JPH0415989B2 - - Google Patents
Info
- Publication number
- JPH0415989B2 JPH0415989B2 JP59173283A JP17328384A JPH0415989B2 JP H0415989 B2 JPH0415989 B2 JP H0415989B2 JP 59173283 A JP59173283 A JP 59173283A JP 17328384 A JP17328384 A JP 17328384A JP H0415989 B2 JPH0415989 B2 JP H0415989B2
- Authority
- JP
- Japan
- Prior art keywords
- sodium
- sulfur
- battery
- active material
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 32
- 239000004917 carbon fiber Substances 0.000 claims description 32
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 28
- 229910052717 sulfur Inorganic materials 0.000 claims description 28
- 239000011593 sulfur Substances 0.000 claims description 28
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 claims description 22
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 19
- 239000006183 anode active material Substances 0.000 claims description 11
- 239000011734 sodium Substances 0.000 claims description 11
- 239000007784 solid electrolyte Substances 0.000 claims description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- 239000006182 cathode active material Substances 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims 1
- 238000010304 firing Methods 0.000 claims 1
- 239000011149 active material Substances 0.000 description 11
- 230000005484 gravity Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007665 sagging Methods 0.000 description 3
- HYHCSLBZRBJJCH-UHFFFAOYSA-N sodium polysulfide Chemical compound [Na+].S HYHCSLBZRBJJCH-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/3909—Sodium-sulfur cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、ナトリウム−硫黄電池に係り、特
に、陰極活物質に溶融ナトリウム、陽極活物質に
炭素繊維に含浸された溶融硫黄および電解質に固
体電解質が使用され、陽極活物質の利用率向上に
好適なナトリウム−硫黄電池に関するものであ
る。
に、陰極活物質に溶融ナトリウム、陽極活物質に
炭素繊維に含浸された溶融硫黄および電解質に固
体電解質が使用され、陽極活物質の利用率向上に
好適なナトリウム−硫黄電池に関するものであ
る。
従来より、ナトリウム−硫黄電池の効率向上の
ための改良が試みられており、特に特公昭57−
33836号公報において、ナトリウム−硫黄電池の
充放電深度向上、すなわち充電容量を増大するた
めの種々の改良が開示されている。しかしなが
ら、それらの改良技術によつても、理論値
784wh/Kgという高エネルギー密度を有するこの
種の電池の特性を十分に引き出すに至つていな
い。本発明者は、このナトリウム−硫黄電池の効
率の一層の向上を図るため鋭意研究した結果、こ
の種の電池の効率を下げている1つの大きな原因
が、陽極活性物質として働くべき硫黄が重力によ
り電池の底部に垂下して反応に十分寄与しなくな
るためであることを見出した。したがつて、ナト
リウム−硫黄電池のすぐれた特性を十分に引き出
