JPH04121958A - Metal hydride electrode - Google Patents

Metal hydride electrode

Info

Publication number
JPH04121958A
JPH04121958A JP2241528A JP24152890A JPH04121958A JP H04121958 A JPH04121958 A JP H04121958A JP 2241528 A JP2241528 A JP 2241528A JP 24152890 A JP24152890 A JP 24152890A JP H04121958 A JPH04121958 A JP H04121958A
Authority
JP
Japan
Prior art keywords
electrode
battery
hydrogen storage
negative electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2241528A
Other languages
Japanese (ja)
Other versions
JP3057737B2 (en
Inventor
Toshio Murata
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2241528A priority Critical patent/JP3057737B2/en
Publication of JPH04121958A publication Critical patent/JPH04121958A/en
Application granted granted Critical
Publication of JP3057737B2 publication Critical patent/JP3057737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To facilitate the control of the surplus discharge amount of the negative electrode and reduce work danger and remove the generation of impurities that cause self discharge and the non-activation of battery constituent elements, by retaining at a conductive support body metal bismuth powder together with hydrogen storage alloy powder. CONSTITUTION:A pastelike mixture is prepared by adding water to 100 wt parts of hydrogen storage alloy powder, 3 wt parts of metal bismuth powder, 2 wt parts of furnace black that is a conduction promoting agent and 2 wt parts (solid portion) of synthetic latex consisting of an acrylic-styrene copolymer that is a bonding agent. This pastelike mixture is painted on both sides of a nickel plated iron punching metal that is a conductive support body, and after drying, pressing and cutting off a metal hydride electrode is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉形アルカリ蓄電池の負極に用いられ、水
素吸蔵合金を備える電極からなるに関するものである 従来の技術 アルカリ蓄電池の負極に用いる水素吸蔵電極は、水素吸
蔵合金を備えている。この水素吸蔵合金には、LaN 
i 5やTiMn2などの金属間化合物があり、これら
の合金の成分元素の一部を、そのほかの元素で置換する
ことや、化学量論数を変化させることによって、これら
の合金の水素吸蔵量を変化させたり、これらの金属水素
化物の平衡水素圧を変化させたり、アルカリ電解液中に
おける合金の耐食性を向上させて、電極に用いられてい
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a hydrogen storage electrode used as a negative electrode of a sealed alkaline storage battery and comprising an electrode comprising a hydrogen storage alloy. is equipped with a hydrogen storage alloy. This hydrogen storage alloy contains LaN
There are intermetallic compounds such as i5 and TiMn2, and the hydrogen storage capacity of these alloys can be increased by replacing some of the constituent elements of these alloys with other elements or by changing the stoichiometric number. They are used in electrodes by changing the equilibrium hydrogen pressure of these metal hydrides, and by improving the corrosion resistance of the alloy in alkaline electrolytes.

この電極の従来の製造方法には、上記の水素吸蔵合金の
粉末を、パンチングメタルや発泡ニッケルなどの導電性
支持体に保持させ、ポリビニルアルコール、フッ素樹脂
、アクリル−スチレン樹脂なとの耐アルカリ性高分子て
結合するものや、水素吸蔵合金を焼結したものがある。
The conventional manufacturing method for this electrode involves holding the above-mentioned hydrogen storage alloy powder on a conductive support such as punched metal or foamed nickel, and then using a highly alkali-resistant material such as polyvinyl alcohol, fluororesin, or acrylic-styrene resin. Some are made by bonding molecules together, while others are made by sintering a hydrogen-absorbing alloy.

この負極と、水酸化ニッケル電極なとの正極と、水酸化
カリウムなとのアルカリ電解液とを用いて、アルカリ蓄
電池が構成される。
An alkaline storage battery is constructed using this negative electrode, a positive electrode such as a nickel hydroxide electrode, and an alkaline electrolyte such as potassium hydroxide.

水素吸蔵電極を用いるアルカリ蓄電池では、水素吸蔵電
極の放電容量が、同じ体積のカドミウム電極の2倍程度
に達する。したがって、たとえは、水素吸蔵電極の容量
がカドミウム電極の容量の1.5倍程度になるように、
水素吸蔵電極の体積を減少させ、その体積の減少分だけ
正極の体積を増加させて、正極の容量を1.5倍程度に
増加させることによって、ニッケル・金属水素jヒ物電
池の場合には、その容量を、同じ体積のニッケル・カト
ミウム電池の1.5倍程度に増加させることかできる。
In an alkaline storage battery using a hydrogen storage electrode, the discharge capacity of the hydrogen storage electrode is approximately twice that of a cadmium electrode of the same volume. Therefore, for example, just as the capacity of a hydrogen storage electrode is about 1.5 times that of a cadmium electrode,
In the case of a nickel metal hydride battery, by reducing the volume of the hydrogen storage electrode and increasing the volume of the positive electrode by the amount of the volume reduction, increasing the capacity of the positive electrode by about 1.5 times. , its capacity can be increased to about 1.5 times that of a nickel-cadmium battery of the same volume.

そして、水素吸蔵電極を負極に用いてアルカリ蓄電池を
構成する場合には、電池を次のように構成して密閉化を
達成している。
When an alkaline storage battery is constructed using a hydrogen storage electrode as a negative electrode, the battery is constructed as follows to achieve hermetic sealing.

まず、過充電時については次の通りである。すなわち、
正極の充電可能容量を負極の充電可能容量よりも小さく
して、正極の充電が負極よりも先に終わるようにする。
First, regarding overcharging, it is as follows. That is,
The chargeable capacity of the positive electrode is made smaller than the chargeable capacity of the negative electrode so that charging of the positive electrode ends before that of the negative electrode.

