JPH0244734A - Manufacture of mis transistor - Google Patents

Manufacture of mis transistor

Info

Publication number
JPH0244734A
JPH0244734A JP19519688A JP19519688A JPH0244734A JP H0244734 A JPH0244734 A JP H0244734A JP 19519688 A JP19519688 A JP 19519688A JP 19519688 A JP19519688 A JP 19519688A JP H0244734 A JPH0244734 A JP H0244734A
Authority
JP
Japan
Prior art keywords
region
mask
gate electrode
forming
mask layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19519688A
Other languages
Japanese (ja)
Inventor
Masataka Shingu
新宮 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP19519688A priority Critical patent/JPH0244734A/en
Publication of JPH0244734A publication Critical patent/JPH0244734A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve punchthrough-breakdown strength by forming a third region with a gate electrode as a mask, then forming a first thin mask layer at least on the sidewall of the electrode in a direction for extending a semiconductor region forms a second mask layer to form a first region, and then forming a second region. CONSTITUTION:An SiO2 film 22 is deposited on a whole Si substrate 11, and P<-> ions are implanted to form an n<-> type region 16 in a p<-> type region 21. In this case, since the film 22 exists, the length of the mask for the ion implantation is longer by the thickness of the film 22 than that of only a gate electrode 13 of a mask at the time of forming the region 21 at both sides of the electrode 13. Then, an SiO2 film 23 is again deposited on the whole substrate 11, the films 22, 23 are etched by RIE, sidewalls 14 of the films 22, 23 are formed, and with the electrode 13 and the sidewall 14 as masks P<-> ions are implanted to form an n<+> type region 15. Thus, the width of a third region can be effectively obtained in a direction for extending a semiconductor region to enhance punchthrough-breakdown strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、少なくともドレイン領域が、第1導電型の不
純物の濃度が相対的に高い第1の領域と相対的に低い第
2の領域とからなっているMISトランジスタの製造方
法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides at least a drain region having a first region having a relatively high concentration of impurities of the first conductivity type and a second region having a relatively low concentration of impurities of the first conductivity type. The present invention relates to a method for manufacturing an MIS transistor comprising:

〔発明の概要〕[Summary of the invention]

本発明は、上記の様なMISトランジスタの製造方法に
おいて、ゲート電極をマスクにして第3の領域を形成し
た後、第1の領域を形成するための第2のマスク層より
も半導体領域の表面の広がる方向へ薄い第1のマスク層
をゲート電極の少なくとも側壁部に形成してから第2の
領域を形成することによって、パンチスルー耐圧及び信
頼性の高いM■Sトランジスタを高い歩留で”M a 
t ルコとができる様にしたものである。
The present invention provides a method for manufacturing an MIS transistor as described above, in which a third region is formed using the gate electrode as a mask, and then the surface of the semiconductor region is lower than the second mask layer for forming the first region. By forming a thin first mask layer on at least the sidewalls of the gate electrode in the direction in which the gate electrode spreads, and then forming the second region, it is possible to manufacture M■S transistors with high punch-through breakdown voltage and high reliability at a high yield. Ma
It was made so that it could be done with t.

〔従来の技術〕[Conventional technology]

MISトランジスタの短チヤネル化によるホットキャリ
ア効果を低減させるものとして、LDDトランジスタが
考えられている。しかし、このLDDトランジスタを更
に短チャンネル化しようとすると、ドレイン領域からの
空乏層がソース領域まで到達し易く、パンチスルーが発
生し易い。
LDD transistors are considered to reduce the hot carrier effect caused by short channel MIS transistors. However, if an attempt is made to make the channel of this LDD transistor even shorter, the depletion layer from the drain region tends to reach the source region, which tends to cause punch-through.

この対策の一つとして、第2図に示す様なポケットLD
D (PLDD)構造のトランジスタが提案されている
(例えば、特開昭61−191070号公報)。
As one of the countermeasures, a pocket LD as shown in Figure 2 is available.
A transistor having a D (PLDD) structure has been proposed (for example, Japanese Patent Laid-Open No. 191070/1983).

このnチャネルPLDDI−ランジスタではp型のSi
基本11上にゲート絶縁膜であるSiO□膜12膜形2
されており、このSiO□11U12上に多結晶Siか
らなるゲート電極13と5iOzからなる側壁14とが
形成されている。またSi基体ll中には、n゛領域1
5とn−領域16とからなるソース領域17及びドレイ
ン領域18が形成されている。
In this n-channel PLDDI transistor, p-type Si
SiO□ film 12 film type 2 which is a gate insulating film on base 11
A gate electrode 13 made of polycrystalline Si and a side wall 14 made of 5iOz are formed on this SiO□11U12. In addition, in the Si substrate ll, there is a n゛ region 1.
A source region 17 and a drain region 18 are formed of an n-region 16 and an n-region 16.

