46.5, 44, the thickness is 95 μm after opening and flattening, and the basis weight is 121 g / m 2.
C: T glass, using a glass fiber yarn E 225 1/0, implantation number per warp and weft of 25mm is 65 present, 64, opening-flattened treated thickness 95 .mu.m, basis weight 121g / m 2
D: D glass, glass fiber yarn of E225 1/0, the number of warps and wefts to be driven per 25 mm is 65 or 64, the thickness is 95 μm after opening and flattening, and the basis weight is 121 g / m 2
E: Glass fiber yarn of T glass and D450 1/0 was used, and the number of warps and wefts to be driven per 25 mm was 59, 59, the thickness was 46 μm after opening and flattening, and the basis weight was 53 g / m 2.
F: Using T glass, BC1500 1/0 glass fiber yarn, the number of warps and wefts to be driven per 25 mm is 90, 90, thickness 20 μm after opening and flattening, basis weight 24 g / m 2
G: T glass, C1200 1/0 glass fiber yarn is used, and the number of warps and wefts to be driven per 25 mm is 74, 77, the thickness is 25 μm after opening and flattening, and the basis weight is 31 g / m 2.
H: T glass, glass fiber yarn of E110 1/0 was used, and the number of warps and wefts driven per 25 mm was 44.5, 42, the thickness was 115 μm after opening and flattening, and the basis weight was 155 g / m 2.
I: Using T glass, E110 1/0 glass fiber yarn, the number of warps and wefts to be driven per 25 mm is 43 or 40, the thickness is 145 μm after opening and flattening, and the basis weight is 150 g / m 2.
J: T glass, E225 1/0 glass fiber yarn, 59 and 54 warp yarns and weft yarns per 25 mm, thickness of 97 μm after opening and flattening, basis weight of 100 g / m 2
K: T glass, D450 1/0 glass fiber yarn, the number of warps and wefts to be driven per 25 mm was 60, 47, the thickness was 50 μm after opening and flattening, and the basis weight was 48 g / m 2.
L: T glass, glass fiber yarn of C1200 1/0, the number of warps and wefts to be driven per 25 mm is 68 or 72, the thickness is 27 μm after opening and flattening, and the basis weight is 25 g / m 2.
 実施例及び比較例において用いたワニスは、以下のワニス製造例1~7によって、樹脂組成物を溶剤に含有・混合させて製造されたものである。
(ワニス製造例1)
 エポキシ樹脂(DIC社製 HP-5000)を6重量部、フェノールノボラック型シアネート樹脂(ロンザ社製 PT30)12重量部、フェノール系硬化剤(明和化成社製 MEH-7851-4L)を6重量部、シリカ粒子(トクヤマ社製 NSS-5N、平均粒径70nm)を10重量部、球状シリカ(アドマテックス社製 SO-31R、平均粒径1.0μm)を65重量部、エポキシシラン(信越化学工業社製 KBM-403E)1.0重量部を、メチルエチルケトン中に含有・混合させ、高速撹拌装置を用い撹拌して、エポキシ樹脂組成物が固形分基準で70重量%のワニスを得た。なお、ワニスに含有・混合させた樹脂組成物に含まれる充填材全体を100質量%とすると、当該充填材に含まれるシリカ粒子は13質量%、球状シリカは87質量%であった。
The varnishes used in the examples and comparative examples were produced by containing and mixing the resin composition in a solvent according to the following varnish production examples 1 to 7.
(Varnish production example 1)
6 parts by weight of an epoxy resin (HP-5000 manufactured by DIC), 12 parts by weight of a phenol novolac cyanate resin (PT30 manufactured by Lonza), 6 parts by weight of a phenol-based curing agent (MEH-7851-4L manufactured by Meiwa Kasei Co., Ltd.) 10 parts by weight of silica particles (NSS-5N manufactured by Tokuyama Corporation, average particle size 70 nm), 65 parts by weight of spherical silica (SO-31R manufactured by Admatechs, average particle diameter 1.0 μm), epoxy silane (Shin-Etsu Chemical Co., Ltd.) (Production KBM-403E) 1.0 part by weight was contained and mixed in methyl ethyl ketone and stirred using a high-speed stirrer to obtain a varnish whose epoxy resin composition was 70% by weight based on the solid content. In addition, when the whole filler contained in the resin composition contained / mixed in the varnish was 100% by mass, the silica particles contained in the filler were 13% by mass, and the spherical silica was 87% by mass.
(ワニス製造例2)
 エポキシ樹脂として、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製 NC-3000)9重量部、ビスマレイミド樹脂(ケイアイ化成工業社製 BMI-70)17重量部、4,4'-ジアミノジフェニルメタン3重量部、シリカ粒子(トクヤマ社製 NSS-5N、平均粒径70nm)を10重量部、ベーマイト(河合石灰社製 BMB、平均粒径0.5μm)60重量部、エポキシシラン(信越化学工業社製 KBM-403E)1.0重量部を、ジメチルホルムアミドに含有・混合させた。次いで、高速撹拌装置を用い撹拌して不揮発分70重量%となるように調整し、樹脂ワニスを調製した。なお、ワニスに含有・混合させた樹脂組成物に含まれる充填材全体を100質量%とすると、当該充填材に含まれるシリカ粒子は14質量%、ベーマイトは86質量%であった。
(Varnish production example 2)
As epoxy resins, 9 parts by weight of biphenyl aralkyl type epoxy resin (NC-3000, manufactured by Nippon Kayaku Co., Ltd.), 17 parts by weight of bismaleimide resin (BMI-70, manufactured by Keiai Chemical Industry Co., Ltd.), 3 parts by weight of 4,4′-diaminodiphenylmethane 10 parts by weight of silica particles (NSS-5N manufactured by Tokuyama Corporation, average particle size 70 nm), 60 parts by weight of boehmite (BMB manufactured by Kawai Lime Co., Ltd., average particle size 0.5 μm), epoxy silane (KBM- manufactured by Shin-Etsu Chemical Co., Ltd.) 403E) 1.0 part by weight was contained and mixed in dimethylformamide. Subsequently, it stirred using the high-speed stirring apparatus and adjusted so that it might become 70 weight% of non volatile matters, and prepared the resin varnish. In addition, when the whole filler contained in the resin composition contained / mixed in the varnish was 100% by mass, the silica particles contained in the filler were 14% by mass and boehmite was 86% by mass.
(ワニス製造例3)
 ビフェニルアラルキル型エポキシ樹脂(日本化薬社製 NC-3000FH)20重量部、ナフタレン型エポキシ樹脂(DIC(株)製 HP4032D)5重量部、シアネート樹脂(東都化成(株)製 SN485の誘導体、ナフトール型)17重量、ビスマレイミド樹脂(ケイアイ化成工業社製 BMI-70)7.5重量%、シリカ粒子(トクヤマ社製 NSS-5N、平均粒径70nm)を7重量部、球状シリカ(アドマテックス社製 SO-31R、平均粒径1.0μm)35.5重量部、シリコーン粒子(信越化学工業(株)製 KMP600、平均粒径5μm)7.5重量部、オクチル酸亜鉛0.01重量、エポキシシラン(信越化学工業社製 KBM-403E)0.5重量を、メチルエチルケトンに含有・混合させた。次いで、高速撹拌装置を用い撹拌して不揮発分70重量%となるように調整し、樹脂ワニスを調製した。なお、ワニスに含有・混合させた樹脂組成物に含まれる充填材全体を100質量%とすると、当該充填材に含まれるシリカ粒子は14質量%、球状シリカは71質量%、シリコーン粒子は15質量%であった。
(Varnish production example 3)
Biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd. NC-3000FH) 20 parts by weight, Naphthalene type epoxy resin (DIC Co., Ltd. HP4032D) 5 parts by weight, Cyanate resin (Toto Kasei Co., Ltd. SN485 derivative, naphthol type ) 17 wt., Bismaleimide resin (BMI-70 manufactured by KAI Kasei Kogyo Co., Ltd.) 7.5 wt%, silica particles (NSS-5N manufactured by Tokuyama Co., Ltd., average particle size 70 nm), 7 parts by weight, spherical silica (manufactured by Admatechs) SO-31R, average particle size 1.0 μm) 35.5 parts by weight, silicone particles (Shin-Etsu Chemical Co., Ltd. KMP600, average particle size 5 μm) 7.5 parts by weight, zinc octylate 0.01 weight, epoxy silane 0.5 wt. (KBM-403E manufactured by Shin-Etsu Chemical Co., Ltd.) was contained and mixed in methyl ethyl ketone. Subsequently, it stirred using the high-speed stirring apparatus and adjusted so that it might become 70 weight% of non volatile matters, and prepared the resin varnish. When the entire filler contained in the resin composition contained / mixed in the varnish is 100% by mass, the silica particles contained in the filler are 14% by mass, the spherical silica is 71% by mass, and the silicone particles are 15% by mass. %Met.
(ワニス製造例4)
 エポキシ樹脂として、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製 NC-3000)18.5重量部、ビスマレイミド樹脂(ケイアイ化成工業社製 BMI-70)34.9重量部、4,4'-ジアミノジフェニルメタン6.1重量部、シリカ粒子(トクヤマ社製 NSS-5N、平均粒径70nm)を5重量部、ベーマイト(河合石灰社製 BMB、平均粒径0.5μm)35重量部、エポキシシラン(信越化学工業社製 KBM-403E)0.5重量部を、ジメチルホルムアミドに含有・混合させた。次いで、高速撹拌装置を用い撹拌して不揮発分70重量%となるように調整し、樹脂ワニスを調製した。なお、ワニスに含有・混合させた樹脂組成物に含まれる充填材全体を100質量%とすると、当該充填材に含まれるシリカ粒子は12.5質量%、ベーマイトは87.5質量%であった。
(Varnish production example 4)
As the epoxy resin, 18.5 parts by weight of a biphenyl aralkyl type epoxy resin (NC-3000 manufactured by Nippon Kayaku Co., Ltd.), 34.9 parts by weight of a bismaleimide resin (BMI-70 manufactured by Keiai Kasei Kogyo Co., Ltd.), 4,4′-diamino 6.1 parts by weight of diphenylmethane, 5 parts by weight of silica particles (NSS-5N manufactured by Tokuyama Co., Ltd., average particle size 70 nm), 35 parts by weight of boehmite (BMB manufactured by Kawai Lime Co., Ltd., average particle size 0.5 μm), epoxy silane (Shin-Etsu) 0.5 parts by weight of KBM-403E manufactured by Kagaku Kogyo Co., Ltd. was contained and mixed in dimethylformamide. Subsequently, it stirred using the high-speed stirring apparatus and adjusted so that it might become 70 weight% of non volatile matters, and prepared the resin varnish. In addition, when the whole filler contained in the resin composition contained / mixed in the varnish was 100% by mass, the silica particles contained in the filler were 12.5% by mass and boehmite was 87.5% by mass. .
(ワニス製造例5)
 エポキシ樹脂として、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製 NC-3000)2.80重量部、ビスマレイミド樹脂(ケイアイ化成工業社製 BMI-70)5.27重量部、4,4'-ジアミノジフェニルメタン0.93重量部、シリカ粒子(トクヤマ社製 NSS-5N、平均粒径70nm)を10重量部、ベーマイト(河合石灰社製 BMB、平均粒径0.5μm)80重量部、エポキシシラン(信越化学工業社製 KBM-403E)1.0重量部を、ジメチルホルムアミドに含有・混合させた。次いで、高速撹拌装置を用い撹拌して不揮発分70重量%となるように調整し、樹脂ワニスを調製した。なお、ワニスに含有・混合させた樹脂組成物に含まれる充填材全体を100質量%とすると、当該充填材に含まれるシリカ粒子は11質量%、ベーマイトは89質量%であった。
(Varnish production example 5)
As epoxy resins, biphenyl aralkyl type epoxy resin (NC-3000 manufactured by Nippon Kayaku Co., Ltd.) 2.80 parts by weight, bismaleimide resin (BMI-70 manufactured by KAI Kasei Kogyo Co., Ltd.) 5.27 parts by weight, 4,4′-diamino 0.93 parts by weight of diphenylmethane, 10 parts by weight of silica particles (NSS-5N manufactured by Tokuyama Corporation, average particle size 70 nm), 80 parts by weight of boehmite (BMB manufactured by Kawai Lime Co., Ltd., average particle size 0.5 μm), epoxy silane (Shin-Etsu) 1.0 part by weight of KBM-403E manufactured by Kagaku Kogyo Co., Ltd. was contained and mixed in dimethylformamide. Subsequently, it stirred using the high-speed stirring apparatus and adjusted so that it might become 70 weight% of non volatile matters, and prepared the resin varnish. In addition, when the whole filler contained in the resin composition contained / mixed in the varnish was 100% by mass, the silica particles contained in the filler were 11% by mass and boehmite was 89% by mass.