すためには重力による溶融硫黄の垂下を減少させ
る何等かの改善がなされる必要があつた。
ための改良が試みられており、特に特公昭57−
33836号公報において、ナトリウム−硫黄電池の
充放電深度向上、すなわち充電容量を増大するた
めの種々の改良が開示されている。しかしなが
ら、それらの改良技術によつても、理論値
784wh/Kgという高エネルギー密度を有するこの
種の電池の特性を十分に引き出すに至つていな
い。本発明者は、このナトリウム−硫黄電池の効
率の一層の向上を図るため鋭意研究した結果、こ
の種の電池の効率を下げている1つの大きな原因
が、陽極活性物質として働くべき硫黄が重力によ
り電池の底部に垂下して反応に十分寄与しなくな
るためであることを見出した。したがつて、ナト
リウム−硫黄電池のすぐれた特性を十分に引き出
すためには重力による溶融硫黄の垂下を減少させ
る何等かの改善がなされる必要があつた。
本発明の目的は、陽極活物質の利用率が高く、
かつ寿命の点でも改善されたナトリウム−硫黄電
池を提供することにある。
かつ寿命の点でも改善されたナトリウム−硫黄電
池を提供することにある。
本発明の特徴は、陰極活物質である溶融ナトリ
ウムを有する陰極と、陽極活物質である溶融硫黄
を有する陽極、陽極内に配置されて溶融硫黄が含
浸された炭素繊維、及びこれらの間に配置される
固体電解質を備えたナトリウム−硫黄電池におい
て、炭素繊維の密度が、軸方向において下部より
上部で高くなつていることにある。
ウムを有する陰極と、陽極活物質である溶融硫黄
を有する陽極、陽極内に配置されて溶融硫黄が含
浸された炭素繊維、及びこれらの間に配置される
固体電解質を備えたナトリウム−硫黄電池におい
て、炭素繊維の密度が、軸方向において下部より
上部で高くなつていることにある。
この構成により、陽極活物質である硫黄と、電
池反応生成物である多硫化ナトリウム(Na2Sx)
が重力によつて電池底部へ垂下することを防止
し、活物質の利用率低下を防止したものである。
又、活物質の垂下による影響を防止する為には、
全ての陽極領域において炭素繊維の密度を上げれ
ば良いのであるが、係る方法によると、活物質の
初期充てん量の減少を招き、電池設計時において
すでに電池のもつ理論容量が減つてしまうという
欠点がある。
池反応生成物である多硫化ナトリウム(Na2Sx)
が重力によつて電池底部へ垂下することを防止
し、活物質の利用率低下を防止したものである。
又、活物質の垂下による影響を防止する為には、
全ての陽極領域において炭素繊維の密度を上げれ
ば良いのであるが、係る方法によると、活物質の
初期充てん量の減少を招き、電池設計時において
すでに電池のもつ理論容量が減つてしまうという
欠点がある。
すなわち、電池の理論容量は、初期活物質充て
ん量により決定されるものであり、硫黄において
は、硫黄18r当りの理論容量は、0.5574Ahである。
ん量により決定されるものであり、硫黄において
は、硫黄18r当りの理論容量は、0.5574Ahである。
つまり、電池の初期理論容量は、初期硫黄充て
ん量x8r×0.5574Ah/8rとなる。
ん量x8r×0.5574Ah/8rとなる。
ここで、本発明の理解を容易にするため、本発
明に係るナトリウム−硫黄電池の作動原理につい
て説明する。ナトリウム−硫黄電池はナトリウム
イオンのみを通過させる固体電解質1を介して一
方に陰極活物質である溶融ナトリウム2、他方に
陽極活物質である溶融硫黄3が設けられ、約300
〜350℃で充放電が行われる高温二次電池である。
この充放電の反応は 2Na+xS放電 ―→ ←― 充電Na2Sx で、放電時には陰極活物質のナトリウムは電子を
遊離してナトリウムイオンとなり、固体電解質の
隔壁を通過して陽極活物質の硫黄と反応し、多硫
化ナトリウムNa2Sxを生成する。また充電時に
は電池の開路電圧より大きな負電圧を付加するこ
とにより、多硫化ナトリウムNa2Sxナトリウム
Naと硫黄Sに分解される。この種の電池は前記
の反応により、充放電が行われるものであるか
ら、反応に関与する硫黄が重力により電池低部へ
垂下して反応に関与しなくなればそれは即電池の
効率を下げることになる。この現象を図1に示す
従来のナトリウム−硫黄電池について説明する。
なお、この実験で用いた電池においては、活物質
の垂下による影響を顕著にするため意図的に炭素
繊維の量を少なくしている。この電池における放
電深度と電圧を測定してみると第2図に示すよう
になる。すなわち、炭素含有量の少ないこの電池
は、カーブaに表わされるとおり、放電深度が95
%近傍で電圧の急激な低下が発生している。この
理由は炭素繊維が粗であるため、毛細管現象によ
る溶融硫黄の吸上げあるいは保持力が働かず、溶
融硫黄が重力により、電池の底部へ垂下してしま
い、反応に寄与する硫黄の量が減少したためであ
る。このような現象が起ることは、第3図に示す
炭素繊維の含有量の異なる模擬陽極を用いた活物
質の垂下量の測定の実験からもさらに明らかであ