この密閉電池を過充電すると、水が電解されて正極から
発生する酸素カスが負極の表面で電気化学的に還元され
て水を生成するので、電池内に酸素カスの蓄積が起こら
ず、電解液の量も変化しない。そして、負極では、過充
電時に酸素ガスの還元反応が起こって、負極の充電が停
止するので、負極の充電が終わって水素ガスが発生する
ことが防止され、電池内に水素ガスの蓄積が起こらない
。従って、電池を過充電しても、電池内にガスが蓄積し
て内圧が著しく増加することがなく、電池の密閉系が保
持される。これとは逆に、負極の充電が正極よりも先に
終わるように電池を構成すると、過充電時に負極から水
素カスが発生するが、水素カスが正極で電解酸化される
速度は著しく小さいので、電池内の水素ガスの蓄積を効
果的に防ぐことが困難である・従って・実用形の密閉型
蓄電池では、正極の充電が負極の充電よりも先に終わる
ように構成している。
When this sealed battery is overcharged, the water is electrolyzed and the oxygen scum generated from the positive electrode is electrochemically reduced on the surface of the negative electrode to produce water, so no accumulation of oxygen scum occurs inside the battery and the electrolyte The amount does not change either. At the negative electrode, a reduction reaction of oxygen gas occurs during overcharging, and charging of the negative electrode is stopped. This prevents hydrogen gas from being generated when the negative electrode finishes charging, and prevents hydrogen gas from accumulating inside the battery. do not have. Therefore, even if the battery is overcharged, gas will not accumulate within the battery and the internal pressure will not significantly increase, and the battery's sealed system will be maintained. Conversely, if the battery is configured so that the negative electrode finishes charging before the positive electrode, hydrogen scum will be generated from the negative electrode during overcharging, but the rate at which the hydrogen scum is electrolytically oxidized at the positive electrode is extremely slow. It is difficult to effectively prevent the accumulation of hydrogen gas within the battery. Therefore, in practical sealed storage batteries, charging of the positive electrode ends before charging of the negative electrode.

このような過充電時の密閉化の原理は、密閉型のニッケ
ル・カドミウム電池と同しである。そして、この電池の
構成は、正極の充電可能な容量を負極の充電可能な容量
よりも小さくすることで実現できる。
The principle of sealing during overcharging is the same as that of sealed nickel-cadmium batteries. This battery configuration can be realized by making the chargeable capacity of the positive electrode smaller than the chargeable capacity of the negative electrode.

次に過放電時については次の通りである。すなわち、正
極活物質の放電可能容量を負極の放電可能容量よりも小
さくして、正極の放電が負極よりも先に終わるようにす
る。この密閉電池を過放電すると、水が電解されて正極
から発生する水素ガスが負極の表面で電気化学的に酸化
されて水を生成するので、電池内に水素ガスの蓄積が起
こらず、電解液の量も変化しない。そして、負極では、
過放電時に水素ガスの酸化反応が起こって、負極の放電
が停止するので、負極の放電が終わって酸素ガスが発生
することが防止され、電池内に酸素ガスの蓄積が起こら
ない。従って、電池を過放電しても、電池内にガスが蓄
積して内圧が著しく増加することがなく、電池の密閉系
が保持される。これとは逆に、負極の放電が正極よりも
先に終わるように電池を構成すると、過放電時に負極か
ら酸素ガスが発生するが、酸素ガスが正極で電解還元さ
れる速度は著しく小さいので、電池内の酸素ガスの蓄積
を効果的に防ぐことが困難である。従って、実用形の密
閉型蓄電池では、正極の放電が負極の放電よりも先に終
わるように構成している。
Next, the case of overdischarge is as follows. That is, the dischargeable capacity of the positive electrode active material is made smaller than the dischargeable capacity of the negative electrode so that the discharge of the positive electrode ends before that of the negative electrode. When this sealed battery is over-discharged, water is electrolyzed and the hydrogen gas generated from the positive electrode is electrochemically oxidized on the surface of the negative electrode to produce water, so hydrogen gas does not accumulate inside the battery and the electrolyte The amount does not change either. And at the negative electrode,
During overdischarge, an oxidation reaction of hydrogen gas occurs and the discharge of the negative electrode is stopped. This prevents the generation of oxygen gas when the discharge of the negative electrode ends, and no accumulation of oxygen gas occurs within the battery. Therefore, even if the battery is over-discharged, gas will not accumulate within the battery and the internal pressure will not significantly increase, and the battery's sealed system will be maintained. Conversely, if a battery is constructed so that the discharge of the negative electrode ends before that of the positive electrode, oxygen gas will be generated from the negative electrode during overdischarge, but the rate at which oxygen gas is electrolytically reduced at the positive electrode is extremely slow. It is difficult to effectively prevent the accumulation of oxygen gas within the battery. Therefore, a practical sealed storage battery is configured such that the discharge of the positive electrode ends before the discharge of the negative electrode.

もしも、過充電時や過放電時にガス吸収反応が十分大き
い速度で起こらない場合には、アルカリ電解液中の水の
電気分解によって発生したガスが電池内に蓄積して、電
池の内圧が著しく上昇し、安全弁が作動して、電池内の
ガスが放出される。
If the gas absorption reaction does not occur at a sufficiently high rate during overcharging or overdischarging, the gas generated by the electrolysis of water in the alkaline electrolyte will accumulate inside the battery, causing a significant increase in the internal pressure of the battery. Then, the safety valve is activated and the gas inside the battery is released.

このようなことを繰り返すと、水の電気分解によフて生
成したガスが電池系外に去るのであるから、電池内の電
解液量が著しく減少して、電池の充放電が困難になり、
電池の充放電サイクル寿命が著しく短くなる。特に、こ
のような過放電時の密閉化の原理は、水素吸蔵電極もし
くは水素ガス拡散電極を負極に用いる密閉型アルカリ蓄
電池に特有のものである。
If this happens repeatedly, the gas generated by the electrolysis of water will leave the battery system, and the amount of electrolyte in the battery will decrease significantly, making it difficult to charge and discharge the battery.
The charge/discharge cycle life of the battery will be significantly shortened. In particular, the principle of sealing during overdischarge is unique to sealed alkaline storage batteries that use a hydrogen storage electrode or a hydrogen gas diffusion electrode as a negative electrode.

なお、水素吸蔵電極の場合に、高率放電時や、低温で放
電する場合に放電が困難な水素の量が増加して、放電容
量が減少する。このような場合に、負極の放電が正極よ
りも先に終わって、負極の水素吸蔵電極が過放電されて
酸素ガスが発生すると、水素吸蔵合金の表面がアノード
酸化されて不活性になり、それ以後の充放電が困難にな
る不都合が発生する。従って、負極に水素吸蔵電極を備
える密閉形アルカリ蓄電池を密閉化して、電池の放電を
正極で制限し、負極が過放電されないように構成するこ
とは、この不都合を防ぐためにも有用なことである。
Note that in the case of a hydrogen storage electrode, the amount of hydrogen that is difficult to discharge increases during high rate discharge or discharge at low temperatures, resulting in a decrease in discharge capacity. In such a case, if the discharge of the negative electrode ends before that of the positive electrode and the hydrogen storage electrode of the negative electrode is over-discharged and oxygen gas is generated, the surface of the hydrogen storage alloy is anodically oxidized and becomes inactive. This causes the inconvenience that subsequent charging and discharging becomes difficult. Therefore, it is useful to prevent this inconvenience by sealing a sealed alkaline storage battery that has a hydrogen storage electrode at the negative electrode, limiting battery discharge at the positive electrode, and preventing the negative electrode from being over-discharged. .

