JP2005105087A - Epoxy resin composition and semiconductor device - Google Patents
Epoxy resin composition and semiconductor device Download PDFInfo
- Publication number
- JP2005105087A JP2005105087A JP2003338686A JP2003338686A JP2005105087A JP 2005105087 A JP2005105087 A JP 2005105087A JP 2003338686 A JP2003338686 A JP 2003338686A JP 2003338686 A JP2003338686 A JP 2003338686A JP 2005105087 A JP2005105087 A JP 2005105087A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- integer
- carbon atoms
- resin composition
- general formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
本発明は、半導体封止用エポキシ樹脂組成物及び半導体装置に関するものであり、特に、プリント配線板や金属リードフレームの片面に半導体素子を搭載し、その搭載面側の実質的に片面のみを樹脂封止されたエリア実装型半導体装置に好適に用いられるものである。 The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device, and in particular, a semiconductor element is mounted on one side of a printed wiring board or a metal lead frame, and only one side of the mounting surface side is made of resin. It is preferably used for a sealed area mounting type semiconductor device.
近年の電子機器の小型化、軽量化、高機能化の市場動向において、半導体の高集積化が年々進み、また半導体装置の表面実装化が促進されるなかで、新規にエリア実装型半導体装置が開発され、従来構造の半導体装置から移行し始めている。エリア実装型半導体装置としては、ボールグリッドアレイ(以下、BGAという)、あるいは更に小型化を追求したチップサイズパッケージ(以下、CSPという)が代表的であるが、これらは従来のクワッドフラットパッケージ(以下、QFPという)、スモールアウトラインパッケージ(以下、SOPという)に代表される表面実装型半導体装置では限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。エリア実装型半導体装置の構造としては、ビスマレイミド・トリアジン(以下、BTという)樹脂/銅箔回路基板に代表される硬質回路基板あるいはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板の片面上に半導体素子を搭載し、その素子搭載面、即ち基板の片面のみが樹脂組成物等で成形・封止されている。また基板の素子搭載面の反対面には半田ボールを2次元的に並列して形成し、半導体装置を実装する回路基板との接合を行う特徴を有している。更に素子を搭載する基板としては、上記有機回路基板以外にもリードフレーム等の金属基板を用いる構造も考案されている。 In recent years, electronic devices have become smaller, lighter, and more functional, and as the integration of semiconductors has progressed year by year and the surface mounting of semiconductor devices has been promoted, new area-mounted semiconductor devices have been developed. It has been developed and is beginning to shift from conventional semiconductor devices. Typical area-mounting semiconductor devices are a ball grid array (hereinafter referred to as BGA) or a chip size package (hereinafter referred to as CSP) in pursuit of further miniaturization, but these are conventional quad flat packages (hereinafter referred to as CSP). The surface mount type semiconductor device represented by the small outline package (hereinafter referred to as SOP) has been developed to meet the demand for high pin count and high speed approaching the limit. The structure of the area mounting type semiconductor device includes a hard circuit board represented by bismaleimide triazine (hereinafter referred to as BT) resin / copper foil circuit board or a flexible circuit board represented by polyimide resin film / copper foil circuit board. A semiconductor element is mounted on one side, and only the element mounting surface, that is, one side of the substrate is molded and sealed with a resin composition or the like. In addition, solder balls are two-dimensionally formed in parallel on the surface opposite to the element mounting surface of the substrate, and are joined to a circuit substrate on which a semiconductor device is mounted. Further, as a substrate on which the element is mounted, a structure using a metal substrate such as a lead frame in addition to the organic circuit substrate has been devised.
これらエリア実装型半導体装置の構造は基板の素子搭載面のみを樹脂組成物で封止し、半田ボール形成面側は封止しないという片面封止の形態をとっている。ごく希に、リードフレーム等の金属基板等では、半田ボール形成面でも数十μm程度の封止樹脂層が存在することもあるが、素子搭載面では数百μmから数mm程度の封止樹脂層が形成されるため、実質的に片面封止となっている。このため有機基板や金属基板と樹脂組成物の硬化物との間での熱膨張・熱収縮の不整合あるいは樹脂組成物の成形・硬化時の硬化収縮による影響により、これらの半導体装置では成形直後から反りが発生しやすい。また、これらの半導体装置を実装する回路基板上に半田接合を行う場合、エポキシ樹脂組成物の硬化物の吸湿により半導体装置内部に存在する水分が高温で急激に気化することによる応力で半導体装置にクラックが発生する。さらに、近年、環境問題から従来よりも高融点の無鉛半田の使用が増加しており、この半田の適用により実装温度を従来よりも約20℃高くする必要があり、実装後の半導体装置の信頼性が現状より著しく低下する問題が生じている。このようなことからエポキシ樹脂組成物のレベルアップによる半導体装置の信頼性の向上要求が加速的に強くなってきており、樹脂の低粘度化と無機充填剤の高充填化が進んでいる。 These area-mounted semiconductor devices have a single-side sealing configuration in which only the element mounting surface of the substrate is sealed with a resin composition and the solder ball forming surface side is not sealed. Very rarely, a metal substrate such as a lead frame may have a sealing resin layer of about several tens of μm on the solder ball forming surface, but a sealing resin of about several hundred μm to several mm on the device mounting surface. Since the layer is formed, it is substantially single-sided sealed. For this reason, in these semiconductor devices, due to the effects of thermal expansion / shrinkage mismatch between the organic substrate or metal substrate and the cured resin composition, or the effects of cure shrinkage during molding / curing of the resin composition, Warp is likely to occur. In addition, when solder bonding is performed on a circuit board on which these semiconductor devices are mounted, the moisture present in the semiconductor device due to moisture absorption of the cured product of the epoxy resin composition is applied to the semiconductor device due to stress caused by rapid vaporization at a high temperature. Cracks occur. Furthermore, in recent years, the use of lead-free solder having a higher melting point than ever is increasing due to environmental problems, and it is necessary to raise the mounting temperature by about 20 ° C. compared to the prior art by applying this solder. There is a problem in that the property is significantly lower than the current state. For these reasons, the demand for improving the reliability of semiconductor devices by increasing the level of the epoxy resin composition is acceleratingly increasing, and the lower viscosity of the resin and the higher filling of the inorganic filler are progressing.