る。
明に係るナトリウム−硫黄電池の作動原理につい
て説明する。ナトリウム−硫黄電池はナトリウム
イオンのみを通過させる固体電解質1を介して一
方に陰極活物質である溶融ナトリウム2、他方に
陽極活物質である溶融硫黄3が設けられ、約300
〜350℃で充放電が行われる高温二次電池である。
この充放電の反応は 2Na+xS放電 ―→ ←― 充電Na2Sx で、放電時には陰極活物質のナトリウムは電子を
遊離してナトリウムイオンとなり、固体電解質の
隔壁を通過して陽極活物質の硫黄と反応し、多硫
化ナトリウムNa2Sxを生成する。また充電時に
は電池の開路電圧より大きな負電圧を付加するこ
とにより、多硫化ナトリウムNa2Sxナトリウム
Naと硫黄Sに分解される。この種の電池は前記
の反応により、充放電が行われるものであるか
ら、反応に関与する硫黄が重力により電池低部へ
垂下して反応に関与しなくなればそれは即電池の
効率を下げることになる。この現象を図1に示す
従来のナトリウム−硫黄電池について説明する。
なお、この実験で用いた電池においては、活物質
の垂下による影響を顕著にするため意図的に炭素
繊維の量を少なくしている。この電池における放
電深度と電圧を測定してみると第2図に示すよう
になる。すなわち、炭素含有量の少ないこの電池
は、カーブaに表わされるとおり、放電深度が95
%近傍で電圧の急激な低下が発生している。この
理由は炭素繊維が粗であるため、毛細管現象によ
る溶融硫黄の吸上げあるいは保持力が働かず、溶
融硫黄が重力により、電池の底部へ垂下してしま
い、反応に寄与する硫黄の量が減少したためであ
る。このような現象が起ることは、第3図に示す
炭素繊維の含有量の異なる模擬陽極を用いた活物
質の垂下量の測定の実験からもさらに明らかであ
る。
本発明はこれらの実験結果を基にして、陽極活
部質である溶融硫黄の重力による垂下を減少さ
せ、電池の効率と寿命を向上させるためには、溶
融硫黄を含浸する炭素繊維の密度を軸方向の上部
で下部よりも高くして充填し毛細管現象による溶
融硫黄の吸上げあるいは保持を図ることが有効で
あることを見出してなされたものである。また電
池の寿命を決定する要因として固体電解質の寿命
が挙げられる。そして、この固体電解質の寿命を
左右する要因の一つとして電流密度の局部的な集
中あるいは不均一による破損があるが、本発明の
電池においては活物質の垂下がなくしたがつて電
流密度の局部集中あるいは不均一が起らず、この
点でも電池の寿命向上に効果がある。
部質である溶融硫黄の重力による垂下を減少さ
せ、電池の効率と寿命を向上させるためには、溶
融硫黄を含浸する炭素繊維の密度を軸方向の上部
で下部よりも高くして充填し毛細管現象による溶
融硫黄の吸上げあるいは保持を図ることが有効で
あることを見出してなされたものである。また電
池の寿命を決定する要因として固体電解質の寿命
が挙げられる。そして、この固体電解質の寿命を
左右する要因の一つとして電流密度の局部的な集
中あるいは不均一による破損があるが、本発明の
電池においては活物質の垂下がなくしたがつて電
流密度の局部集中あるいは不均一が起らず、この
点でも電池の寿命向上に効果がある。
以下、本発明の実施例を第4図および第5図に
より説明する。炭素繊維に硫黄を含浸して得られ
る陽極は、硫黄3と例えばPAN系の炭素繊維4
を一体の治具に収納し、例えば、不活性ガス中に
て150℃程度に加熱することによつて得られる。
炭素繊維に密度勾配を与える、すなわち軸方向に
おける炭素繊維の密度を上部で下部よりも高くす
る構造としては、第4図及び第5図に示すものが
ある。
より説明する。炭素繊維に硫黄を含浸して得られ
る陽極は、硫黄3と例えばPAN系の炭素繊維4
を一体の治具に収納し、例えば、不活性ガス中に
て150℃程度に加熱することによつて得られる。
炭素繊維に密度勾配を与える、すなわち軸方向に
おける炭素繊維の密度を上部で下部よりも高くす
る構造としては、第4図及び第5図に示すものが
ある。
まず、第4図について説明する。図に示すよう
に、陽極、特に炭素繊維4を軸方向に例えば4
a,4b及び4cと3つのピースに分割する。ピ
ース4aは規定の厚さの炭素繊維をn枚、ピース
4bはそれを(n−1)枚、及びピース4cはそ
れを(n−2)枚をそれぞれ重ねて構成される。
これらのピースの各炭素繊維4に、溶融硫黄が含
浸される。陽極3での炭素繊維4の密度は、下部
よりも上部で高くなつている。陽極3の厚みは軸
方向で一様であるので、上部に位置するピースの
炭素繊維4は、下部に位置するそれよりも圧縮率
が大きくなる。
に、陽極、特に炭素繊維4を軸方向に例えば4
a,4b及び4cと3つのピースに分割する。ピ
ース4aは規定の厚さの炭素繊維をn枚、ピース
4bはそれを(n−1)枚、及びピース4cはそ
れを(n−2)枚をそれぞれ重ねて構成される。
これらのピースの各炭素繊維4に、溶融硫黄が含
浸される。陽極3での炭素繊維4の密度は、下部
よりも上部で高くなつている。陽極3の厚みは軸