発明が解決しようとする課題 水素吸蔵電極を負極に用いる密閉式アルカリ蓄電池にお
いて、上述のように、正極の放電が負極の放電よりも先
に終わるように電池を構成する手段としては、次のよう
にいくつかの方法か提案されているが、それぞれ問題点
がある。
Problems to be Solved by the Invention In a sealed alkaline storage battery using a hydrogen storage electrode as the negative electrode, as mentioned above, the following is a means of configuring the battery so that the discharge of the positive electrode ends before the discharge of the negative electrode. Several methods have been proposed, but each has its own problems.

その第1の手段は、電池を構成する前に、水素吸蔵電極
を予め充電しておく方法であり、具体的には、水素吸蔵
電極の水素吸蔵合金に、一定量の気相の水素ガスを吸蔵
させたり、水素吸蔵電極を電解液中で部分的に充電して
おく方法である。これらの方法には、次のような問題点
かある。すなわち、気相の水素カスを吸蔵させる場合に
は、水素吸蔵電極に均一に水素カスを吸蔵させることか
困難であり、また、吸蔵時に水素カスを加圧し加熱する
必要があるので、作業に危険をともなう。
The first method is to charge the hydrogen storage electrode in advance before configuring the battery. Specifically, a certain amount of gaseous hydrogen gas is charged to the hydrogen storage alloy of the hydrogen storage electrode. This method involves storing hydrogen or partially charging the hydrogen storage electrode in an electrolyte. These methods have the following problems. In other words, when storing hydrogen scum in the gas phase, it is difficult to store the hydrogen scum uniformly in the hydrogen storage electrode, and it is necessary to pressurize and heat the hydrogen scum during storage, which is dangerous for work. accompanied by.

また、水素吸蔵電極を部分的に充電する場合には、電池
を組み立てる前に、この電極を洗浄して乾燥する必要が
あるが、その際に電極中の水素が放出されて、吸蔵量を
制御することが困難である。
In addition, when partially charging a hydrogen storage electrode, it is necessary to wash and dry the electrode before assembling the battery, but at this time the hydrogen in the electrode is released and the amount of storage is controlled. difficult to do.

第2の手段は、アルカリ電解液に還元剤を添加して、こ
れらの還元剤の酸化にともなって負極が充電される現象
を利用する方法であり、具体的には、ヒドラジンやアル
コールを添加するものかある。これらの方法では、添加
する還元剤の量を制御して、負極の過剰放電量を容易に
制御できる点て優れるが、還元剤の酸化生成物が電池に
種種の悪影響をもたらす。すなわち、ヒドラジンの酸化
生成物である窒素化合物は、ニッケル・カドミウム電池
と同様の「シャトル機構」による自己放電を促進する原
因となる。また、アルコールは酸化されて多量の炭酸根
を生成し、これは、正極の水酸化ニッケル電極の導電性
骨格である金属ニッケルの腐食を促進したり、水酸化ニ
ッケルの不活性化の原因になる。
The second method is to add a reducing agent to the alkaline electrolyte and take advantage of the phenomenon in which the negative electrode is charged as the reducing agent oxidizes. Specifically, hydrazine or alcohol is added. There are things. These methods are advantageous in that the amount of the reducing agent added can be controlled to easily control the amount of excessive discharge of the negative electrode, but the oxidation products of the reducing agent have various adverse effects on the battery. That is, nitrogen compounds, which are oxidation products of hydrazine, promote self-discharge by a "shuttle mechanism" similar to that of nickel-cadmium batteries. In addition, alcohol is oxidized and produces a large amount of carbonate radicals, which accelerate the corrosion of the metallic nickel, which is the conductive skeleton of the positive nickel hydroxide electrode, and cause the inactivation of the nickel hydroxide. .

第3の手段は、アルカリ水溶液中で電気化学的に水素電
極電位よりも卑な金属を水素吸蔵電極中に担持し、水素
吸蔵電極がアルカリ電解液に接した際に、この卑な金属
の酸化反応にともなフて、局部電池機構によって、水素
吸蔵電極を部分的に充電されるものである。具体的には
、亜鉛なとの卑金属を担持させることが提案されている
。この方法には、次の不都合がある。すなわち、水素吸
蔵合金は水素過電圧か低く、しかも、充放電していない
水素吸蔵合金の充電反応の過電圧が高いので、この卑金
属を担持した水素吸蔵電極がアルカリ電解液に接触する
と、水素吸蔵合金の充電反応たけてはなく、水素吸蔵合
金からの水素カスの発生がおこり、部分的に充電する電
気量を正確に制御できない。
The third method is to electrochemically support a metal that is more base than the hydrogen electrode potential in an alkaline aqueous solution in a hydrogen storage electrode, and when the hydrogen storage electrode comes into contact with an alkaline electrolyte, this base metal is oxidized. As the reaction progresses, the hydrogen storage electrode is partially charged by a local battery mechanism. Specifically, it has been proposed to support a base metal such as zinc. This method has the following disadvantages. In other words, the hydrogen storage alloy has a low hydrogen overvoltage, and the overvoltage of the charging reaction of a hydrogen storage alloy that has not been charged or discharged is high, so when the hydrogen storage electrode supporting this base metal comes into contact with an alkaline electrolyte, the hydrogen storage alloy The charging reaction is slow and hydrogen scum is generated from the hydrogen storage alloy, making it impossible to accurately control the amount of electricity that is partially charged.