(ワニス製造例6)
 エポキシ樹脂(DIC社製 HP-5000)を6重量部、フェノールノボラック型シアネート樹脂(ロンザ社製 PT30)12重量部、フェノール系硬化剤(明和化成社製 MEH-7851-4L)を6重量部、シリカ粒子(トクヤマ社製 NSS-5N、平均粒径70nm)を30重量部、球状シリカ(アドマテックス社製 SO-31R、平均粒径1.0μm)を45重量部、エポキシシラン(信越化学工業社製 KBM-403E)1.0重量部を、メチルエチルケトン中に含有・混合させ、高速撹拌装置を用い撹拌して、エポキシ樹脂組成物が固形分基準で70重量%のワニスを得た。なお、ワニスに含有・混合させた樹脂組成物に含まれる充填材全体を100質量%とすると、当該充填材に含まれるシリカ粒子は40質量%、球状シリカは60質量%であった。
(Varnish production example 6)
6 parts by weight of an epoxy resin (HP-5000 manufactured by DIC), 12 parts by weight of a phenol novolac cyanate resin (PT30 manufactured by Lonza), 6 parts by weight of a phenol-based curing agent (MEH-7851-4L manufactured by Meiwa Kasei Co., Ltd.) 30 parts by weight of silica particles (NSS-5N manufactured by Tokuyama Corporation, average particle size 70 nm), 45 parts by weight of spherical silica (SO-31R manufactured by Admatechs, average particle diameter 1.0 μm), epoxy silane (Shin-Etsu Chemical Co., Ltd.) (Production KBM-403E) 1.0 part by weight was contained and mixed in methyl ethyl ketone and stirred using a high-speed stirrer to obtain a varnish whose epoxy resin composition was 70% by weight based on the solid content. In addition, when the whole filler contained in the resin composition contained / mixed in the varnish was 100 mass%, the silica particles contained in the filler were 40 mass%, and the spherical silica was 60 mass%.
(ワニス製造例7)
 エポキシ樹脂(日本化薬社製 NC-3000)を6重量部、フェノールノボラック型シアネート樹脂(ロンザ社製 PT30)12重量部、フェノール系硬化剤(明和化成社製 MEH-7851-4L)を6重量部、球状シリカ(アドマテックス社製 SO-31R、平均粒径1.0μm)を75重量部、エポキシシラン(信越化学工業社製 KBM-403E)1.0重量部を、メチルエチルケトン中に含有・混合させ、高速撹拌装置を用い撹拌して、エポキシ樹脂組成物が固形分基準で70重量%のワニスを得た。なお、ワニスに含有・混合させた樹脂組成物に含まれる充填材全体を100質量%とすると、当該充填材に含まれるシリカ粒子は0質量%、球状シリカは100質量%であった。
(Varnish production example 7)
6 parts by weight of epoxy resin (NC-3000 manufactured by Nippon Kayaku Co., Ltd.), 12 parts by weight of phenol novolac cyanate resin (PT30 manufactured by Lonza), 6 parts by weight of phenolic curing agent (MEH-7851-4L manufactured by Meiwa Kasei Co., Ltd.) Part of spherical silica (SO-31R manufactured by Admatechs Co., Ltd., average particle size 1.0 μm) and 75 parts by weight of epoxy silane (KBM-403E manufactured by Shin-Etsu Chemical Co., Ltd.) are contained and mixed in methyl ethyl ketone. The mixture was stirred using a high-speed stirrer to obtain a varnish having an epoxy resin composition having a solid content of 70% by weight. In addition, when the whole filler contained in the resin composition contained / mixed in the varnish was 100% by mass, the silica particles contained in the filler were 0% by mass, and the spherical silica was 100% by mass.
 ワニス製造例1~7に用いられる樹脂組成物の組成を表1に示す。なお、各成分の配合量は、重量部で示す。 Table 1 shows the compositions of the resin compositions used in Varnish Production Examples 1 to 7. In addition, the compounding quantity of each component is shown by a weight part.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記ガラス繊維織布及び上記ワニスを用いて、プリプレグ、金属張積層板、プリント配線板(内層回路基板)、多層プリント配線板及び半導体装置を作製した。 Using the glass fiber woven fabric and the varnish, a prepreg, a metal-clad laminate, a printed wiring board (inner layer circuit board), a multilayer printed wiring board, and a semiconductor device were produced.
<実施例1>
(1)プリプレグの作製
 製造例1で得られたワニスを厚さ38μmのポリエチレンテレフタレート基材(以下、PET基材)上に流延塗布して、温度140℃で時間10分で溶剤を揮発乾燥させて、樹脂層の厚みが30μmになるようにした。前記樹脂層付き基材を、ガラス織布Aの両面に樹脂層がガラス織布に接するように配し、圧力0.5MPa、温度140℃で1分間の条件で真空加圧式ラミネーター(名機製作所社製MLVP-500)により加熱加圧して、樹脂組成物を含浸させた。これにより、両面にPET基材を有する厚み150μmのプリプレグ(樹脂層(片面):10μm、繊維織布層:130μm)得た。
<Example 1>
(1) Preparation of prepreg The varnish obtained in Production Example 1 was cast coated on a 38 μm thick polyethylene terephthalate substrate (hereinafter referred to as “PET substrate”), and the solvent was evaporated and dried at a temperature of 140 ° C. for 10 minutes. The thickness of the resin layer was 30 μm. The base material with the resin layer is arranged on both surfaces of the glass woven fabric A so that the resin layer is in contact with the glass woven fabric, and a vacuum and pressure laminator (Meiki Seisakusho Co., Ltd.) under the conditions of a pressure of 0.5 MPa and a temperature of 140 ° C. for 1 minute. The resin composition was impregnated by heating and pressing with MLVP-500). As a result, a 150 μm-thick prepreg (resin layer (one side): 10 μm, fiber woven fabric layer: 130 μm) having a PET substrate on both sides was obtained.
(2)金属張積層板の作製
 前記プリプレグの両面にキャリア付き2μmの銅箔(三井金属鉱業社製、マイクロシンMT18Ex-2)を重ねて、圧力3MPa、温度220℃で2時間加熱加圧成形した。これにより、プリプレグが硬化してなる厚さ150μmの絶縁層の両面に銅箔を有する金属張積層板を得た。
(2) Production of metal-clad laminate A 2 μm copper foil with carrier (Micro thin MT18Ex-2, manufactured by Mitsui Mining & Smelting Co., Ltd.) was layered on both sides of the prepreg, and heated and pressed at a pressure of 3 MPa and a temperature of 220 ° C. for 2 hours. did. As a result, a metal-clad laminate having copper foil on both surfaces of a 150 μm thick insulating layer formed by curing the prepreg was obtained.
(3)多層プリント配線板絶縁層用プリプレグの作製
 前記製造例1で得られたワニスをガラス織布(厚さ16μm、ユニチカ社製 Eガラス織布、E02Z、坪量17.5g/m)に含浸し、180℃の加熱炉で2分間乾燥して、プリプレグ中の樹脂組成物が固形分基準で約78重量%のプリプレグ(厚み40μm)を得た。なお、前記ガラス織布は、かさ密度1.09g/cm、通気度41cc/cm/sec、扁平率(厚み:幅)1:16であった。また、前記ガラス織布は、板状にした際のヤング率が93GPa、板状にした際の引張強度が48GPa、繊維織布にした際の長手方向の引張強度が90N/25mmのガラス繊維からなるものであった。
(3) Preparation of prepreg for multilayer printed wiring board insulating layer Glass woven fabric (thickness 16 μm, unit E glass woven fabric, E02Z, basis weight 17.5 g / m 2 ) obtained in Production Example 1 And dried in a heating furnace at 180 ° C. for 2 minutes to obtain a prepreg (thickness: 40 μm) having a resin composition in the prepreg of about 78% by weight based on the solid content. The glass woven fabric had a bulk density of 1.09 g / cm 3 , an air permeability of 41 cc / cm 2 / sec, and a flatness ratio (thickness: width) of 1:16. The glass woven fabric is made of glass fiber having a Young's modulus of 93 GPa when formed into a plate, a tensile strength of 48 GPa when formed into a plate, and a tensile strength of 90 N / 25 mm in the longitudinal direction when formed into a fiber woven fabric. It was.
(4)プリント配線板(内層回路基板)の製造
 前記金属張積層板から、キャリア箔を剥離し、炭酸ガスレーザー(三菱電機社製、ML605GTX3-5100U2)を用いて、アパーチャーφ1.4mm、ビーム径約120μm、エネルギー7~9mJ、ショット数6の条件で、φ100μmの貫通スルーホールを形成した。次いで、当該金属張積層板を、70℃の膨潤液(アトテックジャパン社製、スウェリングディップ セキュリガント P)に5分間浸漬し、さらに80℃の過マンガン酸カリウム水溶液(アトテックジャパン社製、コンセントレートコンパクト CP)に10分浸漬後、中和して粗化処理を行った。次に、無電解メッキ(上村工業社製、スルカップPEAプロセス)で上下銅箔間の導通を図った。
 次いで、この無電解めっき層の表面に、厚さ25μmの紫外線感光性ドライフィルム(旭化成社製、サンフォートUFG-255)をホットロールラミネーターにより貼り合わせた。次いで、最小線幅/線間が20/20μmのパターンが描画されたガラスマスク(トピック社製)の位置を合わせた。次いで当該ガラスマスクを使用して、露光装置(小野測器EV-0800)にて露光した後、炭酸ソーダ水溶液にて現像し、レジストマスクを形成した。次に、無電解めっき層を給電層電極として、電解銅めっき(奥野製薬社製81-HL)を3A/dm、25分間行った。これにより、厚さ約20μmの銅配線のパターンを形成した。次に、剥離機を用いて、モノエタノールアミン溶液(三菱ガス化学社製R-100)により、前記レジストマスクを剥離した。そして、給電層であるパターン形状以外の不要な銅箔および無電解めっき層をフラッシュエッチング(荏原電産社製SAC-702MとSAC-701R35の純水溶液)により除去して、L/S=20/20μmのパターンを形成した。
 次いで、導体回路の粗化処理(メック社製、メックエッチボンド CZ-8100)を行った。当該粗化処理は、液温35℃、スプレー圧0.15MPの条件でスプレー噴霧処理し、銅表面に粗さ3μm程度の粗面化を施すことにより行われた。次いで、導体回路の表面処理(メック社製、メックエッチボンド CL-8300)を行った。当該表面処理では、液温25℃、浸漬時間20秒間の条件で浸漬して、銅表面に防錆処理を行った。このようにして、プリント配線板(内層回路基板)を作製した。
(4) Manufacture of printed wiring board (inner layer circuit board) The carrier foil is peeled off from the metal-clad laminate, and an aperture φ1.4 mm, beam diameter using a carbon dioxide laser (ML605GTX3-5100U2 manufactured by Mitsubishi Electric Corporation) A through-through hole of φ100 μm was formed under the conditions of about 120 μm, energy 7-9 mJ, and number of shots 6. Next, the metal-clad laminate was immersed in a swelling liquid at 70 ° C. (Atotech Japan, Swelling Dip Securigant P) for 5 minutes, and further an aqueous potassium permanganate solution at 80 ° C. (concentrated by Atotech Japan). After immersion in compact CP) for 10 minutes, neutralization and roughening treatment were performed. Next, conduction between the upper and lower copper foils was achieved by electroless plating (manufactured by Uemura Kogyo Co., Ltd., Sulcup PEA process).
Next, a 25 μm-thick UV-sensitive dry film (manufactured by Asahi Kasei Co., Ltd., Sunfort UFG-255) was bonded to the surface of the electroless plating layer with a hot roll laminator. Next, the position of a glass mask (manufactured by Topic) on which a pattern having a minimum line width / line spacing of 20/20 μm was drawn was aligned. Next, the glass mask was used for exposure with an exposure apparatus (Ono Sokki EV-0800), followed by development with an aqueous sodium carbonate solution to form a resist mask. Next, electrolytic copper plating (Okuno Pharmaceutical 81-HL) was performed at 3 A / dm 2 for 25 minutes using the electroless plating layer as a power feeding layer electrode. Thus, a copper wiring pattern having a thickness of about 20 μm was formed. Next, the resist mask was peeled off with a monoethanolamine solution (R-100, manufactured by Mitsubishi Gas Chemical Company) using a peeling machine. Then, unnecessary copper foil and electroless plating layer other than the pattern shape as the power feeding layer are removed by flash etching (pure aqueous solution of SAC-702M and SAC-701R35 manufactured by Ebara Densan Co., Ltd.), and L / S = 20 / A 20 μm pattern was formed.
Next, the conductor circuit was roughened (MEC Etch Bond CZ-8100, manufactured by MEC). The roughening treatment was performed by spray spraying under conditions of a liquid temperature of 35 ° C. and a spray pressure of 0.15 MP, and roughening the copper surface to a roughness of about 3 μm. Next, a surface treatment of the conductor circuit (MEC Etch Bond CL-8300, manufactured by MEC) was performed. In the surface treatment, the copper surface was subjected to rust prevention treatment by dipping under conditions of a liquid temperature of 25 ° C. and an immersion time of 20 seconds. In this way, a printed wiring board (inner layer circuit board) was produced.