成形時に低粘度で高流動性を維持するために、溶融粘度の低い樹脂の使用(例えば、特許文献1参照。)や、また無機充填材の配合量を高めるために無機充填剤をシランカップリング剤で表面処理する方法が知られている(例えば、特許文献2参照。)。しかしこれらは種々ある要求特性のいずれかのみを満足するものが多く、実装時の耐クラック性と低粘度化が両立できる手法は未だ見出されておらず、反りが小さく、耐クラック性に優れた樹脂を用いて、更に無機充填剤の配合量を高めて信頼性を満足させ、流動性と硬化性を損なわない更なる技術が求められていた。 In order to maintain low viscosity and high fluidity at the time of molding, use of a resin having a low melt viscosity (see, for example, Patent Document 1) and silane coupling with an inorganic filler in order to increase the amount of the inorganic filler compounded A method of surface treatment with an agent is known (for example, see Patent Document 2). However, many of these satisfy only one of the various required characteristics, and no method has yet been found that can achieve both crack resistance and low viscosity during mounting, with low warpage and excellent crack resistance. Thus, there has been a demand for a further technique that satisfies the reliability by further increasing the blending amount of the inorganic filler, and does not impair the fluidity and curability.
本発明は、成形後や半田処理後の反りが小さく、流動性、半田処理後の信頼性に優れた特性を有するエリア実装型半導体封止用に適したエポキシ樹脂組成物及びこれを用いた半導体装置を提供するものである。 The present invention relates to an epoxy resin composition suitable for area-mounting type semiconductor encapsulating having small warpage after molding or soldering treatment, and excellent fluidity and reliability after soldering treatment, and a semiconductor using the same A device is provided.
本発明は、
[1](A)一般式(1)で表されるエポキシ樹脂、(B)一般式(2)で表される結晶性エポキシ樹脂、(C)一般式(3)で表されるフェノール樹脂、(D)硬化促進剤、(E)無機充填剤、及び(F)一般式(4)で表されるシランカップリング剤を必須成分とし、(A)成分と(B)成分との重量比[(A)/(B)]が10/90〜90/10であり、(E)成分を全エポキシ樹脂組成物中に対し80〜94重量%含むことを特徴とする半導体封止用エポキシ樹脂組成物、
The present invention
[1] (A) an epoxy resin represented by the general formula (1), (B) a crystalline epoxy resin represented by the general formula (2), (C) a phenol resin represented by the general formula (3), (D) Curing accelerator, (E) Inorganic filler, and (F) The silane coupling agent represented by the general formula (4) is an essential component, and the weight ratio of the component (A) to the component (B) [ (A) / (B)] is 10/90 to 90/10, and (E) component is contained in an amount of 80 to 94% by weight based on the total epoxy resin composition. Stuff,
[2]第[1]項記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、 [2] A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to the item [1],
[3]基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみの封止に用いるものであって、(A)一般式(1)で表されるエポキシ樹脂、(B)一般式(2)で表される結晶性エポキシ樹脂、(C)一般式(3)で表されるフェノール樹脂、(D)硬化促進剤、(E)無機充填剤、及び(F)一般式(4)で表されるシランカップリング剤を必須成分とし、(A)成分と(B)成分との重量比[(A)/(B)]が10/90〜90/10であり、(E)成分を全エポキシ樹脂組成物中に対し80〜94重量%含むことを特徴とするエリア実装型半導体封止用エポキシ樹脂組成物、 [3] A semiconductor element is mounted on one side of the substrate, and is used for sealing only substantially one side of the substrate surface on which the semiconductor element is mounted, and is represented by (A) the general formula (1). (B) a crystalline epoxy resin represented by the general formula (2), (C) a phenol resin represented by the general formula (3), (D) a curing accelerator, (E) an inorganic filler, And (F) the silane coupling agent represented by the general formula (4) is an essential component, and the weight ratio [(A) / (B)] of the component (A) to the component (B) is 10/90 to 90. / 10, and the epoxy resin composition for area-mounting type semiconductor encapsulation, comprising (E) component in an amount of 80 to 94% by weight based on the total epoxy resin composition,
[4]基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみが第[3]項記載のエポキシ樹脂組成物を用いて封止されていることを特徴とするエリア実装型半導体装置、
である。
[4] A semiconductor element is mounted on one side of the substrate, and substantially only one side of the substrate side on which the semiconductor element is mounted is sealed with the epoxy resin composition described in the item [3]. Area mounting type semiconductor device, characterized by
It is.
本発明に従うと、成形後や半田処理後の反りが小さく、流動性、半田処理後の信頼性に優れた特性を有するエリア実装型半導体封止用に適したエポキシ樹脂組成物を得ることができる。 According to the present invention, it is possible to obtain an epoxy resin composition suitable for area-mounting type semiconductor encapsulation that has small warpage after molding or after soldering and has excellent fluidity and reliability after soldering. .
