JPS62265752A - Inverter - Google Patents

Inverter

Info

Publication number
JPS62265752A
JPS62265752A JP61110069A JP11006986A JPS62265752A JP S62265752 A JPS62265752 A JP S62265752A JP 61110069 A JP61110069 A JP 61110069A JP 11006986 A JP11006986 A JP 11006986A JP S62265752 A JPS62265752 A JP S62265752A
Authority
JP
Japan
Prior art keywords
film
fet
protective film
threshold voltage
metal gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61110069A
Other languages
Japanese (ja)
Inventor
Koji Haniwara
甲二 埴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP61110069A priority Critical patent/JPS62265752A/en
Publication of JPS62265752A publication Critical patent/JPS62265752A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0883Combination of depletion and enhancement field effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To simplify a process by forming a protective film between a metal gate and a gate insulating film in an MOSFET having positive threshold voltage, and eliminating a protective film in an MOSFET having negative threshold voltage to differentiate the threshold voltages without varying the impurity distribution of the channel of the FETs. CONSTITUTION:Since a protective film 5 for preventing a metal film from damaging at the time of forming the film is interposed directly under the metal gate electrode of an enhancement FET in case of N-channel type, large boundary level in an Si-SiO2 boundary is suppressed. Since the metal gate electrode 3 of a depression FET is formed thereunder directly with a gate oxide film 4, a large boundary level is generated at the Si-SiO2 boundary, a positive carrier is trapped to shift a threshold voltage in a negative direction. Thus, even if the impurity distribution of the channel part is the same, the threshold voltages of the enhancement and depression FETs can be differentiated to each other.

Description

【発明の詳細な説明】 E産業上の利用分野〕 本発明は半導体基板に形成されたE/DMO8FETに
よるインバータに関するものであり、特に金属ゲート雷
+1M03FETによるインバータに関するものである
Detailed Description of the Invention Field of Industrial Application] The present invention relates to an inverter using E/DMO8FETs formed on a semiconductor substrate, and particularly relates to an inverter using metal gate lightning+1M03FETs.

[従来の技術〕 E / D (Enhancement/Deplet
ionHJl成のM O5FETは第2図、第3図に示
すように構成されている。図はNチャンネル型を示し、
P型半導体基板6には3つのN領域7.8.9が形成さ
れ、それぞれドレイン領域、島領域、及びソース領域に
対応する。領域7と島領域8との間、及びvIIO2島
領IIi!8との間の基板表面にはそれぞれエンハンス
メン1−M08FE王のゲート酸化膜2、及びディプレ
ッションMO8FETのゲート酸化膜4が形成されてい
る。そして第2図にあっては、各ゲート酸化膜2.4上
にエンハンスメント、及びディプレッションMO8F 
E Tのゲート電1乍1.3が直接形成され、第3図に
あってはゲート酸化1漠2.4上にダメージ保護膜5.
6が形成され、その表面にゲート電極1.3が形成され
る。この保護膜5.6はゲート電極形成時のゲート耐1
ヒ腰を保護するために設けられている。またグーl−電
惜3.4はアルミニウム(Aりを主成分とする金R?I
iであり、蒸着法、スパッタリング法などで同時に形成
される。
[Conventional technology] E/D (Enhancement/Deplet
The ionHJ1 MO5FET is constructed as shown in FIGS. 2 and 3. The figure shows an N-channel type.
Three N regions 7.8.9 are formed in the P-type semiconductor substrate 6, corresponding to a drain region, an island region, and a source region, respectively. Between area 7 and island area 8, and vIIO2 island area IIi! A gate oxide film 2 of the enhancer 1-M08FE and a gate oxide film 4 of the depletion MO8FET are formed on the surface of the substrate between the transistors 8 and 8, respectively. In FIG. 2, enhancement and depletion MO8F are formed on each gate oxide film 2.4.
The gate electrodes 1 to 1.3 of the ET are directly formed, and in FIG. 3, a damage protection film 5.
6 is formed, and a gate electrode 1.3 is formed on the surface thereof. This protective film 5.6 has a gate resistance of 1 when forming the gate electrode.
It is provided to protect the lower back. In addition, Goo L-Dengai 3.4 is aluminum (gold R?I whose main component is A).
i, and are formed simultaneously by a vapor deposition method, a sputtering method, or the like.