(5)多層プリント配線板の製造
 次に、前記で得られたプリント配線板を内層回路基板として、その両面に前記多層プリント配線板絶縁層用プリプレグとキャリア付き2μmの銅箔(三井金属鉱業社製、マイクロシンMT18Ex-2)を重ねて配し、積層真空積層装置を用いて積層し、温度200℃、圧力3MPa、時間120分間加熱硬化し、多層積層体を得た。次に、外層回路形成を、前記(4)プリント配線板(内層回路基板)の製造方法と同様に行い、最後に回路表面にソルダーレジスト(太陽インキ社製、PSR4000/AUS308)を形成し、多層プリント配線板を得た。
(5) Manufacture of multilayer printed wiring board Next, the printed wiring board obtained above is used as an inner layer circuit board, and the multilayer printed wiring board insulating layer prepreg and a 2 μm copper foil with a carrier (Mitsui Metal Mining Co., Ltd.) Manufactured by Micro Thin MT18Ex-2), stacked using a stacking vacuum stacking apparatus, and cured by heating at a temperature of 200 ° C., a pressure of 3 MPa, and a time of 120 minutes to obtain a multilayer stack. Next, outer layer circuit formation is performed in the same manner as in the method for producing the printed wiring board (inner layer circuit board) (4), and finally a solder resist (manufactured by Taiyo Ink, PSR4000 / AUS308) is formed on the circuit surface. A printed wiring board was obtained.
 前記多層プリント配線板は、半導体素子の半田バンプ配列に相当する接続用電極部にENEPIG処理を施した。ENEPIG処理は、[1]クリーナー処理、[2]ソフトエッチング処理、[3]酸洗処理、[4]プレディップ処理、[5]パラジウム触媒付与、[6]無電解ニッケルメッキ処理、[7]無電解パラジウムメッキ処理、[8]無電解金メッキ処理の工程で行われた。 The multilayer printed wiring board was subjected to the ENEPIG treatment on the connection electrode portion corresponding to the solder bump arrangement of the semiconductor element. ENEPIG treatment includes [1] cleaner treatment, [2] soft etching treatment, [3] pickling treatment, [4] pre-dip treatment, [5] palladium catalyst application, [6] electroless nickel plating treatment, [7] The electroless palladium plating treatment and [8] electroless gold plating treatment were performed.
(6)半導体装置の製造
 半導体装置は、ENEPIG処理を施されたプリント配線板上に半田バンプを有する半導体素子(TEGチップ、サイズ10mm×10mm、厚み0.1mm)を、フリップチップボンダー装置により、加熱圧着により搭載し、次に、IRリフロー炉で半田バンプを溶融接合した後、液状封止樹脂(住友ベークライト社製、CRP-4152S)を充填し、液状封止樹脂を硬化させることで得た。尚、液状封止樹脂は、温度150℃、120分の条件で硬化させた。尚、前記半導体素子の半田バンプは、Sn/Pb組成の共晶で形成されたものを用いた。最後に14mm×14mmのサイズにルーターで個片化し、半導体装置を得た。
(6) Manufacture of Semiconductor Device A semiconductor device is a semiconductor device (TEG chip, size 10 mm × 10 mm, thickness 0.1 mm) having solder bumps on a printed wiring board subjected to ENEPIG processing, by a flip chip bonder device. After mounting by thermocompression bonding, solder bumps were melt-bonded in an IR reflow furnace, and then liquid sealing resin (manufactured by Sumitomo Bakelite Co., Ltd., CRP-4152S) was filled and the liquid sealing resin was cured. . The liquid sealing resin was cured at a temperature of 150 ° C. for 120 minutes. In addition, the solder bump of the said semiconductor element used what was formed with the eutectic of Sn / Pb composition. Finally, it was separated into pieces of 14 mm × 14 mm with a router to obtain a semiconductor device.
<実施例2~3、および比較例1~6>
 表4に示す繊維織布およびワニスの製造例により得られたワニスを用いて、実施例1と同様にプリプレグ、厚さ150μmの絶縁層の両面に銅箔を有する金属張積層板、プリント配線板(内層回路基板)、多層プリント配線板および半導体装置を得た。
<Examples 2 to 3 and Comparative Examples 1 to 6>
Using the woven fabric and the varnish obtained by the production example of varnish shown in Table 4, a prepreg as in Example 1, a metal-clad laminate having copper foil on both surfaces of an insulating layer having a thickness of 150 μm, and a printed wiring board (Inner layer circuit board), multilayer printed wiring board and semiconductor device were obtained.
<実施例4~6、および比較例7>
 プリプレグ作製時に、樹脂層付き基材の樹脂層の厚みを表5に記載の通りとした以外は、表5に示す繊維織布およびワニスの製造例により得られたワニスを用いて、実施例1と同様にして、プリプレグ、厚さ100μmの絶縁層の両面に銅箔を有する金属張積層板、プリント配線板(内層回路基板)、多層プリント配線板および半導体装置を得た。
 尚、プリント配線板の貫通スルーホール形成は、炭酸ガスレーザー(三菱電機社製、ML605GTX3-5100U2)を用いて、アパーチャーφ1.1mm、ビーム径約110μm、エネルギー7~9mJ、ショット数6の条件で行われ、直径100μmの貫通スルーホールを形成した。
<Examples 4 to 6 and Comparative Example 7>
Example 1 using the varnish obtained by the production example of the fiber woven fabric and the varnish shown in Table 5 except that the thickness of the resin layer of the substrate with the resin layer was set as shown in Table 5 at the time of preparing the prepreg. In the same manner as above, a prepreg, a metal-clad laminate having copper foil on both sides of an insulating layer having a thickness of 100 μm, a printed wiring board (inner circuit board), a multilayer printed wiring board, and a semiconductor device were obtained.
In addition, the through-hole formation of the printed wiring board was performed using a carbon dioxide laser (Mitsubishi Electric Corporation, ML605GTX3-5100U2) under the conditions of an aperture φ1.1 mm, a beam diameter of about 110 μm, energy 7 to 9 mJ, and shot number 6. A through-hole having a diameter of 100 μm was formed.
<実施例7、8、および比較例8>
 実施例7及び比較例8は、プリプレグ作製時に、樹脂層付き基材の樹脂層の厚みを表6に記載の通りとした以外は、表6に示す繊維織布およびワニスの製造例により得られたワニスを用いて、実施例1と同様にプリプレグ、厚さ60μmの絶縁層の両面に銅箔を有する金属張積層板、プリント配線板(内層回路基板)、多層プリント配線板および半導体装置を得た。
 実施例8は、プリプレグ作製時に、樹脂層付き基材の樹脂層の厚みを表6に記載の通りとした以外は、表6に示す繊維織布およびワニスの製造例により得られたワニスを用いて、実施例1と同様にプリプレグ(全体厚み30μm)、当該30μmのプリプレグを2枚積層し、硬化してなる厚さ60μmの絶縁層の両面に銅箔を有する金属張積層板、内層回路基板、多層プリント配線板および半導体装置を得た。
 尚、プリント配線板の貫通スルーホール形成は、炭酸ガスレーザー(三菱電機社製、ML605GTX3-5100U2)を用いて、アパーチャーφ1.1mm、ビーム径約110μm、エネルギー6~8mJ、ショット数6の条件で行われ、直径100μmの貫通スルーホールを形成した。
<Examples 7 and 8 and Comparative Example 8>
Example 7 and Comparative Example 8 are obtained by the production examples of the fiber woven fabric and varnish shown in Table 6 except that the thickness of the resin layer of the substrate with the resin layer is as shown in Table 6 at the time of preparing the prepreg. As in Example 1, a prepreg, a metal-clad laminate having copper foil on both sides of an insulating layer having a thickness of 60 μm, a printed wiring board (inner circuit board), a multilayer printed wiring board, and a semiconductor device were obtained. It was.
Example 8 uses the varnish obtained by the production example of the fiber woven fabric and the varnish shown in Table 6 except that the thickness of the resin layer of the substrate with the resin layer is as shown in Table 6 at the time of preparing the prepreg. As in Example 1, a prepreg (total thickness 30 μm), a metal-clad laminate having copper foil on both sides of a 60 μm thick insulating layer obtained by laminating and curing two 30 μm prepregs, an inner circuit board A multilayer printed wiring board and a semiconductor device were obtained.
In addition, the through-hole formation of the printed wiring board was performed using a carbon dioxide gas laser (ML605GTX3-5100U2 manufactured by Mitsubishi Electric Corporation) under the conditions of an aperture φ1.1 mm, a beam diameter of about 110 μm, energy 6 to 8 mJ, and shot number 6 A through-hole having a diameter of 100 μm was formed.
<実施例9、および比較例9>
 プリプレグ作製時に、樹脂層付き基材の樹脂層の厚みを表7に記載の通りとした以外は、表7に示す繊維織布およびワニスの製造例により得られたワニスを用いて、実施例1と同様にプリプレグ、厚さ40μmの絶縁層の両面に銅箔を有する金属張積層板、プリント配線板(内層回路基板)、多層プリント配線板および半導体装置を得た。
 尚、プリント配線板の貫通スルーホール形成は、炭酸ガスレーザー(三菱電機社製、ML605GTX3-5100U2)を用いて、アパーチャーφ1.1mm、ビーム径約110μm、エネルギー6~8mJ、ショット数6の条件で行われ、直径100μmの貫通スルーホールを形成した。
<Example 9 and Comparative Example 9>
Example 1 using the varnish obtained by the production example of the fiber woven fabric and varnish shown in Table 7 except that the thickness of the resin layer of the substrate with the resin layer was set as shown in Table 7 at the time of preparing the prepreg. In the same manner as above, a prepreg, a metal-clad laminate having copper foil on both sides of an insulating layer having a thickness of 40 μm, a printed wiring board (inner layer circuit board), a multilayer printed wiring board, and a semiconductor device were obtained.
In addition, the through-hole formation of the printed wiring board was performed using a carbon dioxide gas laser (ML605GTX3-5100U2 manufactured by Mitsubishi Electric Corporation) under the conditions of an aperture φ1.1 mm, a beam diameter of about 110 μm, energy 6 to 8 mJ, and shot number 6 A through-hole having a diameter of 100 μm was formed.
 実施例および比較例で得られたプリプレグ、金属張積層板、プリント配線板(内層回路基板)及び半導体装置について、以下の評価を行った。評価項目を内容と共に示す。また得られた評価結果を表4~7に示す。
 なお、後述するPKG反りの測定結果が金属張積層板の絶縁層の厚みに依存するため、金属張積層板の絶縁層の厚みが150μmの実施例および比較例の評価結果を表4に示し、金属張積層板の絶縁層の厚みが100μmの実施例および比較例の評価結果を表5に示し、金属張積層板の絶縁層の厚みが60μmの実施例および比較例の評価結果を表6に示し、金属張積層板の絶縁層の厚みが40μmの実施例および比較例の評価結果を表7に示した。
 また、表4~7中において、樹脂組成物中の充填材量(質量%)は、樹脂組成物全体を100質量%としたときの充填材量を示したものであり、充填材の組成(質量)%は、充填材全体を100質量%としたときの各成分の割合を示したものである。
The following evaluation was performed on the prepregs, metal-clad laminates, printed wiring boards (inner circuit boards) and semiconductor devices obtained in the examples and comparative examples. The evaluation items are shown together with the contents. The obtained evaluation results are shown in Tables 4 to 7.
In addition, since the measurement result of the PKG warpage described later depends on the thickness of the insulating layer of the metal-clad laminate, the evaluation results of Examples and Comparative Examples in which the thickness of the insulating layer of the metal-clad laminate is 150 μm are shown in Table 4, Table 5 shows the evaluation results of Examples and Comparative Examples in which the thickness of the insulating layer of the metal-clad laminate is 100 μm, and Table 6 shows the evaluation results of Examples and Comparative Examples in which the thickness of the insulating layer of the metal-clad laminate is 60 μm. Table 7 shows the evaluation results of Examples and Comparative Examples in which the thickness of the insulating layer of the metal-clad laminate is 40 μm.