第4の手段は、金属コバルトや水酸化コバルトを備える
非焼結式水酸化ニッケル電極を正極に用いるものであり
、電池を充電する際に正極の金属コバルトや水酸化コバ
ルトが3価のコバルト酸化物に不可逆的に・酸化される
現象を利用するもので、その際に、正極の活物質の充電
が起こらずに、負極が部分的に充電される。この方法は
、負極の部分的な充電量の制御が容易である点で優れて
いる。
The fourth method is to use a non-sintered nickel hydroxide electrode containing metal cobalt or cobalt hydroxide as the positive electrode, and when charging the battery, the metal cobalt or cobalt hydroxide in the positive electrode becomes trivalent cobalt oxide. It takes advantage of the phenomenon in which substances are irreversibly oxidized, and in this case, the negative electrode is partially charged without charging the active material of the positive electrode. This method is excellent in that it is easy to control the partial charge amount of the negative electrode.

しかし、金属コバルトや水酸化コバルトは焼結式水酸化
ニッケル電極の活物質含浸工程では、容易に酸化される
ので、焼結式水酸化ニッケル電極を正極に用いる場合に
は、この方法は適用できない欠点がある。
However, metallic cobalt and cobalt hydroxide are easily oxidized during the active material impregnation process of sintered nickel hydroxide electrodes, so this method cannot be applied when using sintered nickel hydroxide electrodes as positive electrodes. There are drawbacks.

第5の手段は、負極の容量を正極の容量よりも大きくし
、電池を開放した状態で正極から酸素ガスが発生するに
到るまで充電してから電池を密閉するものである。この
場合には、電池が開放状態で正極が過充電されて、正極
から発生する酸素カスの少なくとも一部が、負極で電解
還元されることなく電池系外に放出されるので、負極は
、その放出された酸素の還元に要する電気量だけ正極よ
りも過剰に充電される。従って、正極の放電容量を負極
の放電容゛員よりも小さくすることか可能になる。この
方法は、添加物を必要とせず、また電極の種類に関わら
ず適用できる点て有利であるが、開放状態で電池を過充
電する際に、負極における酸素ガス還元反応の効率を制
御することが困難であるから、電池系外に放出される酸
素ガスの制御が困難であり、負極の過剰放電量の制御が
困難であるという欠点がある。
A fifth method is to make the capacity of the negative electrode larger than the capacity of the positive electrode, charge the battery in an open state until oxygen gas is generated from the positive electrode, and then seal the battery. In this case, the positive electrode is overcharged when the battery is open, and at least a portion of the oxygen scum generated from the positive electrode is released outside the battery system without being electrolytically reduced at the negative electrode. The positive electrode is charged in excess by the amount of electricity required to reduce the released oxygen. Therefore, it is possible to make the discharge capacity of the positive electrode smaller than that of the negative electrode. This method is advantageous in that it does not require additives and can be applied regardless of the type of electrode, but it is important to control the efficiency of the oxygen gas reduction reaction at the negative electrode when overcharging the battery in an open state. Therefore, it is difficult to control the oxygen gas released outside the battery system, and it is difficult to control the amount of excessive discharge of the negative electrode.

以上に述べたように、水素吸蔵電極を負極を用いる密閉
形アルカリ蓄電池において、正極の放電が負極の放電よ
りも先に終わるように構成する際に、負極の過剰放電量
の制御が容易で、作業上の危険か少なく、自己放電や電
池構成要素の不活性化を招く不純物を生成することなく
、しかも、正極に焼結式水酸化ニッケル電極を用いる場
合にも適用できる手段が望まれていた。
As described above, in a sealed alkaline storage battery using a negative electrode as a hydrogen storage electrode, when the discharge of the positive electrode ends before the discharge of the negative electrode, it is easy to control the excessive discharge amount of the negative electrode. There was a desire for a method that would be less dangerous during work, would not generate impurities that would cause self-discharge or inactivation of battery components, and would also be applicable when using a sintered nickel hydroxide electrode as the positive electrode. .

課題を解決するための手段 本発明では、上述の課題を解決するために、金属ビスマ
スの粉末を水素吸蔵合金の粉末とともに導電性支持体に
保持してなる水素吸蔵電極を提供する。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a hydrogen storage electrode formed by holding metal bismuth powder together with hydrogen storage alloy powder on a conductive support.

作用 負極が水素吸蔵合金および金属ビスマスの粉末を備える
水素吸蔵電極からなるアルカリ蓄電池には、次の作用が
ある。
An alkaline storage battery in which the working negative electrode is composed of a hydrogen storage electrode comprising a hydrogen storage alloy and metal bismuth powder has the following effects.

すなわち、金属ビスマスがアルカリ電解液中で酸化され
る電位は、水素の平衡電位よりも責であるから、この水
素吸蔵電極がアルカリ電解液に接触しても、水素ガスが
自発的に発生することがない。
In other words, the potential at which bismuth metal is oxidized in an alkaline electrolyte is higher than the equilibrium potential of hydrogen, so even if this hydrogen storage electrode comes into contact with an alkaline electrolyte, hydrogen gas will not spontaneously be generated. There is no.

そして、この水素吸蔵電極に備えられる金属ビスマスが
、式(1)に従フて、アルカリ電解液中て電解酸化され
る電位は、水素の平衡電位よりも約0.37V貴であり
、酸素カス発生反応の平衡電位よりも約0.86V卑で
ある。
The potential at which the metal bismuth provided in this hydrogen storage electrode is electrolytically oxidized in an alkaline electrolyte according to equation (1) is about 0.37 V nobler than the equilibrium potential of hydrogen, and the oxygen gas It is about 0.86 V less than the equilibrium potential of the generated reaction.

2Bi + 6QH−−+ Bi2O3+ 3820 
+ 6e−(1)従って、水素吸蔵合金の放電がほぼ終
わってから、酸素ガス発生反応が起こる前に、金属ヒス
マスの電解酸化反応すなわち放電反応が起こる。そして
、金属ビスマスを備える水素吸蔵電極は、この電極を充
電しなくても、酸素カス発生反応か起こるまでに、金属
ビスマスの電解酸化反応に相当するだけの放電容量を既
に備えていることになる。
2Bi + 6QH--+ Bi2O3+ 3820
+6e-(1) Therefore, after the discharge of the hydrogen storage alloy is almost completed and before the oxygen gas generation reaction occurs, the electrolytic oxidation reaction of the metal hismuth, that is, the discharge reaction occurs. Furthermore, even without charging the electrode, the hydrogen storage electrode containing metal bismuth already has a discharge capacity equivalent to the electrolytic oxidation reaction of metal bismuth by the time the oxygen scum generation reaction occurs. .