本発明は、(A)ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、(B)ビフェノール型又はビスフェノール型の結晶性エポキシ樹脂、(C)ビフェニレン骨格を有するフェノールアラルキル樹脂、(D)硬化促進剤、(E)無機充填剤、及び(F)2級アミンを有するシランカップリング剤を必須成分とし、(A)成分と(B)成分との重量比[(A)/(B)]が10/90〜90/10であり、(E)成分が全エポキシ樹脂組成物中に対し80〜94重量%含むことにより、成形後や半田処理後の反りが小さく、流動性、半田処理後の信頼性に優れた特性を有し、特にエリア実装型半導体封止用に適したエポキシ樹脂組成物が得られるものである。
以下、各成分について詳細に説明する。
The present invention includes (A) a phenol aralkyl type epoxy resin having a biphenylene skeleton, (B) a biphenol type or bisphenol type crystalline epoxy resin, (C) a phenol aralkyl resin having a biphenylene skeleton, (D) a curing accelerator, ( E) An inorganic filler and (F) a silane coupling agent having a secondary amine are essential components, and the weight ratio [(A) / (B)] of the component (A) to the component (B) is 10/90. -90/10, and (E) component contains 80-94 wt% with respect to the total epoxy resin composition, warping after molding and after soldering is small, fluidity, and reliability after soldering An epoxy resin composition having excellent characteristics and particularly suitable for area mounting type semiconductor sealing can be obtained.
Hereinafter, each component will be described in detail.
本発明で用いられる一般式(1)で表されるエポキシ樹脂は、エポキシ基間に疎水性で剛直なビフェニレン骨格を有しており、これを用いたエポキシ樹脂組成物の硬化物は吸湿率が低く、ガラス転移温度(以下、Tgという)を越えた高温域での弾性率が低く、半導体素子、有機基板、及び金属基板との密着性に優れる。また架橋密度が低い割には耐熱性が高いという特徴を有している。
一般式(1)中のnは平均値で、1〜5の正数、好ましくは1〜3の正数である。nが下限値を下回るとエポキシ樹脂組成物の硬化性が低下する可能性があるので好ましくない。nが上限値を越えると樹脂粘度が高くなり、エポキシ樹脂組成物の流動性が低下し、より一層の低吸湿化、低そり化のための無機充填材の高充填化が不可能となる可能性があるので好ましくない。一般式(1)で表されるエポキシ樹脂(A)としては、例えばフェノールビフェニルアラルキル型エポキシ樹脂などが挙げられるが、式(1)の構造であれば特に限定するものではない。
The epoxy resin represented by the general formula (1) used in the present invention has a hydrophobic and rigid biphenylene skeleton between epoxy groups, and a cured product of an epoxy resin composition using the epoxy resin has a moisture absorption rate. It has a low elastic modulus in a high temperature range exceeding the glass transition temperature (hereinafter referred to as Tg), and is excellent in adhesion to a semiconductor element, an organic substrate, and a metal substrate. Moreover, it has the characteristic that heat resistance is high although a crosslinking density is low.
In the general formula (1), n is an average value and is a positive number of 1 to 5, preferably a positive number of 1 to 3. If n is less than the lower limit, the curability of the epoxy resin composition may be lowered, which is not preferable. If n exceeds the upper limit, the viscosity of the resin will increase, the fluidity of the epoxy resin composition will decrease, and it will become impossible to increase the filling of the inorganic filler to further reduce moisture absorption and warpage. This is not preferable because of its properties. The epoxy resin (A) represented by the general formula (1) includes, for example, a phenol biphenyl aralkyl type epoxy resin, but is not particularly limited as long as it has the structure of the formula (1).
本発明に用いられる一般式(2)で示される結晶性エポキシ樹脂は、常温では結晶性の固体であるが、融点以上では極めて低粘度の液状となり、無機充填材を高充填化できるので、これを用いたエポキシ樹脂組成物は、低反りで、耐半田性に優れる特性を有する。一般式(2)で表される結晶性エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂などが挙げられるが、式(2)の構造であれば特に限定するものではない。 The crystalline epoxy resin represented by the general formula (2) used in the present invention is a crystalline solid at room temperature, but becomes a very low-viscosity liquid at a melting point or higher and can be highly filled with an inorganic filler. The epoxy resin composition using the has low warpage and excellent solder resistance. Examples of the crystalline epoxy resin represented by the general formula (2) include a bisphenol A type epoxy resin, but are not particularly limited as long as the structure is the formula (2).
一般式(1)で示されるエポキシ樹脂(A)と一般式(2)で示されるエポキシ樹脂(B)との配合の重量比[(A)/(B)]は、これを調整することにより、高流動と低吸湿の最良のバランスを引き出すことが出来る。この効果を引き出すためには、一般式(1)で示されるエポキシ樹脂(A)と一般式(2)で示されるエポキシ樹脂(B)との配合の重量比[(A)/(B)]が10/90〜90/10であり、好ましくは20/80〜70/30、特に好ましくは30/70〜50/50が望ましい。重量比[(A)/(B)]が下限値を下回るとエポキシ樹脂組成物の硬化物の低吸湿化ができず、耐半田クラック性が低下するおそれがあるので好ましくない。一方、重量比[(A)/(B)]が上限値を超えると、流動性が低下し、より一層の低吸湿化、低そり化のための無機充填材の高充填化が不可能となるおそれがあるので好ましくない。 The weight ratio [(A) / (B)] of the epoxy resin (A) represented by the general formula (1) and the epoxy resin (B) represented by the general formula (2) can be adjusted by adjusting this. The best balance between high flow and low moisture absorption can be achieved. In order to bring out this effect, the weight ratio [(A) / (B)] of the blend of the epoxy resin (A) represented by the general formula (1) and the epoxy resin (B) represented by the general formula (2) Is 10/90 to 90/10, preferably 20/80 to 70/30, particularly preferably 30/70 to 50/50. If the weight ratio [(A) / (B)] is lower than the lower limit, the cured product of the epoxy resin composition cannot be reduced in moisture absorption, and solder crack resistance may be lowered, which is not preferable. On the other hand, when the weight ratio [(A) / (B)] exceeds the upper limit value, the fluidity is lowered, and it is impossible to increase the inorganic filler for further lower moisture absorption and lower warpage. This is not preferable.