In Tables 4 to 7, the amount of filler (% by mass) in the resin composition indicates the amount of filler when the entire resin composition is 100% by mass. (Mass)% shows the ratio of each component when the whole filler is 100 mass%.
<評価方法>
(1)樹脂組成物の含浸性
 前記実施例及び比較例で得られたプリプレグを170℃の温度で、1時間硬化後、断面(幅方向の断面部300mmの範囲について)をSEM(走査型電子顕微鏡)により観察し、繊維内部におけるボイドの有無を評価した。ボイドは、画像上、繊維断面における白色粒状の点として観察される。
 各符号は以下の通りである。
○:樹脂組成物が全て良好に含浸し、繊維内部にボイドがない場合
×:繊維内部にボイドがある場合
<Evaluation method>
(1) Impregnation of resin composition The prepregs obtained in the examples and comparative examples were cured for 1 hour at a temperature of 170 ° C., and then the cross section (about the range of the cross section 300 mm in the width direction) was SEM (scanning electron) And the presence or absence of voids inside the fiber was evaluated. Voids are observed as white granular points on the fiber cross section on the image.
Each code is as follows.
○: When the resin composition is fully impregnated and there is no void inside the fiber ×: When there is a void inside the fiber
(2)成形性
 前記実施例及び比較例で得られた金属張積層板の銅箔を全面エッチングした後に、500mm×500mmの範囲をSEM(走査型電子顕微鏡)により観察し、絶縁層(繊維織布層の表面にある樹脂層)の表面におけるボイドの有無を評価した。ボイドは、画像上、白色粒状の点として観察される。
 各符号は以下の通りである。
○:ボイドなし
×:ボイドあり
(2) Formability After etching the copper foil of the metal-clad laminate obtained in the examples and comparative examples, a 500 mm × 500 mm range was observed with a SEM (scanning electron microscope), and an insulating layer (fiber woven) The presence or absence of voids on the surface of the resin layer on the surface of the fabric layer was evaluated. Voids are observed as white granular points on the image.
Each code is as follows.
○: No void ×: Void present
(3)吸湿半田耐熱性
 前記実施例及び比較例で得られた金属張積層板を50mm×50mm角に切断したサンプルを用いて、JIS C-6481に基づいて、前記サンプルの片面の半分以外の全銅箔をエッチング除去し、プレシッヤークッカー試験機(エスペック社製)で121℃、2気圧で2時間処理後、260℃の半田槽に30秒間浸漬させて、外観変化の異常の有無を目視にて観察した。
 各符号は以下の通りである。
○:異常がない場合
×:膨れ、剥がれがある
(3) Heat-absorbing solder heat resistance Using samples obtained by cutting the metal-clad laminates obtained in the examples and comparative examples into 50 mm × 50 mm squares, based on JIS C-6481, other than half of one side of the samples All copper foil is removed by etching, treated with a pressure checker tester (manufactured by Espec Corp.) at 121 ° C and 2 atm for 2 hours, and then immersed in a solder bath at 260 ° C for 30 seconds to check for abnormal appearance changes. It was observed visually.
Each code is as follows.
○: No abnormality ×: Swelling or peeling
(4)線熱膨張係数(CTE)(ppm/K)
 線熱膨張係数(CTE)は、TMA(熱機械的分析)装置(TAインスツルメント社製、Q400)を用いて、4mm×20mmの試験片を作製し、温度範囲30~300℃、10℃/分、荷重5gの条件で2サイクル目の50~100℃におけるCTEを測定した。尚、サンプルは、各実施例および比較例で得られた金属張積層板の銅箔をエッチング除去したものを用いた。
(4) Linear thermal expansion coefficient (CTE) (ppm / K)
The coefficient of linear thermal expansion (CTE) was measured using a TMA (thermomechanical analysis) apparatus (TA Instruments, Q400) to produce a 4 mm × 20 mm test piece, and a temperature range of 30 to 300 ° C. and 10 ° C. The CTE at 50 to 100 ° C. in the second cycle was measured under the conditions of / min and a load of 5 g. In addition, the sample used what removed the copper foil of the metal-clad laminated board obtained by each Example and the comparative example by etching.
(5)レーザー加工性
 前記実施例及び比較例で得られたプリント配線板(内層回路基板)を用い、炭酸レーザー加工後の貫通スルーホールのクロス突出量、孔径の真円度を測定した。クロス突出量及び真円度の測定は、カラー3Dレーザー顕微鏡(キーエンス社製、装置名VK-9710)を用い、クロス突出量の測定は、レーザー入射側の孔の真上から観察して孔壁面からの突出長さを測定することによって行い、真円度の測定は、レーザー入射側の孔の真上から観察して、孔トップ径の長径と短径を測定し、長径÷短径を算出することによって行った。尚、サンプルは、前記実施例及び比較例で得られたプリント配線板(内層回路基板)を用い、下記表2に示す炭酸ガスレーザー条件で、直径100μmの孔加工直後の基板を真上から観察し、貫通孔10個の平均値とした。
(5) Laser workability Using the printed wiring boards (inner circuit boards) obtained in the examples and comparative examples, the cross protrusion amount of through-through holes and the roundness of the hole diameter after carbonic acid laser processing were measured. The cross protrusion amount and roundness are measured using a color 3D laser microscope (manufactured by Keyence Corporation, device name VK-9710), and the cross protrusion amount is measured from directly above the hole on the laser incident side. The roundness is measured by observing from above the hole on the laser incident side, measuring the major axis and minor axis of the hole top diameter, and calculating the major axis ÷ minor axis. Went by. In addition, the sample used the printed wiring board (inner layer circuit board) obtained by the said Example and the comparative example, and observed the board | substrate just after the hole process of diameter 100micrometer on the carbon dioxide laser conditions shown in following Table 2. And it was set as the average value of ten through-holes.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各符号は以下の通りである。
○:クロス突出量が10μm以内、かつ真円度が0.85以上であった場合
△:クロス突出量が10μm以上、または真円度が0.85未満であった場合
×:クロス突出量が10μm以上、かつ真円度が0.85未満であった場合
Each code is as follows.
◯: When the cross protrusion amount is within 10 μm and the roundness is 0.85 or more Δ: When the cross protrusion amount is 10 μm or more, or the roundness is less than 0.85 ×: Cross protrusion amount When the diameter is 10 μm or more and the roundness is less than 0.85
(6)貫通スルーホールの絶縁信頼性
 前記実施例及び比較例で得られたプリント配線板(内層回路基板)を用い、貫通スルーホール間の絶縁信頼性を評価した。
 プリント配線板のスルーホール壁間0.1mm部分を用い、印加電圧10V、温度130℃湿度85%の条件で、連続測定で評価した。なお、測定は高度加速寿命試験装置(エスペック社製EHS-211(M)、AMIイオンマイグレーションシステム)を用いて行い、絶縁抵抗値が10Ω未満となる時点で終了とした。
 各符号は以下の通りである。
◎:200時間を超えた。
○:100時間以上200以下であった。
△:50時間以上100時間未満であった。
×:50時間未満であった。
(6) Insulation reliability of through-holes Using the printed wiring boards (inner layer circuit boards) obtained in the examples and comparative examples, the insulation reliability between through-through holes was evaluated.
Evaluation was made by continuous measurement under conditions of an applied voltage of 10 V, a temperature of 130 ° C. and a humidity of 85%, using a 0.1 mm portion between through-hole walls of the printed wiring board. The measurement was performed using a highly accelerated life test apparatus (EHS-211 (M) manufactured by Espec Corp., AMI ion migration system), and the measurement was terminated when the insulation resistance value was less than 10 8 Ω.
Each code is as follows.
A: More than 200 hours.
A: 100 hours or more and 200 or less.
(Triangle | delta): It was 50 hours or more and less than 100 hours.
X: It was less than 50 hours.
(7)PKG反り
 実施例および比較例で得られた半導体装置(14mm×14mm)を、温度可変レーザー三次元測定機(日立テクノロジーアンドサービス社製、形式LS220-MT100MT50)のサンプルチャンバーに半導体素子面を下にして設置し、上記測定機を用いて、半導体装置の室温(25℃)及び260℃での反りを測定した。反りの測定は、高さ方向の変位を測定し、変位差の最も大きい値を反り量とした。尚、測定範囲は、13mm×13mmサイズであった。
 各符号は以下の表3の通りである。なお、PKG反りの測定は、金属張積層板の絶縁層の厚みに依存するので、金属張積層板の絶縁層の厚み別に、表3に示すように判定した。
(7) PKG warpage The semiconductor device (14 mm × 14 mm) obtained in the examples and comparative examples is placed on the surface of the semiconductor element in the sample chamber of a temperature variable laser three-dimensional measuring machine (type LS220-MT100MT50, manufactured by Hitachi Technology & Service Co., Ltd.). The warp of the semiconductor device at room temperature (25 ° C.) and 260 ° C. was measured using the above measuring device. The warpage was measured by measuring the displacement in the height direction, and taking the largest value of the displacement difference as the amount of warpage. The measurement range was 13 mm × 13 mm size.
Each code is as shown in Table 3 below. In addition, since the measurement of the PKG warp depends on the thickness of the insulating layer of the metal-clad laminate, it was determined as shown in Table 3 according to the thickness of the insulating layer of the metal-clad laminate.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 前記(1)樹脂組成物の含浸性の観察結果の代表例として、実施例1で得られたプリプレグの断面図の写真を図3に示し、比較例4で得られたプリプレグの断面図の写真を図4に示した。
 図4からわかるように、比較例4では、樹脂組成物の含浸性が悪いため、繊維織布中にボイドが観察された。一方、図3からわかるように、実施例1では、樹脂組成物の含浸性が良好であるため、繊維織布中にボイドがなかった。
 実施例1においては、ナノサイズのシリカ粒子がストランド中へ入り込むことにより、樹脂組成物の含浸性が向上したものと思われる。これに対し、比較例4では、ナノサイズのシリカ粒子を含有していないため、樹脂組成物の含浸性の向上を図ることができなかったことが分かる。
As a representative example of the observation result of the impregnating property of the resin composition (1), a photograph of a sectional view of the prepreg obtained in Example 1 is shown in FIG. 3, and a photograph of a sectional view of the prepreg obtained in Comparative Example 4 Is shown in FIG.
As can be seen from FIG. 4, in Comparative Example 4, voids were observed in the fiber woven fabric because the impregnation property of the resin composition was poor. On the other hand, as can be seen from FIG. 3, in Example 1, since the impregnation property of the resin composition was good, there was no void in the fiber woven fabric.
In Example 1, it is considered that the impregnation property of the resin composition was improved by the nano-sized silica particles entering the strand. On the other hand, it can be seen that Comparative Example 4 did not contain nano-sized silica particles, so that the impregnation of the resin composition could not be improved.
 前記(2)金属張積層板の成形性観察結果の代表例として、実施例1で得られた金属張積層板の銅箔を全面エッチングした表面の写真を図5に示し、比較例6で得られた金属張積層板の銅箔を全面エッチングした表面の写真を図6に示し、さらに図6で観察されるボイド(画像上で白色粒状の点)の拡大図のSEM写真を図7に示し、図7で観察されるボイドの断面の拡大図のSEM写真を図8に示した。図6、7、8からわかるように、比較例6では、金属張積層板を全面エッチングした表面にボイドが観察された。一方、図5からわかるように、実施例1では、全面エッチングした表面にボイドがなかった。 As a representative example of the formability observation result of (2) metal-clad laminate, FIG. 5 shows a photograph of the surface of the metal-clad laminate obtained in Example 1 which has been entirely etched, and obtained in Comparative Example 6. FIG. 6 shows a photograph of the entire surface of the copper foil of the metal-clad laminate obtained by etching, and FIG. 7 shows an SEM photograph of an enlarged view of voids (white granular points on the image) observed in FIG. The SEM photograph of the enlarged view of the cross section of the void observed in FIG. 7 is shown in FIG. As can be seen from FIGS. 6, 7, and 8, in Comparative Example 6, voids were observed on the surface where the entire surface of the metal-clad laminate was etched. On the other hand, as can be seen from FIG. 5, in Example 1, there was no void on the etched surface.