すなわち、金属ビスマスを備える水素吸蔵電極は、金属
ビスマスを備えない水素吸蔵電極と比較して、金属ビス
マスの放電容量だけ予め過剰に充電した場合と等価の状
態になり、正極の放電容量よりも負極の放電容量を大き
くすることが可能になる。
In other words, compared to a hydrogen storage electrode that does not include metal bismuth, a hydrogen storage electrode that includes metal bismuth is in a state equivalent to being overcharged by the discharge capacity of metal bismuth, and the negative electrode has a higher discharge capacity than the positive electrode. It becomes possible to increase the discharge capacity of.

Bi2O3が生成するまで過放電してから充電する場合
には、式(1)の反応の平衡電位が水素吸蔵電極の充電
反応が起こる電位よりも責であるから、先に式(1)の
逆反応が起こってから、水素吸蔵合金の充電が進行する
When over-discharging until Bi2O3 is generated and then charging, the equilibrium potential of the reaction in equation (1) is higher than the potential at which the charging reaction of the hydrogen storage electrode occurs, so first After the reaction occurs, charging of the hydrogen storage alloy progresses.

なお、金属銅や金属鉛を水素吸蔵電極に備える場合にも
、この電極をアルカリ電解液中でアノード分極すると、
酸素カス発生反応が起こるまでに金属鋼や金属鉛のアノ
ード酸化反応が起こる。しかし、これらの金属の溶解種
である2価の銅や2価の鉛はアルカリ電解液に対する溶
解度が高く、しかもこれらの金属をアノード酸化すると
、これらの溶解種が過飽和状態で溶解するので、その濃
度がいっそう高くなる。従って、密閉形アルカリ蓄電池
を過放電して、正極が過放電され、正極から水素ガス発
生反応が起こるような卑な電位になると、銅や鉛の高濃
度の溶解種が正極に樹枝状に電析して、正極と負極との
間に導電性の内部短絡経路が形成されることがある。ま
た、たとえ、たまたま過放電時に内部短絡経路が形成さ
れない場合があっても、電池を過放電してから充電する
際に、電解液中のこれらの金属の高濃度の溶解種が負極
に樹枝状に電析して、内部短絡経路が形成されることが
ある。このように、金属銅や金属鉛を水素吸蔵電極に備
えると、内部短絡の危険があるので好ましくない。
Furthermore, even when metal copper or metal lead is used as a hydrogen storage electrode, when this electrode is anodically polarized in an alkaline electrolyte,
An anodic oxidation reaction of metallic steel and metallic lead occurs before the oxygen scum generation reaction occurs. However, divalent copper and divalent lead, which are dissolved species of these metals, have high solubility in alkaline electrolytes, and when these metals are anodized, these dissolved species dissolve in a supersaturated state. The concentration becomes even higher. Therefore, if a sealed alkaline storage battery is over-discharged and the positive electrode is over-discharged to a base potential where a hydrogen gas generation reaction occurs, high-concentration dissolved species of copper and lead will form a dendritic charge on the positive electrode. As a result, an electrically conductive internal short path may form between the positive and negative electrodes. Additionally, even if by chance an internal short circuit path does not form during overdischarge, high concentrations of dissolved species of these metals in the electrolyte can cause dendritic formation at the negative electrode when the battery is overdischarged and then charged. may be electrolytically deposited to form internal short-circuit paths. In this way, it is not preferable to include metal copper or metal lead in the hydrogen storage electrode because there is a risk of internal short circuit.

しかし、アルカリ電解液中におけるビスマスの酸化物の
溶解度はきわめて低いので、金属銅や金属鉛を備える場
合と比較して、内部短絡が発生する危険がきわめて小さ
い。
However, since the solubility of bismuth oxide in an alkaline electrolyte is extremely low, the risk of an internal short circuit occurring is extremely small compared to when metal copper or metal lead is provided.

そして、金属ビスマスがアルカリ電解液中で酸化される
電位は、水素の平衡電位よりも責であるから、この水素
吸蔵電極がアルカリ電解液に接触しても、水素ガスが自
発的に発生することがない。
Since the potential at which bismuth metal is oxidized in an alkaline electrolyte is higher than the equilibrium potential of hydrogen, even if this hydrogen storage electrode comes into contact with an alkaline electrolyte, hydrogen gas will not be spontaneously generated. There is no.

したがって、負極の過剰放電容量は、金属ビスマスの粉
末の添加量を変えるだけで容易に制御できる。また、こ
の制御の際に、高温高圧の水素ガスを用いることがない
ので、作業上の危険が少ない。
Therefore, the excess discharge capacity of the negative electrode can be easily controlled by simply changing the amount of metal bismuth powder added. Furthermore, since high temperature and high pressure hydrogen gas is not used during this control, there is little danger in the work.

さらに、ビスマスが酸化されても窒素化合物や炭酸根を
生成することがない。また、本発明の電池では、負極の
放電容量を正極よりも過剰にするために、負極に金属ビ
スマスを備えてその作用を得ているのであるから、正極
は、非焼結式水酸化ニッケル電極だけではなく、焼結式
水酸化ニッケル電極を用いる場合にも同し作用が得られ
る。
Furthermore, even when bismuth is oxidized, it does not produce nitrogen compounds or carbonate radicals. In addition, in the battery of the present invention, in order to make the discharge capacity of the negative electrode more excessive than that of the positive electrode, metal bismuth is provided in the negative electrode to obtain this effect, so the positive electrode is a non-sintered nickel hydroxide electrode. In addition, the same effect can be obtained when using a sintered nickel hydroxide electrode.

実施例 本発明を、次の実施例によって、さらに詳しく説明する
EXAMPLES The present invention will be explained in more detail by the following examples.

[水素吸蔵電極A]  (本発明実施例)水素吸蔵合金
は、LaN i 5のLaをミツシュメタル(原料はバ
ストネサイト)相で置換し、N1をニッケル、コバルト
、アルミニウムおよびマンカンの混合物で置換して、そ
の成分元素か化学式111+1Ni3.55c00.7
sAI0.41’fn0.3になるように、アルゴン雰
囲気にした高周波誘導炉中て溶解し、これを鉄製のモー
ルドに流し込んで鋳込み、この鋳造物をショークラッシ
ャーで粗粉砕し、ふるい分けて、粒径が1mm以下の粗
粉末を得た。
[Hydrogen storage electrode A] (Embodiment of the present invention) The hydrogen storage alloy is made by replacing La in LaN i 5 with Mitshu metal (raw material is bastnaesite) phase, and replacing N1 with a mixture of nickel, cobalt, aluminum and mankan. So, is its component element chemical formula 111+1Ni3.55c00.7
Melt it in a high frequency induction furnace with an argon atmosphere to give an sAI of 0.41'fn 0.3, pour it into an iron mold and cast it, coarsely crush this casting with a show crusher, sieve it, and determine the particle size. A coarse powder having a diameter of 1 mm or less was obtained.