以上までの構造は通常のLDDI−ランジスタと同じで
あるが、PLDDトランジスタでは、n領域16の周囲
に更にll域21が形成されている。
The structure described above is the same as that of a normal LDDI transistor, but in the PLDD transistor, an Il region 21 is further formed around the n region 16.

従って、この様なPLDDトランジスタでは、ドレイン
領域18からの空乏N(図示せず)の広がりがp−領域
21によって抑制され、LDDトランジスタよりもパン
チスルー耐圧が高い。
Therefore, in such a PLDD transistor, the spread of depletion N (not shown) from the drain region 18 is suppressed by the p- region 21, and the punch-through breakdown voltage is higher than that of the LDD transistor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで上述の様なPLDDトランジスタでは、p−領
域21のうちでデーl−電極13直下の部分の不純物総
量が闇値電圧V7Hに影響を与えるが、この不純物総量
はp−領域21とn−領域16との夫々の拡散深さの差
によってのみ決定される。
By the way, in the above-mentioned PLDD transistor, the total amount of impurities in the portion of the p-region 21 directly below the data electrode 13 affects the dark value voltage V7H; 16 is determined only by the difference in their respective diffusion depths.

そして、これらの拡散深さはプロセス上の微妙な変動に
影響されるので、闇値電圧VT)Iの制御性が低く、そ
の結果、製造歩留も高くない。
Since the depth of these diffusions is influenced by subtle variations in the process, controllability of the dark voltage VT)I is low, and as a result, the manufacturing yield is not high.

また、上記の拡散深さの変動によってゲート電極13直
下におけるp”領域21の幅が狭くなると、パンチスル
ー耐圧が低下して、PLDD構造の効果が低減する。
Further, when the width of the p'' region 21 directly under the gate electrode 13 becomes narrower due to the above-mentioned variation in the diffusion depth, the punch-through breakdown voltage decreases, reducing the effectiveness of the PLDD structure.

逆に、p−領域21の幅が狭くなってもパンチスルー耐
圧が低下しない様にp−81域21の不純物総量を多く
すると、闇値電圧VTHの制御性が更に低くなり、また
n−領域16の不純物総量も多くせざるを得ず、ホット
キャリア効果が大きくなって信頼性が低下する。
Conversely, if the total amount of impurities in the p-81 region 21 is increased so that the punch-through withstand voltage does not decrease even if the width of the p-region 21 becomes narrow, the controllability of the dark voltage VTH becomes even lower, and The total amount of impurities No. 16 must also be increased, which increases the hot carrier effect and reduces reliability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によるMISI−ランジスタの製造方法は、第2
導電型の半導体領域11上のゲート電極13をマスクに
して第2導電型の不純物を含有する第3の領域21を前
記半導体領域11中に形成する工程と、前記ゲート電極
13の少なくとも側壁部に第1のマスク層22を形成し
、この第1のマスク層22と前記ゲート電piA13と
をマスクにして前記第3の領域21中で且つ前記半導体
領域11の表面に第2の領域16を形成する工程と、前
記ゲート電極13の少なくとも側壁部に前記第1のマス
ク層22よりも前記表面の広がる方向へ厚い第2のマス
ク層14を形成し、この第2のマスク層14と前記ゲー
ト電極13とをマスクにして前記半導体領域11中に第
1の領域15を形成する工程とを夫々具備している。
The method for manufacturing a MISI-transistor according to the present invention includes the second
forming a third region 21 containing impurities of a second conductivity type in the semiconductor region 11 using the gate electrode 13 on the semiconductor region 11 of the conductivity type as a mask; A first mask layer 22 is formed, and a second region 16 is formed in the third region 21 and on the surface of the semiconductor region 11 using the first mask layer 22 and the gate electrode piA13 as a mask. forming a second mask layer 14 thicker in the direction in which the surface spreads than the first mask layer 22 on at least the side wall portion of the gate electrode 13; 13 as a mask to form the first region 15 in the semiconductor region 11, respectively.

〔作用〕[Effect]

本発明によるMISI−ランジスタの製造方法では、ゲ
ート電極13をマスクにして第3の領域21を形成した
後、第1の領域15を形成するための第2のマスク層1
4よりも半導体領域11の表面の広がる方向へ薄い第1
のマスク層22をゲート電極13の少なくとも側壁部に
形成してから第2の領域16を形成しているので、上記
表面の広がる方向において第3の領域21の幅が確実に
確保される。
In the method for manufacturing a MISI transistor according to the present invention, after forming the third region 21 using the gate electrode 13 as a mask, the second mask layer 1 for forming the first region 15 is formed.
4, which is thinner in the direction in which the surface of the semiconductor region 11 spreads.
Since the second region 16 is formed after the mask layer 22 is formed on at least the side wall portion of the gate electrode 13, the width of the third region 21 is ensured in the direction in which the surface extends.