 図9~12は、実施例1で得られたプリプレグの繊維織布を構成するストランドの一部を示す断面図のSEM写真である。図9は、ストランドの延伸方向と平行な断面を示している。図10~12は、ストランドの延伸方向と垂直な断面を示している。
 図9~12に示すように、実施例1で得られたプリプレグにおいて、ストランド中にシリカ粒子が存在することが分かる。
9 to 12 are SEM photographs of cross-sectional views showing a part of the strands constituting the prepreg fiber woven fabric obtained in Example 1. FIG. FIG. 9 shows a cross section parallel to the drawing direction of the strand. 10 to 12 show cross sections perpendicular to the strand drawing direction.
As shown in FIGS. 9 to 12, it can be seen that in the prepreg obtained in Example 1, silica particles are present in the strand.
 表4~7に示す実施例1~9では、良好なプリプレグ含浸性が得られた。また、他の諸特性についても、全て良好な結果が得られていることが分かる。これは、シリカ粒子が繊維織布を構成するストランド中に入り込む条件において、プリプレグの作成が行われたことに起因すると考えられる。
 なお、ストランド中へのシリカ粒子の入り込みを制御する因子としては、例えばシリカ粒子の平均粒径、充填材中のシリカ粒子の含有量、樹脂組成物中の充填材の含有量、繊維織布のかさ密度等、様々なものが挙げられる。
In Examples 1 to 9 shown in Tables 4 to 7, good prepreg impregnation properties were obtained. Moreover, it turns out that the favorable result is obtained also about other various characteristics. This is considered due to the fact that the prepreg was prepared under the condition that the silica particles enter the strands constituting the fiber woven fabric.
Factors that control the entry of silica particles into the strand include, for example, the average particle size of silica particles, the content of silica particles in the filler, the content of filler in the resin composition, and whether the fiber woven fabric is Various things, such as a density, are mentioned.
 表4~7からわかるように、実施例1~9では、ワニスに含有される樹脂組成物が、充填材を当該樹脂組成物全体の50~85質量%含有し、当該充填材のうち平均粒径が5~100nmのシリカ粒子を1~20質量%含有し、且つ、繊維織布のかさ密度が1.05~1.30g/cmであった。この場合、上記すべての評価項目において優れた評価結果となった。すなわち本実施例に係るプリプレグは、繊維織布に対する樹脂組成物の含浸性に優れ、低熱膨張性であり、プリント配線板の絶縁層として用いたときにレーザー加工性に優れ、レーザーにより形成された穴が、穴径および形状の精度が良く、且つ、繊維の突出を抑制した穴を形成することができることがわかった。さらに、本実施例に係るプリプレグは、吸湿半田耐熱性に優れることから、高耐熱性であり、成形性に優れることから、表面平滑性にも優れ、ひいては導体層との密着性に優れるといえる。また、本発明の半導体装置におけるPKG反りが小さいことから、本実施例に係るプリプレグは低熱膨張性であるとともに高剛性であることもわかる。 As can be seen from Tables 4 to 7, in Examples 1 to 9, the resin composition contained in the varnish contains 50 to 85% by mass of the filler in the whole resin composition, and the average particle size of the filler Silica particles having a diameter of 5 to 100 nm were contained in an amount of 1 to 20% by mass, and the bulk density of the fiber woven fabric was 1.05 to 1.30 g / cm 3 . In this case, excellent evaluation results were obtained for all the above evaluation items. That is, the prepreg according to the present example was excellent in the impregnation property of the resin composition with respect to the fiber woven fabric, had low thermal expansibility, had excellent laser processability when used as an insulating layer of a printed wiring board, and was formed by a laser. It has been found that the hole can form a hole with good hole diameter and shape accuracy and with suppressed fiber protrusion. Furthermore, since the prepreg according to the present example is excellent in moisture-absorbing solder heat resistance, it has high heat resistance and excellent moldability, so it can be said that it has excellent surface smoothness and thus excellent adhesion to the conductor layer. . Further, since the PKG warpage in the semiconductor device of the present invention is small, it can be seen that the prepreg according to the present example has low thermal expansion and high rigidity.
 比較例1および6においても、良好なプリプレグ含浸性を得た。
 しかしながら、比較例1では、CTEおよびパッケージ反りにおいて良好な結果が得られなかった。これは、充填材の含有量が低いために樹脂組成物の樹脂成分のみがストランド内に入り込むことで、シリカ粒子がストランド中に入ることが抑制されてしまうためであると思われる。これにより、充填材を高充填化することができず、プリプレグのCTEが高くなり、パッケージ反りが発生したものと考えられる。
 また、比較例6では、良好な結果が得られなかった。これは、かさ密度が低いことにより十分な量の樹脂組成物を含浸させることができために、樹脂組成物中に含まれるシリカ粒子についてもストランド中に入ることが抑制されてしまうことに起因すると思われる。また、繊維織布のかさ密度が小さいため厚い繊維基材となることから、プリプレグの表層の樹脂層の厚さが薄くなる。このため、成形性、吸湿半田耐熱性に劣り、CTEは良好なもののPKG反りが生じたものと考えられる。
Also in Comparative Examples 1 and 6, good prepreg impregnation properties were obtained.
However, in Comparative Example 1, good results were not obtained in CTE and package warpage. This seems to be because the silica particles are prevented from entering the strands because only the resin component of the resin composition enters the strands because the content of the filler is low. As a result, it is considered that the filler could not be highly filled, the CTE of the prepreg was increased, and the package warp occurred.
In Comparative Example 6, good results were not obtained. This is because a sufficient amount of the resin composition can be impregnated due to the low bulk density, so that the silica particles contained in the resin composition are also suppressed from entering the strand. Seem. Moreover, since the bulk density of the fiber woven fabric is small, it becomes a thick fiber base material, so that the thickness of the resin layer on the surface layer of the prepreg becomes thin. For this reason, it is considered that the PKG warp occurred although the moldability and moisture absorption solder heat resistance were poor and the CTE was good.
 比較例4および7~9では、プリプレグの含浸性について、良好な結果が得られなかった。比較例4および7~9では、プリプレグを構成する樹脂組成物中にナノサイズのシリカ粒子が含有されていない。このため、シリカ粒子がストランド中へ入り込めず、樹脂組成物の含浸性の向上を図れなかったものと思われる。また、これにより、CTEおよびパッケージ反り等、他の諸特性においても良好な結果が得られなかった。
 比較例7では、繊維織布のかさ密度が小さいことからレーザー加工性に劣り、含浸性が悪いことから貫通スルーホールの絶縁信頼性に劣る。また、比較的厚い繊維織布を用いたためプリプレグの樹脂層の厚さが薄くなり、成形性、吸湿半田耐熱性に劣り、PKG反りが生じた。
 比較例8および9では、金属張積層板の絶縁層厚みが比較的薄いため、成形性、吸湿半田耐熱性、貫通スルーホールの絶縁信頼性には優れる。しかしながら、繊維織布のかさ密度が小さいため、レーザー加工性において良好な結果が得られなかった。
In Comparative Examples 4 and 7 to 9, good results were not obtained with respect to the impregnation property of the prepreg. In Comparative Examples 4 and 7 to 9, nano-sized silica particles are not contained in the resin composition constituting the prepreg. For this reason, it is considered that the silica particles could not enter the strands and the impregnation of the resin composition could not be improved. In addition, due to this, good results were not obtained in other characteristics such as CTE and package warpage.
In Comparative Example 7, since the bulk density of the fiber woven fabric is small, the laser processability is inferior, and since the impregnation property is poor, the insulation reliability of the through-hole is inferior. In addition, since a relatively thick fiber woven fabric was used, the thickness of the resin layer of the prepreg was reduced, the formability and moisture-absorbing solder heat resistance were inferior, and PKG warping occurred.
In Comparative Examples 8 and 9, since the thickness of the insulating layer of the metal-clad laminate is relatively thin, the moldability, hygroscopic solder heat resistance, and insulation reliability of the through-hole are excellent. However, since the bulk density of the fiber woven fabric is small, good results in laser processability were not obtained.
 比較例2、3、および5においても、プリプレグの含浸性について、良好な結果が得られなかった。また、他の諸特性についても、良好な結果は得られなかった。比較例2では、充填材の含有量が高すぎることから、樹脂組成物中におけるシリカ粒子の流動性が得られず、結果ストランド中へシリカ粒子の入り込みが抑制されたものと思われる。比較例3では、ナノサイズのシリカ粒子の含有量が高いため、ナノサイズのシリカ粒子が凝集してしまい、結果ストランド中へのシリカ粒子の入り込みが抑制されたものと思われる。比較例5では、繊維織布のかさ密度が大きいため、シリカ粒子がストランド中へ入り込むことが抑制されたものと思われる。
 比較例5では、繊維織布のかさ密度が大きすぎるため、樹脂組成物の含浸性が悪く、吸湿半田耐熱性に劣り、レーザー加工性及び貫通スルーホールの絶縁信頼性にも劣っていた。
 比較例6では、繊維織布のかさ密度が小さいため、レーザー加工性及び貫通スルーホールの絶縁信頼性に劣っていた。さらに、繊維織布のかさ密度が小さいため厚い繊維基材となることから、プリプレグの表層の樹脂層の厚さが薄くなる。このため、成形性、吸湿半田耐熱性に劣り、PKG反りが生じた。
Also in Comparative Examples 2, 3, and 5, good results were not obtained with respect to the impregnation property of the prepreg. Also, good results were not obtained for other characteristics. In Comparative Example 2, since the filler content is too high, the fluidity of the silica particles in the resin composition cannot be obtained, and as a result, it is considered that the silica particles are prevented from entering the strands. In Comparative Example 3, since the content of the nano-sized silica particles is high, the nano-sized silica particles are aggregated. As a result, it seems that the silica particles are prevented from entering the strand. In Comparative Example 5, since the bulk density of the fiber woven fabric is large, it seems that the silica particles are prevented from entering the strand.
In Comparative Example 5, since the bulk density of the fiber woven fabric was too large, the impregnation property of the resin composition was poor, the moisture absorption solder heat resistance was poor, and the laser processability and the through-hole insulation reliability were also poor.
In Comparative Example 6, since the bulk density of the fiber woven fabric was small, the laser processability and the through-hole insulation reliability were poor. Furthermore, since the bulk density of the fiber woven fabric is small, it becomes a thick fiber base material, so that the thickness of the resin layer on the surface layer of the prepreg becomes thin. For this reason, it was inferior to a moldability and moisture absorption solder heat resistance, and PKG curvature occurred.
 この出願は、2011年1月24日に出願された日本出願特願2011-012166号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-012166 filed on January 24, 2011, the entire disclosure of which is incorporated herein.