次に、この粗粉末をエタノールで湿潤させて、アルミナ
製のポットおよびボールを用いてボールミル粉砕をおこ
なった。そして、この粉末を真空乾燥してから分級し、
330メツシユの篩いを通過した水素吸蔵合金の微粉末
を得た。
Next, this coarse powder was moistened with ethanol and ground in a ball mill using an alumina pot and balls. This powder is then vacuum dried and classified.
A fine powder of a hydrogen storage alloy that passed through a 330 mesh sieve was obtained.

そして、この水素吸蔵合金粉末100重量部、ナヵライ
テスク社製の化学用試薬の金属ヒスマス粉末3重量部、
導電助剤たるファーネスブラック2重量部および結着剤
たるアクリル−スチレン共重合体からなる合成ラテック
ス2重量部(固形分)に水を加えてペースト状混合物を
調製し・、このペースト状混合物を、導電性支持体たる
厚さか0.09mmで開口率か約0.5のニッケルメッ
キした鉄製バンテンクメタルの両面に塗布し、乾燥して
から、プレスし、切断して、水素吸蔵電極Aを製作した
Then, 100 parts by weight of this hydrogen storage alloy powder, 3 parts by weight of metal hismuth powder of a chemical reagent manufactured by Nacalai Tesque,
A paste-like mixture is prepared by adding water to 2 parts by weight of a synthetic latex (solid content) consisting of 2 parts by weight of furnace black as a conductive agent and an acrylic-styrene copolymer as a binder, and this paste-like mixture is Coat it on both sides of a nickel-plated iron Bantenku metal with a thickness of 0.09 mm and an aperture ratio of about 0.5 as a conductive support, dry it, press it, and cut it to produce hydrogen storage electrode A. did.

水素吸蔵電極A1枚の大きさは、水素吸蔵合金付着部が
、高さ55mm、幅15mmであり、電極の厚さが0.
4闘である。そして、この電極1枚に含まれる水素吸蔵
合金の重量は、約1.25クラムであった。
The size of one hydrogen storage electrode A is such that the hydrogen storage alloy attached portion is 55 mm in height and 15 mm in width, and the thickness of the electrode is 0.5 mm.
It's 4 fights. The weight of the hydrogen storage alloy contained in one electrode was about 1.25 grams.

[水素吸蔵電極Bコ (従来例) 水素吸蔵電極Aにおける金属ビスマス粉末を用いること
なく、そのほかは水素吸蔵電極Aと同しにして、水素吸
蔵電極Bを製作した。電極の寸法および水素吸蔵合金の
担持量は、水素吸蔵電極Aとほぼ同じであった。
[Hydrogen storage electrode B (conventional example) Hydrogen storage electrode B was manufactured in the same manner as hydrogen storage electrode A without using the metal bismuth powder in hydrogen storage electrode A. The dimensions of the electrode and the amount of hydrogen storage alloy supported were almost the same as those of hydrogen storage electrode A.

[水素吸蔵電極Cコ(従来例) 水素吸蔵電極Aにおける金属ビスマス粉末のかわりに金
属亜鉛粉末を用い、そのほかは水素吸蔵電極Aと同じに
して、水素吸蔵電極Cを製作した。
[Hydrogen Storage Electrode C (Conventional Example) Hydrogen storage electrode C was manufactured using metal zinc powder instead of the metal bismuth powder in hydrogen storage electrode A, and using the same method as hydrogen storage electrode A in other respects.

電極の寸法および水素吸蔵合金の担持量は、水素吸蔵電
極Aとほぼ同じであった。
The dimensions of the electrode and the amount of hydrogen storage alloy supported were almost the same as those of hydrogen storage electrode A.

以上の3種類の水素吸蔵電極を、5.8Mの水酸化カリ
ウム電解液に浸漬して観察したところ、亜鉛粉末を備え
る水素吸蔵電極Cだけは、水素ガスの気泡を盛んに発生
した。このことから、亜鉛粉末を備える水素吸蔵電極で
は、水素ガスが電池系外に去って、負極の過剰放電容量
を制御することが困難であることがわかる。従って、水
素吸蔵電極Cは、以下の試験に用いなかった。
When the above three types of hydrogen storage electrodes were immersed in a 5.8M potassium hydroxide electrolyte and observed, only the hydrogen storage electrode C containing zinc powder generated a large amount of hydrogen gas bubbles. From this, it can be seen that in a hydrogen storage electrode including zinc powder, hydrogen gas leaves the battery system, making it difficult to control the excessive discharge capacity of the negative electrode. Therefore, hydrogen storage electrode C was not used in the following tests.

次に、密閉形アルカリ蓄電池を連続的に過放電して、そ
の電池内圧を測定するとともに負極の残存容量を測定し
、本発明による電池では、過放電の場合に負極が責に分
極することが抑制されて、電池内圧の上昇が防止されて
いることを実験によって確かめたので、その結果を説明
する。
Next, the sealed alkaline storage battery was continuously over-discharged, and the internal pressure of the battery was measured, as well as the remaining capacity of the negative electrode. We have confirmed through experiments that the increase in battery internal pressure is suppressed and the increase in battery internal pressure is prevented.The results will be explained below.

[密閉形アルカリ蓄電池アコ (本発明による電池)密
閉形アルカリ蓄電池アは、次のように構成した。
[Sealed alkaline storage battery A (Battery according to the present invention) Sealed alkaline storage battery A was constructed as follows.