このゲート電極3.4の形成工程において、シリコン基
板6とゲート酸化膜との境界、即らS。
In the step of forming the gate electrode 3.4, the boundary between the silicon substrate 6 and the gate oxide film, ie, S.

一8i○2界面に界面単位を発生させるので、第2図の
インバータにあっては、界面単位低減のために、一般に
△1を主成分とする金属膜(ゲート電極)1.3形成後
450℃以上、30分以上のシンタ一工程を伴なう。ま
た第3図の溝成にあっては、ダメージ保護膜5.6はゲ
ート電極1.3形成時に6けるダメージ発生の保護膜で
あり、この保護膜5.6によりS、−8iO2界面での
界! 面単位の発生が抑制される。
Since an interface unit is generated at the -8i○2 interface, in order to reduce the interface unit in the inverter shown in FIG. It involves a sintering process at a temperature of 30 minutes or more at a temperature of 30 minutes or more. In addition, in the groove formation shown in FIG. 3, the damage protection film 5.6 is a protection film for damage occurring during formation of the gate electrode 1.3, and this protection film 5.6 prevents damage at the S, -8iO2 interface. Kai! Occurrence on a per-plane basis is suppressed.

かかる従来のMOSインバータの各FETにおいては、
そのしきい値電圧は互いに異なる値である必要があるた
めに、何等かの方法により各FETのチャンネル領域の
不純物密度を変化させている。例えば、P″基板よりエ
ンハンスメント型FETの閾値電圧が決定される場合に
は、ディブレンジョン型FETのチャンネル領域には、
ドナーとなるイオンをチアンネルドープすることにより
P型の不純物密度を下げるか、表面部分だけN型にして
いる。
In each FET of such a conventional MOS inverter,
Since the threshold voltages need to be different values, the impurity density in the channel region of each FET is changed by some method. For example, when the threshold voltage of an enhancement type FET is determined from the P'' substrate, the channel region of the debension type FET is
Either the P-type impurity density is lowered by channel-doping donor ions, or only the surface portion is made N-type.

[発明が解決しようとする問題点] かかる従来のインバータは、上述の如く閾値電圧が互い
に異なるように設定する必要があり、従って、例えばチ
ャンネルドープによって各トランジスタのチャンネル領
域の不純物密度を互いに異なるようにしなければならず
、プロセスか複雑になる。
[Problems to be Solved by the Invention] In such conventional inverters, it is necessary to set the threshold voltages to be different from each other as described above, and therefore, for example, by channel doping, it is necessary to set the impurity density of the channel region of each transistor to be different from each other. The process becomes complicated.

[問題点を解決するための手段1 この光明はかかる従来の問題点に鑑み成されたものであ
り、金属ゲート下に保護膜を設けたり、ゲート絶縁膜に
直接ゲート金属膜を設けることにヨリ、E / D M
 OS V4造ノインバータの各FETのチャンネル部
分の不純物分布を異ならしめることなく、互いに異なる
閾値電圧かえられるインバータを提供することを目的と
している。
[Means for solving the problem 1 This light was created in view of the problems of the conventional technology, and it does not involve providing a protective film under the metal gate or providing a gate metal film directly on the gate insulating film. ,E/DM
The object of the present invention is to provide an inverter in which different threshold voltages can be changed without making the impurity distribution in the channel portion of each FET of the OS V4 inverter different.

]発明の実施例; 以下この光明の実施例を図面と共に説明する。] Examples of the invention; Examples of this light will be described below with reference to the drawings.

第1図におけるこの発明の実施例はNチアンネル型のM
 OS F E Tによるインバータを示し、1はエン
ハンスメントFETの金属ゲート電極、2はエンハンス
メントFETのゲート酸化膜、5はエンハンスメントF
ETの金属ゲート電極形成時のダメージ保護膜、3はデ
ィプレッションFETの金1属ゲート雷唖、4はディプ
レッションFETゲート酸化膜である。
The embodiment of the invention shown in FIG.
This shows an inverter using OS FET, where 1 is the metal gate electrode of the enhancement FET, 2 is the gate oxide film of the enhancement FET, and 5 is the enhancement FET.
3 is a damage protection film when forming a metal gate electrode of an ET; 3 is a metal gate cap of a depletion FET; and 4 is a depletion FET gate oxide film.