Claims (18)

  1.  ストランドにより構成される繊維織布に樹脂組成物を含浸させてなるプリプレグであって、前記ストランド中にはシリカ粒子が存在するプリプレグ。 A prepreg obtained by impregnating a fiber woven fabric composed of strands with a resin composition, and silica particles are present in the strands.
  2.  請求項1に記載のプリプレグにおいて、
     前記ストランド中には、前記ストランドを構成する繊維が延伸する方向において50μm以上の長さを有する空隙が存在しないプリプレグ。
    The prepreg according to claim 1,
    A prepreg in which no void having a length of 50 μm or more exists in the strand in the direction in which the fibers constituting the strand extend.
  3.  請求項1または2に記載のプリプレグにおいて、
     前記ストランド中における、直径が50μm以上である空隙の数密度は、50cm-1以下であるプリプレグ。
    The prepreg according to claim 1 or 2,
    A prepreg in which the number density of voids having a diameter of 50 μm or more in the strand is 50 cm −1 or less.
  4.  請求項1ないし3いずれか1項に記載のプリプレグにおいて、
     前記繊維織布のかさ密度は、1.05~1.30g/cmであるプリプレグ。
    The prepreg according to any one of claims 1 to 3,
    A prepreg having a bulk density of the fiber woven fabric of 1.05 to 1.30 g / cm 3 .
  5.  請求項1ないし4いずれか1項に記載のプリプレグにおいて、
     前記ストランド中に存在する前記シリカ粒子の平均粒径は、5~100nmであるプリプレグ。
    The prepreg according to any one of claims 1 to 4,
    A prepreg having an average particle diameter of 5 to 100 nm of the silica particles present in the strand.
  6.  請求項1ないし5いずれか1項に記載のプリプレグにおいて、
     前記樹脂組成物は、少なくとも熱硬化性樹脂および充填材を含み、
     前記充填材は、前記樹脂組成物の固形分に対し50~85質量%の割合で含有されるプリプレグ。
    The prepreg according to any one of claims 1 to 5,
    The resin composition includes at least a thermosetting resin and a filler,
    The filler is a prepreg that is contained in a proportion of 50 to 85% by mass with respect to the solid content of the resin composition.
  7.  請求項6に記載のプリプレグにおいて、
     前記充填材は、前記シリカ粒子を前記充填剤に対し1~20質量%の割合で含有するプリプレグ。
    The prepreg according to claim 6,
    The filler is a prepreg containing the silica particles in a proportion of 1 to 20% by mass with respect to the filler.
  8.  請求項1ないし7いずれか1項に記載のプリプレグにおいて、
     全体厚みが30~220μmであるプリプレグ。
    The prepreg according to any one of claims 1 to 7,
    A prepreg having an overall thickness of 30 to 220 μm.
  9.  請求項1ないし8いずれか1項に記載のプリプレグにおいて、
     前記ストランドは、少なくともSiOを50~100質量%、Alを0~30質量%、CaOを0~30質量%の割合で含有するガラス繊維により構成されるプリプレグ。
    The prepreg according to any one of claims 1 to 8,
    The strand is a prepreg composed of glass fibers containing at least 50 to 100% by mass of SiO 2 , 0 to 30% by mass of Al 2 O 3 and 0 to 30% by mass of CaO.
  10.  請求項9に記載のプリプレグにおいて、
     前記ガラス繊維は、Tガラス、Sガラス、Dガラス、Eガラス、NEガラス、石英ガラスよりなる群から選ばれる少なくとも一種類のガラスを用いてなるプリプレグ。
    The prepreg according to claim 9, wherein
    The glass fiber is a prepreg made of at least one glass selected from the group consisting of T glass, S glass, D glass, E glass, NE glass, and quartz glass.
  11.  請求項9または10に記載のプリプレグにおいて、
     前記ガラス繊維は、板状にした際のヤング率が50~100GPa、板状にした際の引張強度が25GPa以上、繊維織布にした際の長手方向の引張強度が30N/25mm以上であるプリプレグ。
    The prepreg according to claim 9 or 10,
    The glass fiber is a prepreg having a Young's modulus of 50 to 100 GPa when formed into a plate, a tensile strength of 25 GPa or more when formed into a plate, and a tensile strength of 30 N / 25 mm or more when formed into a fiber woven fabric. .
  12.  請求項9ないし11いずれか1項に記載のプリプレグにおいて、
     前記繊維織布の通気度は、1~80cc/cm/secであるプリプレグ。
    The prepreg according to any one of claims 9 to 11,
    A prepreg in which the fiber woven fabric has an air permeability of 1 to 80 cc / cm 2 / sec.
  13.  請求項1ないし12いずれか1項に記載のプリプレグにおいて、
     前記シリカ粒子は、官能基含有シラン類またはアルキルシラザン類により表面処理が施されているプリプレグ。
    The prepreg according to any one of claims 1 to 12,
    The silica particles are prepregs that are surface-treated with functional group-containing silanes or alkylsilazanes.
  14.  請求項1ないし13いずれか1項に記載のプリプレグを硬化して得られる積層板。 A laminate obtained by curing the prepreg according to any one of claims 1 to 13.
  15.  請求項14に記載の積層板において、
     前記プリプレグの少なくとも一方の外側の面に導体層が設置されている積層板。
    The laminate according to claim 14, wherein
    A laminate in which a conductor layer is provided on at least one outer surface of the prepreg.
  16.  請求項1ないし13いずれか1項に記載のプリプレグ、もしくは請求項14または15に記載の積層板を内層回路基板に用いてなるプリント配線板。 A printed wiring board using the prepreg according to any one of claims 1 to 13 or the laminated board according to claim 14 or 15 as an inner circuit board.
  17.  請求項16に記載のプリント配線板において、
     請求項1ないし13いずれか1項に記載のプリプレグが、前記内層回路基板上に絶縁層として設けられているプリント配線板。
    The printed wiring board according to claim 16, wherein
    A printed wiring board, wherein the prepreg according to any one of claims 1 to 13 is provided as an insulating layer on the inner layer circuit board.
  18.  請求項16または17に記載のプリント配線板に半導体素子を搭載してなる半導体装置。 A semiconductor device in which a semiconductor element is mounted on the printed wiring board according to claim 16 or 17.
PCT/JP2012/000316 2011-01-24 2012-01-19 Pre-preg, laminate board, printed wiring board, and semiconductor device WO2012101991A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280006279.3A CN103347938B (en) 2011-01-24 2012-01-19 Pre-preg, laminate board, printed wiring board, and semiconductor device
KR1020137022082A KR101355777B1 (en) 2011-01-24 2012-01-19 Prepreg, laminate, printed wiring board, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011012166 2011-01-24
JP2011-012166 2011-01-24