また、この幅が確実に確保されるので、第3の領域21
における不純物総量が第2及び第3の領域16.21の
拡散深さの差には影響を受けにくい。
In addition, since this width is ensured, the third area 21
The total amount of impurities in the second region 16.21 is not easily affected by the difference in diffusion depth between the second and third regions 16.21.

〔実施例〕 以下、本発明の一実施例を第1図を参照しながら説明す
る。
[Example] Hereinafter, an example of the present invention will be described with reference to FIG.

本実施例では、第1A図に示す様に、ゲート電極13を
マスクにしてB゛イオン注入してp領域21をまず形成
する。
In this embodiment, as shown in FIG. 1A, a p region 21 is first formed by implanting B ions using the gate electrode 13 as a mask.

次に、第1B図に示す様に、Si基体ll上の全面に厚
さ500〜1000人程度のSiO□膜22をCVDに
よって堆積させる。なおこのSin、膜22は、熱酸化
によって形成してもよい。
Next, as shown in FIG. 1B, a SiO□ film 22 having a thickness of about 500 to 1000 layers is deposited over the entire surface of the Si substrate 11 by CVD. Note that this Sin film 22 may be formed by thermal oxidation.

その後、この状態でP−イオンを注入してp領域21中
にn−領域16を形成する。この時、5iOz膜22が
存在しているために、イオン注入に対するマスクの長さ
は、p−領域21を形成した時のマスクであるゲート電
極13のみの長さに対して、5i02膜22の厚さだけ
ゲート電極13の両側へ夫々長い。
Thereafter, in this state, P- ions are implanted to form n- region 16 in p-region 21. At this time, since the 5iOz film 22 is present, the length of the mask for ion implantation is longer than that of the 5i02 film 22 compared to the length of only the gate electrode 13, which is the mask when the p- region 21 is formed. The gate electrode 13 is longer on both sides of the gate electrode 13 by its thickness.

従って、ゲート電極13下の側におけるp−FiJt域
21域幅1.5iOz膜22の厚さに対応して確実に確
保される。
Therefore, the width of the p-FiJt region 21 on the side below the gate electrode 13 is ensured to correspond to the thickness of the 1.5 iOz film 22.

次に、第1C図に示す様に、Si基体11上の全面に厚
さ3000人程度のSiO□膜23をCVDによって再
び堆積させる。そして、SiO□膜23.22をRIE
して、−点鎖線で示す様に、5iOz膜22.23から
なる側壁14を形成する。
Next, as shown in FIG. 1C, a SiO□ film 23 having a thickness of about 3000 layers is deposited again on the entire surface of the Si substrate 11 by CVD. Then, RIE the SiO□ film 23,22.
As a result, the side wall 14 made of the 5iOz film 22, 23 is formed as shown by the dashed line.

次に、第1D図に示す様に、ゲート電極13と側壁14
とをマスクにしてP−イオンを注入してn″領域15を
形成する。
Next, as shown in FIG. 1D, the gate electrode 13 and the side wall 14 are
Using this as a mask, P- ions are implanted to form an n'' region 15.

〔発明の効果〕〔Effect of the invention〕

本発明によるMISI−ランジスタの製造方法では、半
導体領域の表面の広がる方向において第3の領域の幅が
確実に確保されるので、パンチスルー耐圧が高い。
In the MISI transistor manufacturing method according to the present invention, the width of the third region is reliably secured in the direction in which the surface of the semiconductor region spreads, so that the punch-through breakdown voltage is high.

また、上記の幅が確実に確保されるので、パンチスルー
耐圧を大幅には低下させることなく第3の領域における
不純物総量を少なくすることができ、しかもこの不純物
総量が第2及び第3の領域の拡散深さの差には影否を受
けにくいので、闇値電圧VTHの制御性が高く、製造歩
留が高い。
In addition, since the above width is reliably secured, the total amount of impurities in the third region can be reduced without significantly reducing the punch-through breakdown voltage, and furthermore, this total amount of impurities can be reduced in the second and third regions. Since it is not easily affected by the difference in diffusion depth, the controllability of the dark value voltage VTH is high and the manufacturing yield is high.

また、第3の領域における不純物総量を少なくすること
ができるので、第2の領域における不純物総量も少なく
することができ、ホットキャリア効果が小さく、信頼性
が高い。
Furthermore, since the total amount of impurities in the third region can be reduced, the total amount of impurities in the second region can also be reduced, resulting in a small hot carrier effect and high reliability.

である。It is.