負極には、水素吸蔵電極Aを4枚用いた。正極は、活物
質保持部の寸法が、高さ54mm・幅が14−5mm、
厚さが0.82mmで、水酸化ニッケルの充放電反応が
1電子反応に従うことを仮定した場合の放電容量が34
0rnAhの公知の焼結式水酸化ニッケル電極を3枚用
いた。なお、この正極板は、アルカリ電解液中で、常法
により充放電して化成したものであるから、充電されて
放電が困難なニッケル高級酸化物が既に正極板に含まれ
ている。セパレータには、厚さが0−12mmのポリサ
ルフォン不織布を用い、このセパレータ1枚でそれぞれ
の正極板1枚を包んで、正極板と負極板とを交互に積層
し、ニッケルメッキした鉄製の角柱状の電池ケースにこ
の極板群を挿入し、6Mの濃度の水酸化カリウム水溶液
1βに15gの水酸化リチウムを溶解したものを電解液
に用いて、これをこの電池ケースに注入してから封口し
、密閉形アルカリ蓄電池を製作した。
Four hydrogen storage electrodes A were used as negative electrodes. In the positive electrode, the dimensions of the active material holding part are 54 mm in height and 14-5 mm in width.
The thickness is 0.82 mm, and the discharge capacity is 34 mm assuming that the charge/discharge reaction of nickel hydroxide follows a one-electron reaction.
Three known sintered nickel hydroxide electrodes of 0rnAh were used. In addition, since this positive electrode plate is chemically formed by charging and discharging in an alkaline electrolyte using a conventional method, the positive electrode plate already contains nickel higher oxide, which is difficult to charge and discharge. A polysulfone non-woven fabric with a thickness of 0-12 mm is used for the separator, and each positive electrode plate is wrapped in one separator, and the positive electrode plate and negative electrode plate are laminated alternately. This electrode group was inserted into a battery case, and an electrolyte prepared by dissolving 15g of lithium hydroxide in 1β potassium hydroxide solution with a concentration of 6M was injected into the battery case and then sealed. , produced a sealed alkaline storage battery.

この電池は、約5に8/cIT12の内圧て作動する安
全弁を含めて、高さが66.2mm、幅カ月6.4mm
、厚さか5.6mmの外形寸法を有する角柱状のもので
ある。この電池の公称容量は、900mAhである。
This battery has a height of 66.2 mm and a width of 6.4 mm, including a safety valve that operates at an internal pressure of approximately 5 to 8/cIT12.
, and has a prismatic shape with an external dimension of 5.6 mm in thickness. The nominal capacity of this battery is 900mAh.

[密閉形アルカリ蓄電池イ] (従来例による電池)密
閉形アルカリ蓄電池イは、密閉形アルカリ蓄電池アにお
ける負極の水素吸蔵電極Aの代わりに水素吸蔵電極Bを
用い、そのほかの構成は密閉形アルカリ蓄電池アと同し
構成にした。
[Sealed alkaline storage battery A] (Conventional battery) Sealed alkaline storage battery A uses hydrogen storage electrode B instead of negative electrode hydrogen storage electrode A in sealed alkaline storage battery A, and the other configuration is that of a sealed alkaline storage battery. It has the same configuration as A.

以上の2つの密閉形アルカリ蓄電池を、lサイクル目は
、90mAの電流で15時間充電してから、180mA
の電流で、それぞれの電池の端子電圧が0.8Vになる
まで放電した。次に、180mAの電流で6時間充電し
、180mAの電流で端子電圧が0■になるまで放電し
、そのままの電流で、さらに1時間過放電する充放電サ
イクルを10回おこなった。最後の過放電の時には、電
池の内圧を測定した。これらの充放電は、25°Cてお
こなった。
The above two sealed alkaline storage batteries are charged at a current of 90 mA for 15 hours in the first cycle, and then charged at a current of 180 mA.
Each battery was discharged at a current of 0.8V until the terminal voltage of each battery reached 0.8V. Next, the battery was charged with a current of 180 mA for 6 hours, discharged with a current of 180 mA until the terminal voltage reached 0■, and then over-discharged with the same current for another 1 hour. A charge/discharge cycle was performed 10 times. At the final overdischarge, the internal pressure of the battery was measured. These charging and discharging were performed at 25°C.

この過放電の際の電池の内圧の経時変化を、第1図に示
す。第1図から、次のことかわかる。
FIG. 1 shows the change over time in the internal pressure of the battery during this overdischarge. From Figure 1, we can see the following.

すなわち、金属ヒスマス粉末を保持した本発明による密
閉形アルカリ蓄電池アは、過放電時の内圧か小さい値に
抑えられていて、安全弁の作動圧5kg/cm2に到達
することかなく、電池の密閉化か達成されている。一方
、金属ヒスマス粉末を保持しない従来例による密閉形ア
ルカリ蓄電池イは、過放電の進行にともなって内圧か高
くなり、内圧か安全弁の作動圧に到達している。
In other words, the sealed alkaline storage battery according to the present invention, which holds metallic hismuth powder, suppresses the internal pressure at the time of overdischarge to a small value, and does not reach the operating pressure of the safety valve of 5 kg/cm2, making it possible to seal the battery. or has been achieved. On the other hand, in a conventional sealed alkaline storage battery that does not hold metal hismuth powder, the internal pressure increases as overdischarge progresses, and the internal pressure reaches the operating pressure of the safety valve.

さらに、これらの2つの電池を過放電の後に解体し、負
極板を取り出してこれを試験極とし、次の条件で放電し
て、酸素カス発生に到るまでの放電容量を調べた。
Further, these two batteries were disassembled after overdischarging, the negative electrode plate was taken out, this was used as a test electrode, and the battery was discharged under the following conditions to examine the discharge capacity up to the generation of oxygen scum.

すなわち、上記の水素吸蔵合金各1枚を試験極とし、そ
の両側に、試験極との極間距離が2 + 5cmになる
ようにニッケル板を1枚ずつ配置して、これらを対極と
し、5.8Mの濃度の水酸化カリウム電解液を用いて、
フラッデットタイプの開放型の試験用セルを構成した。
That is, each of the hydrogen storage alloys described above was used as a test electrode, and one nickel plate was placed on each side of the hydrogen storage alloy so that the distance between the electrodes and the test electrode was 2 + 5 cm, and these were used as counter electrodes. Using a potassium hydroxide electrolyte with a concentration of .8M,
A flooded open test cell was constructed.

試験極の電位の測定には、酸化第2水銀電極を照合極に
用いた。
For measuring the potential of the test electrode, a mercuric oxide electrode was used as a reference electrode.

そして、これらの試験極を、充電することなく、25℃
において、45mAの電流で、酸化第2水銀電極基準で
+0.25Vまて放電したく酸素カス発生反応の平衡型
1)7は+〇、303Vであるから、+0.25Vては
酸素力スは発生しない。)。
These test electrodes were then heated to 25℃ without charging.
In this case, we want to discharge +0.25V with a current of 45mA based on the mercuric oxide electrode.The balanced type 1)7 of the oxygen gas generation reaction is +〇, 303V, so at +0.25V, the oxygen force is Does not occur. ).