また本発明では、一般式(1)で示されるエポキシ樹脂、及び一般式(2)で示される結晶性エポキシ樹脂を用いることによる特徴を損なわない範囲で、他のエポキシ樹脂を併用してもよい。併用できるエポキシ樹脂としては、分子内にエポキシ基を有するモノマー、オリゴマー、及びポリマー全般を言う。例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニル骨格等を有する)、ジシクロペンタジエン変性フェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。他のエポキシ樹脂を併用する場合の配合量としては、全エポキシ樹脂に対して、一般式(1)で示されるエポキシ樹脂と一般式(2)で示されるエポキシ樹脂との合計量が、50重量%以上、更に好ましくは70重量%以上含むものが望ましい。一般式(1)で示されるエポキシ樹脂と一般式(2)で示されるエポキシ樹脂との合計量が下限値を下回ると、耐半田クラック性の低下、流動性の低下が起こる可能性がある。 In the present invention, other epoxy resins may be used in combination as long as the characteristics of the epoxy resin represented by the general formula (1) and the crystalline epoxy resin represented by the general formula (2) are not impaired. . Examples of the epoxy resin that can be used in combination include monomers, oligomers, and polymers that have an epoxy group in the molecule. For example, phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, naphthol novolak type epoxy resin, phenol aralkyl type epoxy resin having phenylene skeleton, naphthol aralkyl type epoxy resin (having phenylene skeleton, biphenyl skeleton, etc.), dicyclopentadiene Examples include modified phenol type epoxy resins, stilbene type epoxy resins, triphenol methane type epoxy resins, alkyl modified triphenol methane type epoxy resins, triazine nucleus-containing epoxy resins, etc. These may be used alone or in combination of two or more. May be used in combination. As the blending amount when other epoxy resins are used in combination, the total amount of the epoxy resin represented by the general formula (1) and the epoxy resin represented by the general formula (2) is 50 wt. %, More preferably 70% by weight or more is desirable. When the total amount of the epoxy resin represented by the general formula (1) and the epoxy resin represented by the general formula (2) is less than the lower limit value, solder crack resistance and fluidity may be decreased.
本発明で用いられる一般式(3)で示されるフェノール樹脂は、フェノール性水酸基間に疎水性で剛直なビフェニレン骨格を有しており、これを用いたエポキシ樹脂組成物の硬化物は、低反りの特徴を有し、また吸湿率が低く、Tgを越えた高温域での弾性率が低く、半導体素子、有機基板、及び金属基板との密着性に優れる。また架橋密度が低い割には耐熱性が高いという特徴を有している。
一般式(3)中のnは平均値で、1〜5の正数、好ましくは1〜3の正数である。nが下限値を下回るとエポキシ樹脂組成物の硬化性が低下する可能性がある。nが上限値を越えると、樹脂粘度が高くなり、エポキシ樹脂組成物の流動性が低下し、より一層の低吸湿化、低そり化のための無機充填材の高充填化が不可能となるので好ましくない。一般式(3)で示されるフェノール樹脂は、1種類を単独で用いても2種類以上を併用してもよい。一般式(3)で示されるフェノール樹脂としては、例えばフェノールビフェニルアラルキル樹脂などが挙げられるが、式(3)の構造であれば特に限定するものではない。
The phenol resin represented by the general formula (3) used in the present invention has a hydrophobic and rigid biphenylene skeleton between phenolic hydroxyl groups, and a cured product of an epoxy resin composition using the phenol resin has a low warpage. And has a low moisture absorption rate, a low elastic modulus in a high temperature range exceeding Tg, and excellent adhesion to semiconductor elements, organic substrates, and metal substrates. Moreover, it has the characteristic that heat resistance is high although a crosslinking density is low.
N in General formula (3) is an average value, and is a positive number of 1 to 5, preferably a positive number of 1 to 3. When n is less than the lower limit, the curability of the epoxy resin composition may be lowered. When n exceeds the upper limit, the resin viscosity increases, the fluidity of the epoxy resin composition decreases, and it becomes impossible to increase the inorganic filler for further reducing moisture absorption and warping. Therefore, it is not preferable. The phenol resin represented by the general formula (3) may be used alone or in combination of two or more. Examples of the phenol resin represented by the general formula (3) include a phenol biphenyl aralkyl resin, but are not particularly limited as long as the structure is represented by the formula (3).
本発明で用いられる一般式(3)で示されるフェノール樹脂を用いることによる特徴を損なわない範囲で他のフェノール樹脂を併用してもよい。併用する場合は、分子中にフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般で、極力低粘度のものを使用することが望ましく、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂(フェニレン骨格を有する)、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。半導体封止用エポキシ樹脂組成物としての耐湿信頼性を考慮すると、イオン性不純物であるNaイオンやClイオンが極力少ない方が好ましい。他のフェノール樹脂を併用する場合の配合量としては、全フェノール樹脂に対して、一般式(3)で示されるフェノール樹脂の配合量が、50重量%以上、更に好ましくは70重量%以上含むものが望ましい。一般式(3)で示されるフェノール樹脂の配合量が下限値を下回ると、吸湿率の増大、半田処理後の基材との密着性や耐半田性の低下、また低反りの特徴も損なわれるおそれがある。 You may use together other phenol resin in the range which does not impair the characteristic by using the phenol resin shown by General formula (3) used by this invention. When used in combination, it is desirable to use monomers, oligomers, and polymers having a phenolic hydroxyl group in the molecule as low as possible in general. For example, phenol novolak resins, cresol novolak resins, phenol aralkyl resins (phenylene skeletons) Naphthol aralkyl resin, triphenol methane resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, and the like. These may be used alone or in combination of two or more. In consideration of moisture resistance reliability as an epoxy resin composition for semiconductor encapsulation, it is preferable that Na ions and Cl ions, which are ionic impurities, be as small as possible. As the blending amount when other phenol resins are used in combination, the blending amount of the phenol resin represented by the general formula (3) is 50% by weight or more, more preferably 70% by weight or more with respect to all phenol resins. Is desirable. When the blending amount of the phenol resin represented by the general formula (3) is lower than the lower limit value, an increase in moisture absorption rate, a decrease in adhesion to a base material after soldering and a solder resistance, and a low warpage characteristic are also impaired. There is a fear.