Publications (1)

Publication Number Publication Date
WO2012101991A1 true WO2012101991A1 (en) 2012-08-02

Family

ID=46580569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000316 WO2012101991A1 (en) 2011-01-24 2012-01-19 Pre-preg, laminate board, printed wiring board, and semiconductor device

Country Status (6)

Country Link
JP (1) JP5234195B2 (en)
KR (1) KR101355777B1 (en)
CN (1) CN103347938B (en)
MY (1) MY155995A (en)
TW (1) TWI539869B (en)
WO (1) WO2012101991A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047348A (en) * 2012-09-04 2014-03-17 Sumitomo Bakelite Co Ltd Prepreg and metal-clad laminate
JP2016180677A (en) * 2015-03-24 2016-10-13 住友ベークライト株式会社 Filler impregnation ratio evaluation method, filler impregnation ratio evaluation device and computer program
JP2016204420A (en) * 2015-04-15 2016-12-08 京セラ株式会社 Encapsulating epoxy resin molding material and electronic component
CN111448044A (en) * 2017-12-08 2020-07-24 日立化成株式会社 Prepreg, laminate, printed wiring board, and semiconductor package
TWI700256B (en) * 2018-10-26 2020-08-01 日商旭化成股份有限公司 Rolled long glass cloth, prepreg, and printed wiring board
CN113529237A (en) * 2020-03-30 2021-10-22 旭化成株式会社 Roll-shaped long glass cloth, prepreg, and printed wiring board
US11746447B2 (en) * 2019-08-27 2023-09-05 Nitto Boseki Co., Ltd. Glass cloth, prepreg, and glass fiber-reinforced resin molded product