その結果を第1表に示す。The results are shown in Table 1.

第1表 第1表から、本発明による畜閉形アルカリ蓄電池アは、
負極の残存容量が得られていることから、放電が正極の
容量で制限されていることかわかる。
Table 1 From Table 1, the closed alkaline storage battery A according to the present invention is as follows:
Since the residual capacity of the negative electrode is obtained, it can be seen that the discharge is limited by the capacity of the positive electrode.

一方、従来例による密閉形アルカリ蓄電池イては、負極
の残存容量が得られないので、放電を正極の容量で制限
することが困難であることがわかる。
On the other hand, in the conventional sealed alkaline storage battery, it is difficult to limit the discharge by the capacity of the positive electrode because the remaining capacity of the negative electrode cannot be obtained.

なお、上記の実施例では、水素吸蔵合金として特定の組
成のものを用いて説明したが、単にこの合金だけではな
く、その成分元素を変えた合金や、Laves相に属す
る水素吸蔵合金などを用いる場合にも、本発明は同様に
適用できる。
In the above embodiments, a specific composition was used as the hydrogen storage alloy, but not only this alloy, but also alloys with different constituent elements, hydrogen storage alloys belonging to the Laves phase, etc. may be used. The present invention is similarly applicable to these cases.

さらに、上記の実施例では、結着剤として作用する耐ア
ルカリ性高分子として、アクリル−スチレン共重合体か
らなる合成ラテックスを用いる場合を説明したが、単に
この耐アルカリ性高分子にととまらず、ポリオレフィン
樹脂、フッ素樹脂、メチルセルロース、ヒドロキシプロ
ピルセルロース、ポリビニルアルコールなどを用いる場
合にも、本発明が適用できる。
Furthermore, in the above example, a synthetic latex consisting of an acrylic-styrene copolymer was used as the alkali-resistant polymer that acts as a binder, but it is not limited to just this alkali-resistant polymer. The present invention is also applicable to cases where resins, fluororesins, methyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, etc. are used.

また、上記の実施例では、導電性支持体として、パンチ
ングメタルを用いる場合を説明したが、そのほかに、金
属網、エキスパンデッドメタル、金属発泡体や金属繊維
焼結体などの導電性多孔体などを用いる場合にも、本発
明が適用できる。
In addition, in the above embodiments, punched metal is used as the conductive support, but conductive porous materials such as metal mesh, expanded metal, metal foam, and metal fiber sintered body may also be used. The present invention can also be applied when using the following.

発明の効果 本発明は、水素吸蔵電極を負極に用いる密閉形アルカリ
蓄電池において、正極の放電が負極の放電よりも先に終
わるように構成して過放電時の電池の内圧上昇を効果的
に抑制する効果がある。しかも、その際に、高温高圧の
水素カス雰囲気のような危険な状態で作業する必要がな
く、アルカリ電解液中で水素ガスを発生しない固体金属
粉末を添加するので負極の過剰放電量の制御が容易であ
り、電池の自己放電等の性能に有害な窒素化合物や炭酸
根を生成することかなく、しかも、正極に焼結式水酸化
ニッケル電極を用いる場合にも適用できるという効果が
ある。
Effects of the Invention The present invention provides a sealed alkaline storage battery that uses a hydrogen storage electrode as the negative electrode, and is configured so that the discharge of the positive electrode ends before the discharge of the negative electrode, thereby effectively suppressing the rise in internal pressure of the battery during overdischarge. It has the effect of Moreover, there is no need to work in dangerous conditions such as high-temperature, high-pressure hydrogen scum atmospheres, and since solid metal powder that does not generate hydrogen gas is added to the alkaline electrolyte, it is possible to control the excessive discharge of the negative electrode. It is easy to use, does not generate nitrogen compounds or carbonate radicals that are harmful to the self-discharge performance of the battery, and has the advantage that it can be applied even when a sintered nickel hydroxide electrode is used as the positive electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:過放電の進行にともなう密閉形アルカリ蓄電池
の内圧の経時変化を示した図。 ア・・・本発明による電池 イ・・・従来例による電池 轄句に田(JE Lj )
Figure 1: A diagram showing the change over time in the internal pressure of a sealed alkaline storage battery as overdischarge progresses. A...Battery according to the present invention B...Battery according to the conventional example (JE Lj)

Claims (1)

【特許請求の範囲】[Claims] 金属ビスマスの粉末を水素吸蔵合金粉末とともに導電性
支持体に保持してなることを特徴とする水素吸蔵電極。
A hydrogen storage electrode comprising bismuth metal powder held on a conductive support together with hydrogen storage alloy powder.
JP2241528A 1990-09-11 1990-09-11 Sealed alkaline storage battery Expired - Lifetime JP3057737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2241528A JP3057737B2 (en) 1990-09-11 1990-09-11 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2241528A JP3057737B2 (en) 1990-09-11 1990-09-11 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH04121958A true JPH04121958A (en) 1992-04-22
JP3057737B2 JP3057737B2 (en) 2000-07-04

Family

ID=17075693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2241528A Expired - Lifetime JP3057737B2 (en) 1990-09-11 1990-09-11 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3057737B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6049988B2 (en) * 2011-07-08 2016-12-21 技研金物株式会社 Case lock

Also Published As

Publication number Publication date
JP3057737B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
CN112970134A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery comprising same
JP3079303B2 (en) Activation method of alkaline secondary battery
JPH0855618A (en) Sealed alkaline storage battery
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP3200822B2 (en) Nickel-metal hydride storage battery
JPH04121958A (en) Metal hydride electrode
JP3070081B2 (en) Sealed alkaline storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP2926732B2 (en) Alkaline secondary battery
JP3399265B2 (en) Alkaline battery with nickel positive electrode and method of activating the same
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPH028419B2 (en)
JP3482478B2 (en) Nickel-metal hydride storage battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP2861152B2 (en) Lead oxide-hydrogen storage battery and its manufacturing method
JPH04328252A (en) Hydrogen storage alloy electrode
JPH05144432A (en) Electrode with hydrogen storage alloy
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JP3316687B2 (en) Nickel-metal hydride storage battery
JPH05225974A (en) Hydrogen storage alloy electrode