JPH04102374A - Insulating gate type effect transistor - Google Patents
Insulating gate type effect transistorInfo
- Publication number
- JPH04102374A JPH04102374A JP22091390A JP22091390A JPH04102374A JP H04102374 A JPH04102374 A JP H04102374A JP 22091390 A JP22091390 A JP 22091390A JP 22091390 A JP22091390 A JP 22091390A JP H04102374 A JPH04102374 A JP H04102374A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- polycrystalline silicon
- effect transistor
- junction
- silicon layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 15
- 230000005669 field effect Effects 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、MOSFETの如き絶縁ゲート型電界効果ト
ランジスタに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insulated gate field effect transistor such as a MOSFET.
[従来の技術]
第5図は、従来の多結晶シリコンゲート・MOSFET
の断面構造を示すもので、Nチャネル型のノーマリオン
型MO3FETを示す0図において、lはN型基板、2
はソース、3はドレイン、4はN゛多結晶シリコンゲー
ト、5はゲート酸化膜、6はチャネル、7はソース電極
、8はドレイン電極である。[Prior art] Figure 5 shows a conventional polycrystalline silicon gate MOSFET.
In Figure 0, which shows an N-channel normally-on MO3FET, l is an N-type substrate, 2 is a
3 is a source, 3 is a drain, 4 is an N polycrystalline silicon gate, 5 is a gate oxide film, 6 is a channel, 7 is a source electrode, and 8 is a drain electrode.
[発明が解決しようとする課題]
ところで、MOSFETのゲート電極は、多結晶シリコ
ンが用いられる以前はアルミニウムが用いられており、
多結晶ノリコンは金属(アルミニウム)の代用としての
機能のみが追求され、半導体としての特性については考
慮されていなかったのが実情である。[Problems to be Solved by the Invention] By the way, aluminum was used for the gate electrode of MOSFET before polycrystalline silicon was used.
The reality is that polycrystalline Noricon was only pursued as a substitute for metal (aluminum), and its properties as a semiconductor were not considered.
本発明は、上記事由に鑑みなされたもので、その目的と
するところは、ゲート電圧の正負により伝達コンダクタ
ンスが変化する絶縁ゲート型電界効果トランジスタを提
供することにある。The present invention has been made in view of the above-mentioned reasons, and an object thereof is to provide an insulated gate field effect transistor whose transfer conductance changes depending on whether the gate voltage is positive or negative.
[課題を解決するための手段]
本発明は上記課題を解決するために、ゲート電極を不純
物を拡散した多結晶ノリコンで構成した絶縁ゲート型電
界効果トランジスタにおいて、前記ゲート電極をPN接
合が形成される多結晶シリコン層で構成したことを特徴
とする。[Means for Solving the Problems] In order to solve the above problems, the present invention provides an insulated gate field effect transistor in which a gate electrode is made of polycrystalline silicon with impurities diffused therein, in which a PN junction is formed in the gate electrode. It is characterized by being composed of a polycrystalline silicon layer.
[作 用]
本発明によれば、多結晶ノリコンゲートにPN接合が形
成されるため、ゲート電圧の正負によりPN接合での空
間領域幅が変化し、MO3構造での電圧配分が変化する
ため、伝達コンダクタンスがゲート電圧の正負により変
化する。[Function] According to the present invention, since a PN junction is formed in the polycrystalline Noricon gate, the spatial region width at the PN junction changes depending on the positive or negative gate voltage, and the voltage distribution in the MO3 structure changes. , the transfer conductance changes depending on whether the gate voltage is positive or negative.
[実施例]
第1図は本発明の一実施例を示す断面図で、前記従来例
と異なる点は、ゲート電極4をPN接合が形成される多
結晶シリコン層で構成するため、N゛多結晶シリコン層
4aにP゛多結晶シリコン層4bを形成したことで、他
の構成は前記従来例と同様であるので、同等構成に同一
符号を付すことにより説明を省略する。[Embodiment] FIG. 1 is a cross-sectional view showing an embodiment of the present invention. The difference from the conventional example is that the gate electrode 4 is composed of a polycrystalline silicon layer in which a PN junction is formed, so that the N. Since the other structures are the same as those of the prior art example except that the P polycrystalline silicon layer 4b is formed on the crystalline silicon layer 4a, the explanation will be omitted by assigning the same reference numerals to the same structures.