方向で一様であるので、上部に位置するピースの
炭素繊維4は、下部に位置するそれよりも圧縮率
が大きくなる。
第5図の構造は、軸方向に分割しない炭素繊維
4をフエルト化し軸方向の長さの異なる複数の炭
素繊維4を用いて、陽極3での炭素繊維4の密度
を下部よりも上部で高くしたものである。
4をフエルト化し軸方向の長さの異なる複数の炭
素繊維4を用いて、陽極3での炭素繊維4の密度
を下部よりも上部で高くしたものである。
以上述べた構造以外でも、陽極3での炭素繊維
4の密度を下部よりも上部で高くできる構造は
種々考えられることは言うまでもない。
4の密度を下部よりも上部で高くできる構造は
種々考えられることは言うまでもない。
このようにして得られたナトリウム−硫黄電池
は重力による硫黄の垂下はほとんどなく、その放
電深度と電圧を測定してみても、第2図に示され
るように放電深度100%までほとんど急激な電圧
低下が見られない。これは、従来の電池において
約5%の容量低下が見られるのに対し著るしい効
果があると言える。すなわち、実用プラントの容
量は約100Mwh程度というのが通論となつてお
り、単電池の活物質垂下によるロスを約5%とす
ると、プラント全体では5Mwhの損失となり相当
大きな損失となる。この5Mwhの損失を償うため
には実用規模の単電池がさらに約5000個程度必要
となり、このためのスペースおよび単電池製作コ
ストが無視できない。
は重力による硫黄の垂下はほとんどなく、その放
電深度と電圧を測定してみても、第2図に示され
るように放電深度100%までほとんど急激な電圧
低下が見られない。これは、従来の電池において
約5%の容量低下が見られるのに対し著るしい効
果があると言える。すなわち、実用プラントの容
量は約100Mwh程度というのが通論となつてお
り、単電池の活物質垂下によるロスを約5%とす
ると、プラント全体では5Mwhの損失となり相当
大きな損失となる。この5Mwhの損失を償うため
には実用規模の単電池がさらに約5000個程度必要
となり、このためのスペースおよび単電池製作コ
ストが無視できない。
本発明によれば、陽極活物質である溶融硫黄の
重力による垂下を防止でき、その結果陽極活物質
の利用率が高くかつ寿命の長い高エネルギー密度
のナトリウム−硫黄電池が実現できるという効果
が得られる。
重力による垂下を防止でき、その結果陽極活物質
の利用率が高くかつ寿命の長い高エネルギー密度
のナトリウム−硫黄電池が実現できるという効果
が得られる。
第1図は、従来技術および本発明のナトリウム
−硫黄電池の断面図、第2図は第1図に示す構造
のナトリウム−硫黄電池の充放電特性図、第3図
は、炭素繊維の含有量と活物質の重力による垂下
の関係を示す図、第4図および第5図は本発明の
陽極を示す図である。 1……固体電解質、2a……陰極、2……ナト
リウム、3……硫黄、4……炭素繊維、5……陽
極容器、6……陰極容器、7……α−アルミナ、
8……陽極キヤツプ。
−硫黄電池の断面図、第2図は第1図に示す構造
のナトリウム−硫黄電池の充放電特性図、第3図
は、炭素繊維の含有量と活物質の重力による垂下
の関係を示す図、第4図および第5図は本発明の
陽極を示す図である。 1……固体電解質、2a……陰極、2……ナト
リウム、3……硫黄、4……炭素繊維、5……陽
極容器、6……陰極容器、7……α−アルミナ、
8……陽極キヤツプ。
Claims (1)
- 【特許請求の範囲】 1 陰極活物質である溶融ナトリウムを有する陰
極と、陽極活物質である溶融硫黄を有する陽極、
前記陽極内に配置されて前記溶融硫黄が含浸され
た炭素繊維、及びこれらの間に配置される固体電
解質を備えたナトリウム−硫黄電池において、前
記炭素繊維の密度が、軸方向において下部より上
部で高くなつていることを特徴とするナトリウム
−硫黄電池。 2 前記炭素繊維が、PAN系の繊維を高温焼成
して得られたものである特許請求の範囲第1項記
載のナトリウム−硫黄電池。 3 前記炭素繊維は軸方向で複数に分割されてお
り、軸方向上部に位置する分割された炭素繊維ほ
ど、圧縮率が大きい特許請求の範囲第1項記載の
ナトリウム−硫黄電池。 4 前記炭素繊維は、軸方向の長さの異なる複数
のフエルトを組み合わせて構成された特許請求の
範囲第1項記載のナトリウム−硫黄電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59173283A JPS6151774A (ja) | 1984-08-22 | 1984-08-22 | ナトリウム−硫黄電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59173283A JPS6151774A (ja) | 1984-08-22 | 1984-08-22 | ナトリウム−硫黄電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6151774A JPS6151774A (ja) | 1986-03-14 |