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217069B2 (en) * 2012-10-26 2017-10-25 住友ベークライト株式会社 Resin substrate, metal-clad laminate, printed wiring board, and semiconductor device
JP2014111719A (en) * 2012-11-12 2014-06-19 Panasonic Corp Laminate, metal-clad laminate, printed wiring board, and multilayer printed wiring board
JP6226232B2 (en) * 2012-11-12 2017-11-08 パナソニックIpマネジメント株式会社 Metal-clad laminate, metal-clad laminate production method, printed wiring board, multilayer printed wiring board
DE102012025409A1 (en) * 2012-12-20 2014-06-26 Thomas Hofmann CONDUCTOR PLATE WITH NATURAL AGGREGATE MATERIAL
JP6327429B2 (en) 2013-08-01 2018-05-23 パナソニックIpマネジメント株式会社 Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
JP6221620B2 (en) * 2013-10-22 2017-11-01 住友ベークライト株式会社 Metal-clad laminate, printed wiring board, and semiconductor device
US10029443B2 (en) * 2013-11-29 2018-07-24 Nitto Boseki Co., Ltd. Glass fiber fabric-resin composition laminate
CN103796435B (en) * 2014-01-16 2017-08-11 广州兴森快捷电路科技有限公司 The method that measurement circuitry flaggy presses off normal
JP2016069401A (en) * 2014-09-26 2016-05-09 住友ベークライト株式会社 Prepreg, resin board, metal-clad laminate, printed wiring board, and semiconductor device
EP3466673A4 (en) * 2016-05-25 2020-01-15 Hitachi Chemical Company, Ltd. Metal-clad laminate, printed wiring board and semiconductor package
JP6972522B2 (en) * 2016-09-01 2021-11-24 住友ベークライト株式会社 Prepregs, metal-clad laminates, printed wiring boards and semiconductor packages
CN109923947B (en) * 2016-11-09 2022-04-05 昭和电工材料株式会社 Printed wiring board and semiconductor package
CN111164151A (en) * 2017-10-10 2020-05-15 味之素株式会社 Cured product, method for producing same, resin sheet, and resin composition
CN112423463A (en) * 2019-08-23 2021-02-26 鹏鼎控股(深圳)股份有限公司 Multilayer circuit board and manufacturing method thereof
TWI828988B (en) * 2020-06-26 2024-01-11 日商日本特殊陶業股份有限公司 Joint body and electrostatic chuck
CN112566356B (en) * 2020-11-20 2022-03-18 深圳市金晟达电子技术有限公司 Millimeter wave radar printed circuit board
DE102021117278B4 (en) * 2021-07-05 2023-05-04 Lisa Dräxlmaier GmbH CIRCUIT BOARD FOR A VEHICLE CONTROL UNIT AND METHOD FOR MANUFACTURING SUCH CIRCUIT BOARD

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061605A (en) * 1992-06-17 1994-01-11 Shin Etsu Chem Co Ltd Silica fine powder, production thereof and resin composition containing silica fine powder
JPH091680A (en) * 1995-06-19 1997-01-07 Matsushita Electric Works Ltd Manufacture of composite material
JPH09209233A (en) * 1996-01-29 1997-08-12 Nitto Boseki Co Ltd Glass cloth for print circuit substrate and print circuit substrate
JP2001038836A (en) * 1999-07-29 2001-02-13 Mitsubishi Gas Chem Co Inc Copper-clad laminated sheet high in elastic modulus using glass cloth base impregnated with thermosetting resin
JP2003213021A (en) * 2002-01-18 2003-07-30 Hitachi Chem Co Ltd Prepreg, metal-clad laminated plate and printed wiring plate using the same
JP2005105035A (en) * 2003-09-29 2005-04-21 Asahi Schwebel Co Ltd Prepreg, manufacturing method thereof and laminated plate
JP2006036916A (en) * 2004-07-27 2006-02-09 Admatechs Co Ltd Slurry composition, varnish composition, and insulating film and prepreg using the same
JP2011202140A (en) * 2009-10-14 2011-10-13 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2993065B2 (en) * 1990-07-27 1999-12-20 三菱瓦斯化学株式会社 Metal foil-clad laminate with smooth surface
JP2007277463A (en) * 2006-04-10 2007-10-25 Hitachi Chem Co Ltd Low dielectric prepreg, and metal foil clad laminate and multilayer printed wiring board using the same
JP5112157B2 (en) * 2008-04-23 2013-01-09 株式会社アドマテックス Silica fine particles and silica fine particle-containing resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061605A (en) * 1992-06-17 1994-01-11 Shin Etsu Chem Co Ltd Silica fine powder, production thereof and resin composition containing silica fine powder
JPH091680A (en) * 1995-06-19 1997-01-07 Matsushita Electric Works Ltd Manufacture of composite material
JPH09209233A (en) * 1996-01-29 1997-08-12 Nitto Boseki Co Ltd Glass cloth for print circuit substrate and print circuit substrate
JP2001038836A (en) * 1999-07-29 2001-02-13 Mitsubishi Gas Chem Co Inc Copper-clad laminated sheet high in elastic modulus using glass cloth base impregnated with thermosetting resin
JP2003213021A (en) * 2002-01-18 2003-07-30 Hitachi Chem Co Ltd Prepreg, metal-clad laminated plate and printed wiring plate using the same
JP2005105035A (en) * 2003-09-29 2005-04-21 Asahi Schwebel Co Ltd Prepreg, manufacturing method thereof and laminated plate
JP2006036916A (en) * 2004-07-27 2006-02-09 Admatechs Co Ltd Slurry composition, varnish composition, and insulating film and prepreg using the same
JP2011202140A (en) * 2009-10-14 2011-10-13 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047348A (en) * 2012-09-04 2014-03-17 Sumitomo Bakelite Co Ltd Prepreg and metal-clad laminate
JP2016180677A (en) * 2015-03-24 2016-10-13 住友ベークライト株式会社 Filler impregnation ratio evaluation method, filler impregnation ratio evaluation device and computer program
JP2016204420A (en) * 2015-04-15 2016-12-08 京セラ株式会社 Encapsulating epoxy resin molding material and electronic component
CN111448044A (en) * 2017-12-08 2020-07-24 日立化成株式会社 Prepreg, laminate, printed wiring board, and semiconductor package
CN111448044B (en) * 2017-12-08 2022-07-08 昭和电工材料株式会社 Prepreg, laminate, printed wiring board, and semiconductor package
TWI700256B (en) * 2018-10-26 2020-08-01 日商旭化成股份有限公司 Rolled long glass cloth, prepreg, and printed wiring board
US11746447B2 (en) * 2019-08-27 2023-09-05 Nitto Boseki Co., Ltd. Glass cloth, prepreg, and glass fiber-reinforced resin molded product
CN113529237A (en) * 2020-03-30 2021-10-22 旭化成株式会社 Roll-shaped long glass cloth, prepreg, and printed wiring board

Also Published As

Publication number Publication date
JP5234195B2 (en) 2013-07-10
CN103347938A (en) 2013-10-09
CN103347938B (en) 2014-07-30
TW201251534A (en) 2012-12-16
JP2012167256A (en) 2012-09-06
TWI539869B (en) 2016-06-21
KR101355777B1 (en) 2014-02-04
MY155995A (en) 2015-12-31
KR20130102654A (en) 2013-09-17

Similar Documents

Publication Publication Date Title
JP5234195B2 (en) Prepreg, laminated board, printed wiring board, and semiconductor device
JP5703547B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring, and semiconductor device
JP5353241B2 (en) Multilayer printed wiring board and semiconductor device
JP7388482B2 (en) Thermosetting resin compositions, resin films with carriers, prepregs, printed wiring boards, and semiconductor devices
WO2011010672A1 (en) Resin compositions, resin sheet, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP5703570B2 (en) Prepreg, laminated board, multilayer printed wiring board, and semiconductor device
JP5445442B2 (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2011178992A (en) Prepreg, laminated board, printed wiring board, and semiconductor device
JP2010174242A (en) Biphenyl aralkyl type cyanate ester resin, resin composition containing biphenyl aralkyl type cyanate ester resin, and prepreg, laminated plate, resin sheet, multilayer printed wiring board, and semiconductor device obtained using the resin composition
JP6186977B2 (en) Resin composition, resin sheet, prepreg, laminate, printed wiring board, and semiconductor device
JP2012131947A (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device
JP2012153752A (en) Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
JP2008130796A (en) Insulating resin composition for multilayer printed circuit boards, insulation sheet with base material, multilayer printed circuit board, and semiconductor device
JP2010024417A (en) Prepreg, laminated plate, multilayer printed wiring board and semiconductor device
JP3821728B2 (en) Prepreg
JP5573392B2 (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2010285523A (en) Resin composition, prepreg, laminated board, multilayer printed wiring, and semiconductor device
JP5594128B2 (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2012131946A (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP5245253B2 (en) Resin composition, insulating resin sheet with film or metal foil, multilayer printed wiring board, and semiconductor device
JP2011105911A (en) Epoxy resin composition containing silicone rubber fine particle, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP2012153755A (en) Epoxy resin composition, prepreg, laminate, resin sheet, printed circuit board and semiconductor device
JP2012158637A (en) Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
JP2009067852A (en) Insulation resin sheet impregnated with glass fiber woven fabric, laminated plate, multilayered printed wiring board, and semiconductor device
JP2012158645A (en) Epoxy resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137022082

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12739807

Country of ref document: EP

Kind code of ref document: A1