かかる溝成において1.\チアンネル型の場合、エンハ
ンスメントFETの金1属ゲート電橘の直下には、この
金属膜形成時のダメージを防止するための保護膜(例え
(ま200A程度のS13\4膜や多結晶シリコンII
り5が介在しているために、5i−8iO2界面での大
きな界面単位の発生が抑制される。一方、ディプレッシ
ョンFETの金属ゲート電型3はその下に直接ゲート酸
化膜4が形成され、保護膜は存在しないのでS、−S、
O2覆 界面では大きな界面準位が発生し、正のキャリアがトラ
ップされて閾(直電圧を負の方向にシフ1−させる。こ
のため、チセンネル部の不純物分布が同じであっても、
エンハンスメンl−F E TとデイブレッシミンFE
T戸の閾1直電圧を互いに異ならしめることができる。
In such groove formation, 1. In the case of a channel type, a protective film (for example, S13\4 film of about 200A or polycrystalline silicon II
Because of the presence of the 5i-8iO2 interface, the generation of large interfacial units at the 5i-8iO2 interface is suppressed. On the other hand, in the metal gate type 3 of the depletion FET, the gate oxide film 4 is formed directly under it, and there is no protective film, so S, -S,
A large interface state is generated at the O2-covered interface, trapping positive carriers and shifting the threshold (direct voltage) in the negative direction.For this reason, even if the impurity distribution in the chisennel part is the same,
Enhancement l-FET and Day Blessingmin FE
The threshold 1 direct voltages of the T doors can be made different from each other.

なお、ゲート電極としての金属暎形成後450℃、30
分以上程度の熱!18浬を加えると、界面準位のほとん
どが消滅する恐れがあるので、金属税形成後の熱処理と
しては、400〜440’C110分〜180分程度が
望ましい。
In addition, after forming the metal layer as a gate electrode, it was heated at 450°C and 30°C.
Heat for more than a minute! If 18 min is added, most of the interface states may disappear, so the heat treatment after forming the metal layer is preferably about 400 to 440'C for 110 to 180 minutes.

また上記実施例では、Nチセンネル型MO8FETによ
るインバータについて説明したが、Pチアンネル型であ
ってもよいこと(ま勿論である。この場合には、エンハ
ンスメント型FETのゲーI・電極には保護膜を設けず
に、ディプレッジコン型FETのゲート電極下に保護膜
を設ける。
In addition, in the above embodiment, an inverter using an N channel type MO8FET was explained, but it is also possible to use a P channel type (of course. Instead, a protective film is provided under the gate electrode of the diplegcon type FET.

[発明の効果] 以上のようにこの発明によれは、E、’D〜108FE
Tの一方の全屈ゲート電り下のみに金冗配保形成時のダ
メージ保護膜を形成したので、各FE王のチャンネル部
分の不純物分布を変化させることなく閾値電圧を異なら
しめることができ、プロセスが簡単となる。
[Effect of the invention] As described above, according to this invention, E, 'D~108FE
Since a damage protection film was formed only under the total gate voltage of one side of T, the threshold voltage can be made different without changing the impurity distribution in the channel part of each FE king. The process becomes easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかるインバータの実施例を示す断
面図、第2図、第3図はそれぞれ従来のインバータを示
す断面図である。 1.3・・・金属ゲーj−電極 2.4・・・ゲート酸化膜 5・・・ダメージ保護膜 6・・・基板 パイオニアビデフr体八云社 第1図 第2図 第3図
FIG. 1 is a sectional view showing an embodiment of an inverter according to the present invention, and FIGS. 2 and 3 are sectional views showing conventional inverters. 1.3...Metal gate electrode 2.4...Gate oxide film 5...Damage protection film 6...Substrate Pioneer Bidefr Body Yaunsha Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に形成された複数の金属ゲート電極MOSF
ETにより構成されるインバータであって、閾値電圧が
より正なるMOSFETには金属ゲートとゲート絶縁膜
間に保護膜を設け、閾値電圧がより負のMOSFETに
は前記保護膜を設けないようにしたことを特徴とするイ
ンバータ。
Multiple metal gate electrodes MOSF formed on a semiconductor substrate
In an inverter configured with an ET, a protective film is provided between the metal gate and the gate insulating film for MOSFETs whose threshold voltage is more positive, and the protective film is not provided for MOSFETs whose threshold voltage is more negative. An inverter characterized by:
JP61110069A 1986-05-14 1986-05-14 Inverter Pending JPS62265752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61110069A JPS62265752A (en) 1986-05-14 1986-05-14 Inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61110069A JPS62265752A (en) 1986-05-14 1986-05-14 Inverter