JPH0415989B2 true JPH0415989B2 (ja) | 1992-03-19 |
Family
ID=15957575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59173283A Granted JPS6151774A (ja) | 1984-08-22 | 1984-08-22 | ナトリウム−硫黄電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6151774A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004085501A1 (ja) | 2003-03-27 | 2004-10-07 | Nippon Steel Chemical Co., Ltd. | シリコーン樹脂組成物及びその成形体 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6353865A (ja) * | 1986-08-25 | 1988-03-08 | Ngk Insulators Ltd | ナトリウム−硫黄電池 |
JPH01161561U (ja) * | 1988-05-02 | 1989-11-09 |
-
1984
- 1984-08-22 JP JP59173283A patent/JPS6151774A/ja active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004085501A1 (ja) | 2003-03-27 | 2004-10-07 | Nippon Steel Chemical Co., Ltd. | シリコーン樹脂組成物及びその成形体 |
Also Published As
Publication number | Publication date |
---|---|
JPS6151774A (ja) | 1986-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8426052B2 (en) | Li-ion battery with porous anode support | |
KR100255115B1 (ko) | 알칼리 전지 | |
JPH09306497A (ja) | 鉛蓄電池用負極板 | |
KR20200072184A (ko) | 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지 | |
JPH0415989B2 (ja) | ||
JPH11121028A (ja) | 密閉式鉛蓄電池 | |
US3261714A (en) | Sealed dry cells having an ionization catalyst in the depolarizer | |
KR101704186B1 (ko) | 리튬황 전고체 전지 양극 | |
JP2014164993A (ja) | 制御弁式鉛蓄電池及びその使用方法 | |
HU196533B (en) | Lead accumulator, preferably for long-lasting uniform employment | |
KR0137304B1 (ko) | 납축전지 | |
JPH04296464A (ja) | 密閉形鉛蓄電池 | |
US3615859A (en) | Leclanche dry cell with thick wall paste separator | |
WO1980002472A1 (en) | Electric storage batteries | |
JPH0624140B2 (ja) | 密閉型鉛蓄電池 | |
JPH0562435B2 (ja) | ||
US3871917A (en) | Negative active substance for a storage cell | |
JPH11354128A (ja) | 密閉式鉛蓄電池 | |
JPH10270030A (ja) | 密閉式鉛蓄電池 | |
JPS58158874A (ja) | 鉛蓄電池 | |
JPS60148071A (ja) | ナトリウム−硫黄電池 | |
WO1986000759A1 (en) | Sealed lead acid battery for oxygen gas recombination | |
JP2000058105A (ja) | 鉛蓄電池 | |
JPH0351066B2 (ja) | ||
Prengaman et al. | Corrosion resistant positive grids, novel separators, and negative plate additives for increased vrla battery life |