本発明に用いられる全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の当量比[(エポキシ基数)/(フェノール性水酸基数)]は、好ましくは0.5〜2であり、特に好ましくは0.7〜1.5である。前記範囲を外れると、エポキシ樹脂組成物の硬化性の低下或いは硬化物のガラス転移温度の低下、耐湿信頼性の低下等が生じる可能性があるので好ましくない。一般式(1)で示されるエポキシ樹脂及び一般式(2)で示されるエポキシ樹脂、一般式(3)で示されるフェノール樹脂とを組合せて用いた場合には、吸湿後の半田処理での耐クラック性、反り等の点で最も高い効果が得られる。 The equivalent ratio [(number of epoxy groups) / (number of phenolic hydroxyl groups)] of the number of epoxy groups of all epoxy resins and the number of phenolic hydroxyl groups of all phenol resins used in the present invention is preferably 0.5 to 2, particularly preferably. Is 0.7 to 1.5. Outside the above range, it is not preferable because there is a possibility that the curability of the epoxy resin composition is lowered, the glass transition temperature of the cured product is lowered, the moisture resistance reliability is lowered, or the like. When the epoxy resin represented by the general formula (1), the epoxy resin represented by the general formula (2), and the phenol resin represented by the general formula (3) are used in combination, the resistance to soldering after moisture absorption is improved. The highest effect is obtained in terms of cracking properties, warpage, and the like.
本発明に用いられる硬化促進剤としては、前記エポキシ樹脂とフェノール樹脂との架橋反応の触媒となり得るものを指し、例えば1、8−ジアザビシクロ(5、4、0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン化合物、トリフェニルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート塩等の有機リン系化合物、2−メチルイミダゾール等のイミダゾール化合物等が挙げられるが、これらに限定されるものではない。これらは1種類を単独で用いても2種類以上を併用してもよい。 The curing accelerator used in the present invention is one that can be a catalyst for the crosslinking reaction between the epoxy resin and the phenol resin. For example, diazabicyclo such as 1,8-diazabicyclo (5,4,0) undecene-7. Alkenes and their derivatives, amine compounds such as tributylamine and benzyldimethylamine, organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate salts, imidazole compounds such as 2-methylimidazole, etc. It is not limited to. These may be used alone or in combination of two or more.
本発明に用いられる無機充填材の種類については特に制限はなく、一般に封止材料に用いられているものを使用することができる。例えば溶融シリカ、結晶シリカ、2次凝集シリカ、アルミナ、チタンホワイト、水酸化アルミニウム、タルク、クレー、ガラス繊維等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。特に溶融シリカが好ましい。溶融シリカは、破砕状、球状のいずれでも使用可能であるが、配合量を高め、且つエポキシ樹脂組成物の溶融粘度の上昇を抑えるためには、球状シリカを主に用いる方がより好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布をより広くとるよう調整することが望ましい。全無機充填材の配合量としては、成形性、信頼性のバランスから全エポキシ樹脂組成物中に80〜94重量%にする必要がある。下限値を下回ると、成形硬化時の硬化収縮及び成形温度から室温までの熱収縮が増大するため反りが大きくなり、また吸湿率が増大するため耐半田クラック性が低下するおそれがあるので好ましくない。上限値を越えると、流動性が低下し、成形時に充填不良等が生じたり、高粘度化による半導体装置内の金線変形等の不都合が生じたりするおそれがあるので好ましくない。 There is no restriction | limiting in particular about the kind of inorganic filler used for this invention, What is generally used for the sealing material can be used. For example, fused silica, crystalline silica, secondary agglomerated silica, alumina, titanium white, aluminum hydroxide, talc, clay, glass fiber, etc. may be mentioned, and these may be used alone or in combination of two or more. Good. In particular, fused silica is preferable. The fused silica can be used in either a crushed shape or a spherical shape, but it is more preferable to mainly use the spherical silica in order to increase the blending amount and suppress an increase in the melt viscosity of the epoxy resin composition. In order to further increase the blending amount of the spherical silica, it is desirable to adjust the particle size distribution of the spherical silica to be wider. The blending amount of the total inorganic filler needs to be 80 to 94% by weight in the total epoxy resin composition from the balance of moldability and reliability. If the value falls below the lower limit, the shrinkage at the time of molding hardening and the thermal shrinkage from the molding temperature to room temperature increase, so that warpage increases, and the moisture absorption rate increases, so solder crack resistance may decrease, which is not preferable. . Exceeding the upper limit is not preferable because the fluidity is lowered, and there is a risk of incomplete filling during molding or inconvenience such as deformation of the gold wire in the semiconductor device due to high viscosity.