Claims (1)

【特許請求の範囲】 少なくともドレイン領域が、第1導電型の不純物の濃度
が相対的に高い第1の領域と相対的に低い第2の領域と
からなっているMISトランジスタの製造方法において
、 第2導電型の半導体領域上のゲート電極をマスクにして
第2導電型の不純物を含有する第3の領域を前記半導体
領域中に形成する工程と、 前記ゲート電極の少なくとも側壁部に第1のマスク層を
形成し、この第1のマスク層と前記ゲート電極とをマス
クにして前記第3の領域中で且つ前記半導体領域の表面
に前記第2の領域を形成する工程と、 前記ゲート電極の少なくとも側壁部に前記第1のマスク
層よりも前記表面の広がる方向へ厚い第2のマスク層を
形成し、この第2のマスク層と前記ゲート電極とをマス
クにして前記半導体領域中に前記第1の領域を形成する
工程とを夫々具備するMISトランジスタの製造方法。
[Claims] A method for manufacturing an MIS transistor, wherein at least the drain region includes a first region in which the concentration of impurities of the first conductivity type is relatively high and a second region in which the concentration of impurities of the first conductivity type is relatively low. forming a third region containing impurities of the second conductivity type in the semiconductor region using the gate electrode on the semiconductor region of the second conductivity type as a mask; and applying a first mask to at least a sidewall portion of the gate electrode. forming the second region in the third region and on the surface of the semiconductor region using the first mask layer and the gate electrode as a mask; A second mask layer is formed on the side wall portion to be thicker than the first mask layer in the direction in which the surface spreads, and the second mask layer and the gate electrode are used as masks to form the first mask layer in the semiconductor region. A method for manufacturing an MIS transistor, comprising the steps of forming a region.
JP19519688A 1988-08-04 1988-08-04 Manufacture of mis transistor Pending JPH0244734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19519688A JPH0244734A (en) 1988-08-04 1988-08-04 Manufacture of mis transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19519688A JPH0244734A (en) 1988-08-04 1988-08-04 Manufacture of mis transistor

Publications (1)

Publication Number Publication Date
JPH0244734A true JPH0244734A (en) 1990-02-14

Family

ID=16337051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19519688A Pending JPH0244734A (en) 1988-08-04 1988-08-04 Manufacture of mis transistor

Country Status (1)

Country Link
JP (1) JPH0244734A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173438A (en) * 2004-12-17 2006-06-29 Yamaha Corp Method of manufacturing mos type semiconductor device
US7223663B2 (en) 2003-12-27 2007-05-29 Dongbu Electronics Co., Ltd. MOS transistors and methods of manufacturing the same
JP2007214503A (en) * 2006-02-13 2007-08-23 Yamaha Corp Manufacturing method of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223663B2 (en) 2003-12-27 2007-05-29 Dongbu Electronics Co., Ltd. MOS transistors and methods of manufacturing the same
JP2006173438A (en) * 2004-12-17 2006-06-29 Yamaha Corp Method of manufacturing mos type semiconductor device
JP2007214503A (en) * 2006-02-13 2007-08-23 Yamaha Corp Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US6087237A (en) Method of manufacturing a MOSFET by forming a single oxide layer doping with either an oxide accelerator or an oxide inhibitor producing asymmetric thickness
US5548143A (en) Metal oxide semiconductor transistor and a method for manufacturing the same
US6551870B1 (en) Method of fabricating ultra shallow junction CMOS transistors with nitride disposable spacer
US5031008A (en) MOSFET transistor
US5166087A (en) Method of fabricating semiconductor element having lightly doped drain (ldd) without using sidewalls
US6541823B1 (en) Semiconductor device including multiple field effect transistors and manufacturing method thereof
US5904530A (en) Method of making LDD structure spaced from channel doped region
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
US6054357A (en) Semiconductor device and method for fabricating the same
US6008100A (en) Metal-oxide semiconductor field effect transistor device fabrication process
US5623154A (en) Semiconductor device having triple diffusion
US6525380B2 (en) CMOS with a fixed charge in the gate dielectric
JPH0730107A (en) High voltage withstand transistor and its manufacture
JPH11111972A (en) Semiconductor device and its manufacture
US5502322A (en) Transistor having a nonuniform doping channel
JP2729298B2 (en) Manufacturing method of MOS transistor
US6589828B2 (en) Fabricating a thin film transistor having better punch through resistance and hot carrier effects
US5939751A (en) MOSFET having double junction structures in each of source and drain regions
JPH0244734A (en) Manufacture of mis transistor
US5550064A (en) Method for fabricating high-voltage complementary metal-oxide-semiconductor transistors
JPH1012870A (en) Semiconductor device and its manufacture
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
US5747354A (en) Semiconductor device having an improved anti-radioactivity and method of fabricating the same
JP2880885B2 (en) Semiconductor integrated circuit device and method of manufacturing the same