第2図(a)、 (b)は、それぞれ従来例と上記実施
例に係るMO3構造のエネルギー図を仕事関数のみに着
目して模式的に表現したもので、PN接合の形成された
多結晶シリコンゲートには、第2図0))に示すように
空乏層が形成される。Figures 2 (a) and (b) are schematic representations of the energy diagrams of the MO3 structures according to the conventional example and the above example, respectively, focusing only on the work function. A depletion layer is formed in the silicon gate as shown in FIG. 2 0)).
多結晶シリコンゲートにPN接合が形成されるため、ゲ
ート電圧の正負によりPN接合の空乏層幅は変化するの
で、MO3構造でのそれぞれの電圧配分は異なる。従っ
て、第3図に示すように、従来の伝達コンダクタンスg
、のゲート酸化膜vGに対する変化は、同図(司で与え
られるような特性を示すのに対し、上記実施例に係る構
成では、ゲート電圧vGの正負により、伝達コンダクタ
ンスg、のゲート電圧■。に対する変化が異なっている
。この特性は同図(b)のように示される。ただし、第
3図では模式的な例を示した。Since a PN junction is formed in the polycrystalline silicon gate, the width of the depletion layer of the PN junction changes depending on whether the gate voltage is positive or negative, so the voltage distribution in each MO3 structure is different. Therefore, as shown in Fig. 3, the conventional transfer conductance g
, with respect to the gate oxide film vG, exhibits the characteristics as given by the graph in FIG. This characteristic is shown in FIG. 3(b). However, FIG. 3 shows a schematic example.
以上の特性は、第4図に示す模式的なエネルギー図によ
り説明される。すなわち、同図(alはゲート電圧■6
が正のとき、同図[有])はゲート電圧■。The above characteristics are explained using a schematic energy diagram shown in FIG. In other words, in the same figure (al is the gate voltage ■6
When is positive, the gate voltage (in the same figure) is ■.
が負の場合である。ゲート電圧■、の正負により電圧配
分が異なっている。また、空乏層幅W0も異なる。This is the case when is negative. The voltage distribution differs depending on whether the gate voltage (■) is positive or negative. Furthermore, the depletion layer width W0 is also different.
[発明の効果]
本発明は上記のように、多結晶シリコンゲートにPN接
合が形成されるようにしたことにより、ゲート電圧の正
負により伝達コンダクタンスが変化する絶縁ゲート型電
界効果トランジスタを提供できた。[Effects of the Invention] As described above, the present invention provides an insulated gate field effect transistor in which the transfer conductance changes depending on the positive or negative gate voltage by forming a PN junction in the polycrystalline silicon gate. .
第1図は本発明の一実施例を示す断面図、第2図(a)
、 (t)lはそれぞれ従来例と上記実施例に係るMO
5構造のエネルギー図、第3圓(a)、 (b)はそれ
ぞれ従来例と上記実施例に係る伝達コンダクタンスとゲ
ート電圧の関係を示す図、第4図(a)、 (blはそ
れぞれ従来例と上記実施例に係るMO3構造のエネルギ
ー図を、ゲート電圧が正の場合と負の場合について示し
た図、第5図は従来例を示す断面図である。
1・・・基板、2・・・ソース、3・・・ドレイン、4
・・・多結晶ノリコンゲート、5・・・ゲート酸化膜、
6・・・チャネル、7・・・ソース電極、8・・・ドレ
イン電極。
第3図
(a)
(b)Figure 1 is a sectional view showing one embodiment of the present invention, Figure 2 (a)
, (t)l are the MOs according to the conventional example and the above embodiment, respectively.