本発明において一般式(4)で表されるシランカップリング剤は必須である。一般式(4)で表されるシランカップリング剤を用いると、エポキシ樹脂組成物の粘度が低下し、流動性がよくなる効果が得られる。一般式(4)で表されるシランカップリング剤は1種類を単独で使用しても2種類以上を併用してもよい。また配合量は、特に限定されないが、全エポキシ樹脂組成物中0.01〜3重量%、更に好ましくは0.05〜1重量%が望ましい。一般式(4)で表されるシランカップリング剤の配合量が下限値を下回ると、期待するような粘度特性および流動特性が得られないおそれがある。上限値を超えると硬化性が低下する可能性がある。また、一般式(4)で表されるシランカップリング剤を用いることによる効果を損なわない範囲であれば、γ−グリシドキシプロピルトリメトキシシラン等のその他のカップリング剤を併用しても差し支えない。 In the present invention, the silane coupling agent represented by the general formula (4) is essential. When the silane coupling agent represented by the general formula (4) is used, the viscosity of the epoxy resin composition is lowered and the effect of improving the fluidity can be obtained. The silane coupling agent represented by the general formula (4) may be used alone or in combination of two or more. The blending amount is not particularly limited, but is preferably 0.01 to 3% by weight, more preferably 0.05 to 1% by weight in the total epoxy resin composition. When the compounding quantity of the silane coupling agent represented by General formula (4) is less than a lower limit, there exists a possibility that the expected viscosity characteristic and fluidity | liquidity may not be obtained. If the upper limit is exceeded, curability may be reduced. Further, other coupling agents such as γ-glycidoxypropyltrimethoxysilane may be used in combination as long as the effects of using the silane coupling agent represented by the general formula (4) are not impaired. Absent.
本発明に用いるエポキシ樹脂組成物は、(A)〜(F)成分の他、必要に応じて臭素化エポキシ樹脂、酸化アンチモン、リン化合物等の難燃剤、酸化ビスマス水和物等の無機イオン交換体、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を適宜配合してもよい。更に、必要に応じて無機充填材をカップリング剤やエポキシ樹脂あるいはフェノール樹脂で予め処理して用いてもよく、処理の方法としては、溶媒を用いて混合した後に溶媒を除去する方法や、直接無機充填材に添加し、混合機を用いて処理する方法等がある。 In addition to the components (A) to (F), the epoxy resin composition used in the present invention includes inorganic ion exchange such as brominated epoxy resins, antimony oxides, phosphorus compounds and other flame retardants, and bismuth oxide hydrates as necessary. Body, colorant such as carbon black, bengara, low stress components such as silicone oil and silicone rubber, natural wax, synthetic wax, mold release agents such as higher fatty acids and their metal salts or paraffin, and various additives such as antioxidants May be appropriately blended. Further, if necessary, the inorganic filler may be used after being pretreated with a coupling agent, an epoxy resin or a phenol resin. As a treatment method, a method of removing the solvent after mixing with a solvent, There is a method of adding to an inorganic filler and processing using a mixer.
本発明に用いるエポキシ樹脂組成物は、(A)〜(F)成分、その他の添加剤等をミキサーを用いて常温混合し、ロール、ニーダー等の押出機等の混練機で溶融混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。特に本発明のエポキシ樹脂組成物は、エリア実装型半導体装置用に最適である。
The epoxy resin composition used in the present invention is obtained by mixing the components (A) to (F) and other additives at room temperature using a mixer, melt-kneading with a kneader such as an extruder such as a roll or kneader, and cooling. Obtained by post-grinding.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it can be cured by a conventional molding method such as transfer molding, compression molding, injection molding, etc. Good. In particular, the epoxy resin composition of the present invention is optimal for area mounting type semiconductor devices.
以下、本発明を実施例にて具体的に説明するが、本発明はこれらの実施例により限定されるものではない。配合割合は重量%とする。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples. The blending ratio is weight%.
実施例1
ビフェニルアラルキル型エポキシ樹脂(日本化薬(株)製NC3000、エポキシ当量274、軟化点58℃) 2.60重量部
ビスフェノールA型結晶性エポキシ樹脂(ジャパンエポキシレジン(株)製YL6810、エポキシ当量171、融点45℃) 2.60重量部
ビフェニルアラルキル型フェノール樹脂(明和化成(株)製、MEH−7851SS、水酸基当量203、軟化点65℃) 4.75重量部
トリフェニルホスフィン 0.35重量部
球状溶融シリカ(平均粒径30μm) 89.00重量部
Nフェニルγ−アミノプロピルトリメトキシシラン 0.20重量部
カーボンブラック 0.30重量部
カルナバワックス 0.20重量部
を常温でミキサーを用いて混合し、二軸混練機を用いて吐出物温度が100℃となるように、混練機回転数120rpmの条件で混練し、冷却後粉砕してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
Example 1
Biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd. NC3000, epoxy equivalent 274, softening point 58 ° C.) 2.60 parts by weight Bisphenol A type crystalline epoxy resin (Japan Epoxy Resin Co., Ltd. YL6810, epoxy equivalent 171, 2.60 parts by weight Biphenyl aralkyl type phenolic resin (Maywa Kasei Co., Ltd., MEH-7851SS, hydroxyl group equivalent 203, softening point 65 ° C.) 4.75 parts by weight Triphenylphosphine 0.35 parts by weight Spherical melting Silica (average particle size 30 μm) 89.00 parts by weight N-phenyl γ-aminopropyltrimethoxysilane 0.20 parts by weight Carbon black 0.30 parts by weight Carnauba wax 0.20 parts by weight at room temperature using a mixer, Using a biaxial kneader, mix so that the discharge temperature is 100 ° C. The mixture was kneaded under a kneader rotation speed of 120 rpm, cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
パッケージ反り量:トランスファー成形機を用いて、金型温度180℃、注入圧力9.8MPa、硬化時間90秒の条件で352pBGA(パッケージサイズ32mm×32mm×厚さ1.2mm、半導体素子のサイズ10mm×10mm)を成形し、ポストキュアとして175℃で、2時間処理した。室温まで冷却後、パッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変位差の最も大きい値を半田処理前のパッケージ反り量とした。その後、260℃の半田槽に10秒間浸漬し、室温まで冷却後、同様にパッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変位差の最も大きい値を半田処理後のパッケージ反り量とした。単位はμm。
金線変形率:パッケージ反り量の評価で成形した352pBGAパッケージを軟X線透視装置で観察し、金線の変形率を(流れ量)/(金線長)の比率で表した。単位は%。
耐半田ストレス性:前記の352pBGAを成形し、ポストキュアとして175℃で、2時間処理したパッケージ10個を、85℃、相対湿度60%の環境下で168時間加湿処理し、その後260℃の半田槽に10秒間浸漬した。処理後の内部クラックの有無を超音波探傷機で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるときn/10と表示する。
Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.