Publications (1)

Publication Number Publication Date
JPS62265752A true JPS62265752A (en) 1987-11-18

Family

ID=14526264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61110069A Pending JPS62265752A (en) 1986-05-14 1986-05-14 Inverter

Country Status (1)

Country Link
JP (1) JPS62265752A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164755A (en) * 1988-12-16 1990-06-25 Tokuhito Shibata Concrete improver and improvement of concrete
WO2007004258A1 (en) * 2005-06-30 2007-01-11 Spansion Llc Semiconductor device and fabrication method thereof
JP2007524992A (en) * 2003-03-27 2007-08-30 フリースケール セミコンダクター インコーポレイテッド Method for forming a dual metal gate device
WO2010018070A1 (en) * 2008-08-12 2010-02-18 International Business Machines Corporation Metal-gate high-k reference structure
US8178401B2 (en) 2005-08-25 2012-05-15 Freescale Semiconductor, Inc. Method for fabricating dual-metal gate device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164755A (en) * 1988-12-16 1990-06-25 Tokuhito Shibata Concrete improver and improvement of concrete
JP2007524992A (en) * 2003-03-27 2007-08-30 フリースケール セミコンダクター インコーポレイテッド Method for forming a dual metal gate device
WO2007004258A1 (en) * 2005-06-30 2007-01-11 Spansion Llc Semiconductor device and fabrication method thereof
JPWO2007004258A1 (en) * 2005-06-30 2009-01-22 スパンション エルエルシー Semiconductor device and manufacturing method thereof
US8076753B2 (en) 2005-06-30 2011-12-13 Spansion Llc Semiconductor device and method of manufacturing the same
US8642422B2 (en) 2005-06-30 2014-02-04 Spansion Llc Method of manufacturing a semiconductor device
US8698280B2 (en) 2005-06-30 2014-04-15 Spansion Llc Capacitive element using MOS transistors
US8178401B2 (en) 2005-08-25 2012-05-15 Freescale Semiconductor, Inc. Method for fabricating dual-metal gate device
WO2010018070A1 (en) * 2008-08-12 2010-02-18 International Business Machines Corporation Metal-gate high-k reference structure
US7951678B2 (en) 2008-08-12 2011-05-31 International Business Machines Corporation Metal-gate high-k reference structure
US8513739B2 (en) 2008-08-12 2013-08-20 International Business Machines Corporation Metal-gate high-k reference structure

Similar Documents

Publication Publication Date Title
KR920005514B1 (en) Semiconductor device
JPS62265752A (en) Inverter
JPH01158775A (en) Thin film transistor and its manufacture
US4151538A (en) Nonvolatile semiconductive memory device and method of its manufacture
JPS61150280A (en) Vertical mos transistor
JPH0379035A (en) Mos transistor and manufacture thereof
JPS62104172A (en) Manufacture of semiconductor device
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JPH0740607B2 (en) Method of manufacturing thin film transistor
JPS61274366A (en) High dielectric strength semiconductor device
JP2547729B2 (en) High voltage power integrated circuit
GB2179494A (en) Protection structure
JPS60102770A (en) Semiconductor device
JPS6211016Y2 (en)
JPH02156572A (en) Mos type semiconductor device
JPH04162477A (en) Thin film transistor
JPH0244734A (en) Manufacture of mis transistor
JPS6091676A (en) Mos semiconductor device
JP2863041B2 (en) Switching element
JPH02252269A (en) Semiconductor device
JPS59214263A (en) Double diffusion type insulated gate field-effect transistor
JPS63281470A (en) Semiconductor device
JPS61274365A (en) Mos type field effect transistor
JPS5837989B2 (en) field effect semiconductor device
JPS6395658A (en) Semiconductor device