5 structure, Figures 3 (a) and (b) are diagrams showing the relationship between transfer conductance and gate voltage for the conventional example and the above embodiment, respectively, and Figures 4 (a) and (bl are for the conventional example, respectively). FIG. 5 is a cross-sectional view showing a conventional example. 1...Substrate, 2...・Source, 3...Drain, 4
... Polycrystalline Noricon gate, 5... Gate oxide film,
6... Channel, 7... Source electrode, 8... Drain electrode. Figure 3 (a) (b)
Claims (1)
構成した絶縁ゲート型電界効果トランジスタにおいて、
前記ゲート電極をPN接合が形成される多結晶シリコン
層で構成したことを特徴とする絶縁ゲート型電界効果ト
ランジスタ。(1) In an insulated gate field effect transistor whose gate electrode is made of polycrystalline silicon with impurity diffused,
An insulated gate field effect transistor characterized in that the gate electrode is made of a polycrystalline silicon layer in which a PN junction is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22091390A JPH04102374A (en) | 1990-08-21 | 1990-08-21 | Insulating gate type effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22091390A JPH04102374A (en) | 1990-08-21 | 1990-08-21 | Insulating gate type effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04102374A true JPH04102374A (en) | 1992-04-03 |
Family
ID=16758502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22091390A Pending JPH04102374A (en) | 1990-08-21 | 1990-08-21 | Insulating gate type effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04102374A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5371396A (en) * | 1993-07-02 | 1994-12-06 | Thunderbird Technologies, Inc. | Field effect transistor having polycrystalline silicon gate junction |
US5932919A (en) * | 1993-12-07 | 1999-08-03 | Siemens Aktiengesellschaft | MOSFETs with improved short channel effects |
JP2012191089A (en) * | 2011-03-13 | 2012-10-04 | Seiko Instruments Inc | Semiconductor device and reference voltage generating circuit |
-
1990
- 1990-08-21 JP JP22091390A patent/JPH04102374A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5371396A (en) * | 1993-07-02 | 1994-12-06 | Thunderbird Technologies, Inc. | Field effect transistor having polycrystalline silicon gate junction |
US5438007A (en) * | 1993-07-02 | 1995-08-01 | Thunderbird Technologies, Inc. | Method of fabricating field effect transistor having polycrystalline silicon gate junction |
US5932919A (en) * | 1993-12-07 | 1999-08-03 | Siemens Aktiengesellschaft | MOSFETs with improved short channel effects |
JP2012191089A (en) * | 2011-03-13 | 2012-10-04 | Seiko Instruments Inc | Semiconductor device and reference voltage generating circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW283263B (en) | Fabrication method of semiconductor device and field effect transistor | |
JPS5623771A (en) | Semiconductor memory | |
KR840001605B1 (en) | Thin film transistor | |
US3631312A (en) | High-voltage mos transistor method and apparatus | |
US5548152A (en) | Semiconductor device with parallel-connected diodes | |
JPS6159666B2 (en) | ||
JPH04102374A (en) | Insulating gate type effect transistor | |
JPS63261880A (en) | Manufacture of thin film transistor | |
US4409607A (en) | Normally-on enhancement mode MOSFET with negative threshold gating | |
JPS56110264A (en) | High withstand voltage mos transistor | |
JPH01218070A (en) | Mos transistor | |
JPH0740607B2 (en) | Method of manufacturing thin film transistor | |
JPS63237571A (en) | Manufacture of thin film transistor | |
JPS61105868A (en) | Semiconductor device | |
JPS62265752A (en) | Inverter | |
JPS5898970A (en) | Thin film mis transistor | |
JPS6088472A (en) | Insulated gate type fet | |
KR950001900A (en) | New electrode structure formation method using amorphous silicon and polycrystalline silicon | |
JPS5913370A (en) | Semiconductor device | |
JPS6355976A (en) | Field effect semiconductor device | |
JPS62101077A (en) | Vertical insulated gate type field effect semiconductor device | |
JPS5673468A (en) | Mos type semiconductor device | |
JPS63273361A (en) | Mos field-effect transistor | |
JPH01270273A (en) | Semiconductor device | |
JPS61289667A (en) | Semiconductor device and manufacture thereof |