Package warpage amount: 352 pBGA (package size 32 mm × 32 mm × thickness 1.2 mm, semiconductor element size 10 mm × under conditions of mold temperature 180 ° C., injection pressure 9.8 MPa, curing time 90 seconds, using transfer molding machine 10 mm) and processed as post-cure at 175 ° C. for 2 hours. After cooling to room temperature, the displacement in the height direction was measured using a surface roughness meter in the diagonal direction from the gate of the package, and the largest value of the displacement difference was taken as the amount of package warpage before soldering. Then, after immersing in a solder bath at 260 ° C. for 10 seconds and cooling to room temperature, measure the displacement in the height direction using a surface roughness meter in the diagonal direction from the gate of the package. Was the amount of package warpage after soldering. The unit is μm.
Gold wire deformation rate: A 352 pBGA package formed by evaluating the amount of warpage of the package was observed with a soft X-ray fluoroscope, and the deformation rate of the gold wire was expressed as a ratio of (flow amount) / (gold wire length). Units%.
Resistance to solder stress: Ten packages of 352 pBGA molded as described above and treated as post-cure at 175 ° C. for 2 hours are humidified for 168 hours in an environment of 85 ° C. and 60% relative humidity, and then soldered at 260 ° C. It was immersed in the tank for 10 seconds. The presence or absence of internal cracks after the treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 10 is displayed.
実施例2〜9、比較例1〜7
表1、表2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を製造し、実施例1と同様にして評価した。評価結果を表1、表2に示す。実施例1以外で用いた成分について、以下に示す。
オルソクレゾールノボラック型エポキシ樹脂(軟化点62℃、エポキシ当量210)
1−ナフトールアラルキル型フェノール樹脂(軟化点87℃、水酸基当量210)
フェノールノボラック樹脂(軟化点81℃、水酸基当量105)
γ−グリシドキシプロピルトリメトキシシラン
Examples 2-9, Comparative Examples 1-7
According to the composition of Table 1 and Table 2, an epoxy resin composition was produced in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1 and 2. The components used in other than Example 1 are shown below.
Orthocresol novolac epoxy resin (softening point 62 ° C, epoxy equivalent 210)
1-naphthol aralkyl type phenolic resin (softening point 87 ° C., hydroxyl group equivalent 210)
Phenol novolac resin (softening point 81 ° C, hydroxyl group equivalent 105)
γ-glycidoxypropyltrimethoxysilane
本発明により得られる半導体封止用エポキシ樹脂は流動性に優れており、これを用いた半導体装置は成形後や半田処理後の反りが小さく、半田処理後の信頼性に優れている。そのため、プリント配線板や金属リードフレームの片面に半導体素子を搭載し、その搭載面側の実質的に片面のみを樹脂封止されたいわゆるエリア実装型半導体装置に対して、本発明により得られる半導体封止用エポキシ樹脂を適用することで、その信頼性を向上させることが可能である。 The epoxy resin for encapsulating a semiconductor obtained by the present invention is excellent in fluidity, and a semiconductor device using the epoxy resin has small warpage after molding or after soldering and is excellent in reliability after soldering. Therefore, a semiconductor obtained by the present invention is a semiconductor device mounted on one side of a printed wiring board or a metal lead frame, and a so-called area mounting type semiconductor device in which only one side of the mounting side is resin-sealed. The reliability can be improved by applying an epoxy resin for sealing.
Claims (4)
An area in which a semiconductor element is mounted on one side of a substrate, and substantially only one side of the substrate surface side on which the semiconductor element is mounted is sealed with the epoxy resin composition according to claim 3. Mounting type semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003338686A JP4622221B2 (en) | 2003-09-29 | 2003-09-29 | Epoxy resin composition and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003338686A JP4622221B2 (en) | 2003-09-29 | 2003-09-29 | Epoxy resin composition and semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005105087A true JP2005105087A (en) | 2005-04-21 |
JP4622221B2 JP4622221B2 (en) | 2011-02-02 |
Family
ID=34534128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003338686A Expired - Fee Related JP4622221B2 (en) | 2003-09-29 | 2003-09-29 | Epoxy resin composition and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4622221B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100696878B1 (en) | 2005-12-30 | 2007-03-20 | 제일모직주식회사 | Epoxy Resin Composition for Packaging Semiconductor Device |
JP2007186673A (en) * | 2005-12-13 | 2007-07-26 | Hitachi Chem Co Ltd | Epoxy resin composition for sealing and electronic component device |
JP2007262235A (en) * | 2006-03-28 | 2007-10-11 | Matsushita Electric Works Ltd | Semiconductor-sealing epoxy resin and semiconductor device |
WO2008117522A1 (en) * | 2007-03-23 | 2008-10-02 | Sumitomo Bakelite Co., Ltd. | Semiconductor sealing resin composition and semiconductor device using the resin composition |
JP2009275146A (en) * | 2008-05-15 | 2009-11-26 | Nitto Denko Corp | Epoxy resin composition for sealing semiconductor and semiconductor device using the same |
JP2010031119A (en) * | 2008-07-28 | 2010-02-12 | Panasonic Electric Works Co Ltd | Semiconductor-sealing epoxy resin composition and semiconductor device using it |
JP2013183528A (en) * | 2012-03-01 | 2013-09-12 | Sumitomo Bakelite Co Ltd | Rotor and motor car |
JP2013183527A (en) * | 2012-03-01 | 2013-09-12 | Sumitomo Bakelite Co Ltd | Fixing resin composition, rotor and automobile |
JP2013234303A (en) * | 2012-05-11 | 2013-11-21 | Panasonic Corp | Epoxy resin composition for sealing semiconductor and semiconductor device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10237160A (en) * | 1997-02-24 | 1998-09-08 | Toray Ind Inc | Epoxy resin composition, and semiconductor device |
JP2002356538A (en) * | 2001-03-30 | 2002-12-13 | Toray Ind Inc | Epoxy resin composition for sealing semiconductor and semiconductor device using the same |
JP2003155327A (en) * | 2001-11-20 | 2003-05-27 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003261746A (en) * | 2002-03-11 | 2003-09-19 | Kyocera Chemical Corp | Resin composition for sealing and sealed electronic device |
JP2004107584A (en) * | 2002-09-20 | 2004-04-08 | Hitachi Chem Co Ltd | Epoxy resin molding material for encapsulation and electronic part device provided with element |
-
2003
- 2003-09-29 JP JP2003338686A patent/JP4622221B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10237160A (en) * | 1997-02-24 | 1998-09-08 | Toray Ind Inc | Epoxy resin composition, and semiconductor device |
JP2002356538A (en) * | 2001-03-30 | 2002-12-13 | Toray Ind Inc | Epoxy resin composition for sealing semiconductor and semiconductor device using the same |
JP2003155327A (en) * | 2001-11-20 | 2003-05-27 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003261746A (en) * | 2002-03-11 | 2003-09-19 | Kyocera Chemical Corp | Resin composition for sealing and sealed electronic device |
JP2004107584A (en) * | 2002-09-20 | 2004-04-08 | Hitachi Chem Co Ltd | Epoxy resin molding material for encapsulation and electronic part device provided with element |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007186673A (en) * | 2005-12-13 | 2007-07-26 | Hitachi Chem Co Ltd | Epoxy resin composition for sealing and electronic component device |
KR100696878B1 (en) | 2005-12-30 | 2007-03-20 | 제일모직주식회사 | Epoxy Resin Composition for Packaging Semiconductor Device |
JP2007262235A (en) * | 2006-03-28 | 2007-10-11 | Matsushita Electric Works Ltd | Semiconductor-sealing epoxy resin and semiconductor device |
WO2008117522A1 (en) * | 2007-03-23 | 2008-10-02 | Sumitomo Bakelite Co., Ltd. | Semiconductor sealing resin composition and semiconductor device using the resin composition |
US8138266B2 (en) | 2007-03-23 | 2012-03-20 | Sumitomo Bakelite Co., Ltd. | Semiconductor-encapsulating resin composition and semiconductor device |
JP2009275146A (en) * | 2008-05-15 | 2009-11-26 | Nitto Denko Corp | Epoxy resin composition for sealing semiconductor and semiconductor device using the same |
JP2010031119A (en) * | 2008-07-28 | 2010-02-12 | Panasonic Electric Works Co Ltd | Semiconductor-sealing epoxy resin composition and semiconductor device using it |
JP2013183528A (en) * | 2012-03-01 | 2013-09-12 | Sumitomo Bakelite Co Ltd | Rotor and motor car |
JP2013183527A (en) * | 2012-03-01 | 2013-09-12 | Sumitomo Bakelite Co Ltd | Fixing resin composition, rotor and automobile |
JP2013234303A (en) * | 2012-05-11 | 2013-11-21 | Panasonic Corp | Epoxy resin composition for sealing semiconductor and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP4622221B2 (en) | 2011-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5564793B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
WO2006059542A1 (en) | Epoxy resin composition and semiconductor devices | |
JP4692885B2 (en) | Epoxy resin composition and semiconductor device | |
JP4736432B2 (en) | Epoxy resin composition and semiconductor device | |
JP4736506B2 (en) | Epoxy resin composition and semiconductor device | |
JP2006233016A (en) | Epoxy resin composition and semiconductor device | |
JP4622221B2 (en) | Epoxy resin composition and semiconductor device | |
KR100663680B1 (en) | Epoxy resin composition and semiconductor device | |
JP2006152185A (en) | Epoxy resin composition and semiconductor device | |
JP4496740B2 (en) | Epoxy resin composition and semiconductor device | |
JP4250987B2 (en) | Epoxy resin composition and semiconductor device | |
JP4710200B2 (en) | Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device | |
JP2006176555A (en) | Epoxy resin composition and semiconductor device | |
JP2006225464A (en) | Epoxy resin composition and semiconductor device | |
JP4770024B2 (en) | Epoxy resin composition and semiconductor device | |
JP2005154717A (en) | Epoxy resin composition and semiconductor device | |
JPH11130936A (en) | Epoxy resin composition and semiconductor device | |
JP4736406B2 (en) | Epoxy resin composition and semiconductor device | |
JP4759994B2 (en) | Epoxy resin composition and semiconductor device | |
JP2004285316A (en) | Epoxy resin composition and semiconductor device | |
JP5093977B2 (en) | Area mounted semiconductor device | |
JP3649554B2 (en) | Epoxy resin composition and semiconductor device | |
JP5055778B2 (en) | Epoxy resin composition, epoxy resin molding material and semiconductor device | |
JP4543638B2 (en) | Epoxy resin composition and semiconductor device | |
JP4645147B2 (en) | Epoxy resin composition and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090126 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091007 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20091222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101005 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101018 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4622221 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |