JPS63273361A - Mos field-effect transistor - Google Patents

Mos field-effect transistor

Info

Publication number
JPS63273361A
JPS63273361A JP62108318A JP10831887A JPS63273361A JP S63273361 A JPS63273361 A JP S63273361A JP 62108318 A JP62108318 A JP 62108318A JP 10831887 A JP10831887 A JP 10831887A JP S63273361 A JPS63273361 A JP S63273361A
Authority
JP
Japan
Prior art keywords
gate electrode
effect transistor
source region
type
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62108318A
Other languages
Japanese (ja)
Other versions
JPH0671084B2 (en
Inventor
Yasuo Sugimoto
杉本 保雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62108318A priority Critical patent/JPH0671084B2/en
Publication of JPS63273361A publication Critical patent/JPS63273361A/en
Publication of JPH0671084B2 publication Critical patent/JPH0671084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a MOSFET having high electrostatic breakdown strength by forming a metal layer over the surfaces of a gate electrode and a source region as a Schottky junction, and generating Schottky barrier diode pair of anti-series connection between the electrode and the region. CONSTITUTION:An Mo layer 11 is formed over the partial surfaces of an N-type source region 3 and a gate electrode 5 made of an N-type polycrystalline Si for forming a MOSFET element 9 as a Schottky junction. Thus, anti-series Schottky barrier diode pair are generated in an equivalent circuit manner between a source terminal S and a gate terminal G. Thus, when the reverse blocking voltage of the diode is 25V and a reverse peak power breakdown strength is 150 W/mm<2>, no breakage occurs in an electrostatic breakdown strength test between the terminals G and S even if a discharge voltage is 200V.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMOS電界効果トランジスタに関し、特に縦形
のMOS電界効果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a MOS field effect transistor, and more particularly to a vertical MOS field effect transistor.

〔従来の技術〕[Conventional technology]

一般に、縦形のMOS電界効果トランジスタは中電力以
上のパワー機器に応用されるので、その電圧破壊耐量の
改善が常に話題となっている。
In general, vertical MOS field effect transistors are applied to power equipment with medium or higher power, so improvement of their voltage breakdown capability is always a hot topic.

第2図(a)および(b)は、従来のMOS電界効果ト
ランジスタの一例の半導体チップの断面図及び等価回路
図である。
FIGS. 2(a) and 2(b) are a sectional view and an equivalent circuit diagram of a semiconductor chip of an example of a conventional MOS field effect transistor.

第2図(a)に示すように、MOS電界効果トランジス
タ10は、n形シリコン基板1の一主面にp形ベース領
域2を選択的に形成し、さらにその一部にn形ソース領
域3を形成する。
As shown in FIG. 2(a), the MOS field effect transistor 10 has a p-type base region 2 selectively formed on one principal surface of an n-type silicon substrate 1, and an n-type source region 3 formed in a part of the p-type base region 2. form.

p形ベース領域2に囲まれるn形シリコン基板1の表面
にゲート酸化膜4を介してn形多結晶シリコン層のゲー
ト電極5を形成し、p形ベース領域2とn形ソース領域
3にまたがってソース電極7を設け、さらにn形シリコ
ン基板1の他の主面にドレイン電極6を設けた縦形MO
3の構造となっている。
A gate electrode 5 of an n-type polycrystalline silicon layer is formed on the surface of the n-type silicon substrate 1 surrounded by the p-type base region 2 via a gate oxide film 4, and extends over the p-type base region 2 and the n-type source region 3. A vertical MO in which a source electrode 7 is provided on the other main surface of the n-type silicon substrate 1 and a drain electrode 6 is provided on the other main surface of the n-type silicon substrate 1.
It has a structure of 3.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のMO3電界効果トランジスタは、ソース
電極7とのn形結晶シリコン層のゲート電極5がゲート
酸化膜4によって絶縁されているので、ソース及びゲー
ト電極間に高電圧が印加された場合に、ゲート酸化膜4
が絶縁破壊を起してソース及びゲート電極間が短絡し易
いという問題があった。
In the conventional MO3 field effect transistor described above, since the gate electrode 5 of the n-type crystal silicon layer is insulated from the source electrode 7 by the gate oxide film 4, when a high voltage is applied between the source and gate electrodes, , gate oxide film 4
However, there is a problem in that dielectric breakdown occurs, which tends to cause a short circuit between the source and gate electrodes.

一般に行われる静電破壊耐量試験では、例えば200p
Fのコンデンサに電圧VCの電荷を充実し、その放電エ
ネルギーの強さとして放電電圧■cを用いているが、従
来はゲート端子Gとソース端子Sとの絶縁耐圧が200
Vに耐えるのは難しかった。
In a commonly conducted electrostatic breakdown test, for example, 200p
The capacitor F is charged with the voltage VC, and the discharge voltage ■c is used as the strength of the discharge energy, but conventionally, the insulation voltage between the gate terminal G and the source terminal S is 200
It was difficult to endure V.

本発明の目的は、ソース及びゲート端子間の静電破壊耐
量の高いMO3電界効果トランジスタを提供することに
ある。
An object of the present invention is to provide an MO3 field effect transistor with high electrostatic breakdown resistance between the source and gate terminals.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のMO3電界効果トランジスタは、−導電形の半
導体基板の一主面に選択的に形成された逆導電形のベー
ス領域と、該ベース領域内に設けられた一導電形のソー
ス領域と、前記ベース領域に囲まれた前記半導体基板の
表面に絶縁膜を介して設けられた一導電形の多結晶シリ
コン層のゲート電極と他の主面に設けられたドレイン電
極とを含むMO3電界効果トランジスタにおいて、前記
ゲート電極と前記ソース領域のそれぞれの表面にまたが
って設けた金属層によりショットキー接合部を形成して
前記ゲート電極と前記ソース領域との間に逆直列接続の
ショットキーバリヤダイオード対を設けて構成されてい
る。
The MO3 field effect transistor of the present invention includes: a base region of an opposite conductivity type selectively formed on one principal surface of a semiconductor substrate of a − conductivity type; a source region of one conductivity type provided within the base region; An MO3 field effect transistor including a gate electrode of a polycrystalline silicon layer of one conductivity type provided on the surface of the semiconductor substrate surrounded by the base region via an insulating film, and a drain electrode provided on the other main surface. A Schottky junction is formed by a metal layer provided over surfaces of each of the gate electrode and the source region, and a pair of Schottky barrier diodes are connected in anti-series between the gate electrode and the source region. It is set up and configured.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a>及び(b)は本発明の一実施例の半導体チ
ップの断面図及び等価回路図である。
FIGS. 1A and 1B are a sectional view and an equivalent circuit diagram of a semiconductor chip according to an embodiment of the present invention.

第1図(a)に示すように、MOS電界効果トランジス
タ9は、第2図(a)のMOS電界効果トランジスタ1
0のn形ソース領域3とn形多結晶シリコン層のゲート
電極5のそれぞれの表面の一部にまたがってモリブデン
層11を設けた以外は同一である。
As shown in FIG. 1(a), the MOS field effect transistor 9 is the same as the MOS field effect transistor 1 in FIG. 2(a).
The structure is the same except that a molybdenum layer 11 is provided over part of the surface of each of the n-type source region 3 and the gate electrode 5 of the n-type polycrystalline silicon layer.

第1図(b)に示すように、モリブデン層11はn形ソ
ース領域3との間及びn形多結晶シリコン層のゲート電
極5との間にそれぞれショットキー接合を形成するので
、ソース端子Sとゲート端子Gとの間に等価回路として
、逆直列のショットキーバリヤダイオード対が設けられ
たことになる。
As shown in FIG. 1(b), the molybdenum layer 11 forms a Schottky junction with the n-type source region 3 and the gate electrode 5 of the n-type polycrystalline silicon layer, so that the source terminal S This means that a pair of anti-series Schottky barrier diodes is provided between the gate terminal G and the gate terminal G as an equivalent circuit.

例えば、ショットキーバリヤダイオードの逆阻止電圧V
、が25Vで、逆梁等電力耐量が150W / m m
 2とすると、ゲート端子Gとソース端子S間の静電破
壊耐量試験で、放電電圧VCが200Vでも破壊しなく
なった。
For example, the reverse blocking voltage V of a Schottky barrier diode
, is 25V, and the power capacity of the reverse beam is 150W/mm
2, in an electrostatic breakdown test between the gate terminal G and source terminal S, no breakdown occurred even when the discharge voltage VC was 200V.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ゲート電極とソース電極
間に逆直列のショットキーバリヤダイオード対を設ける
ことにより、静電破壊耐量の高いMO3電界効果トラン
ジスタを得る効果がある。
As described above, the present invention has the effect of providing an MO3 field effect transistor with high electrostatic breakdown resistance by providing an anti-series pair of Schottky barrier diodes between the gate electrode and the source electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(b)は本発明の一実施例の半導体チ
ップの断面図及び透過回路図、第2図(a)及び(b)
は従来のMO3電界効果トランジスタの一例の半導体チ
ップの断面図及び等価回路図である。 1・・・n形シリコン基板、2・・・p形ベース領域、
3・・・n形ソース領域、4・・・ゲート酸化膜、5・
・・n形多結晶シリコン層のゲート電極、6・・・ドレ
イン電極、7・・・ソース電極、11・・・モリブデン
層、SBD・・・ショットキーバリヤダイオード。 ぐ− 代理人 弁理士 内 原  晋t、5((、”− 茅 l 図 り 弄 2 回
FIGS. 1(a) and (b) are a cross-sectional view and a transparent circuit diagram of a semiconductor chip according to an embodiment of the present invention, and FIGS. 2(a) and (b) are
1 is a cross-sectional view and an equivalent circuit diagram of a semiconductor chip of an example of a conventional MO3 field effect transistor. 1... N-type silicon substrate, 2... P-type base region,
3... N-type source region, 4... Gate oxide film, 5...
...Gate electrode of n-type polycrystalline silicon layer, 6...Drain electrode, 7...Source electrode, 11...Molybdenum layer, SBD...Schottky barrier diode. Gu- Agent Patent Attorney Susumu Uchihara, 5

Claims (1)

【特許請求の範囲】[Claims]  一導電形の半導体基板の一主面に選択的に形成された
逆導電形のベース領域と、該ベース領域内に設けられた
一導電形のソース領域と、前記ベース領域に囲まれた前
記半導体基板の表面に絶縁膜を介して設けられた一導電
形の多結晶シリコン層のゲート電極と他の主面に設けら
れたドレイン電極とを含むMOS電界効果トランジスタ
において、前記ゲート電極と前記ソース領域のそれぞれ
の表面にまたがって設けた金属層によりショットキー接
合部を形成して前記ゲート電極と前記ソース領域との間
に逆直列接続のショットキーバリヤダイオード対を設け
たことを特徴とするMOS電界効果トランジスタ。
a base region of an opposite conductivity type selectively formed on one principal surface of a semiconductor substrate of one conductivity type; a source region of one conductivity type provided within the base region; and the semiconductor surrounded by the base region. In a MOS field effect transistor including a gate electrode of a polycrystalline silicon layer of one conductivity type provided on a surface of a substrate via an insulating film and a drain electrode provided on the other main surface, the gate electrode and the source region A MOS electric field characterized in that a Schottky junction is formed by a metal layer provided over each surface of the gate electrode, and a Schottky barrier diode pair connected in anti-series is provided between the gate electrode and the source region. effect transistor.
JP62108318A 1987-04-30 1987-04-30 MOS field effect transistor Expired - Fee Related JPH0671084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62108318A JPH0671084B2 (en) 1987-04-30 1987-04-30 MOS field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62108318A JPH0671084B2 (en) 1987-04-30 1987-04-30 MOS field effect transistor

Publications (2)

Publication Number Publication Date
JPS63273361A true JPS63273361A (en) 1988-11-10
JPH0671084B2 JPH0671084B2 (en) 1994-09-07

Family

ID=14481670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62108318A Expired - Fee Related JPH0671084B2 (en) 1987-04-30 1987-04-30 MOS field effect transistor

Country Status (1)

Country Link
JP (1) JPH0671084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100286490B1 (en) * 1994-09-13 2001-04-16 니시무로 타이죠 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100286490B1 (en) * 1994-09-13 2001-04-16 니시무로 타이죠 Semiconductor device

Also Published As

Publication number Publication date
JPH0671084B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
US5278443A (en) Composite semiconductor device with Schottky and pn junctions
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
JPH07202205A (en) Semiconductor element that has high surface breakdown voltage
US6914270B2 (en) IGBT with PN insulation and production method
JP2601143B2 (en) Semiconductor device
JPS6386465A (en) Method of forming capacitor on substrate
JP2000208768A (en) Semiconductor device and electric power conversion device using the device
US7683454B2 (en) MOS power component with a reduced surface area
US4761679A (en) Complementary silicon-on-insulator lateral insulated gate rectifiers
JPS63273361A (en) Mos field-effect transistor
JPH07202203A (en) Semiconductor element for high voltage
JPH07142731A (en) Power device and method for forming it
JP3412393B2 (en) Semiconductor device
JPH06236990A (en) Mos control diode
JPH0888290A (en) Semiconductor device and using method therefor
JP3217552B2 (en) Horizontal high voltage semiconductor device
JPH01111378A (en) Vertical mosfet
JPS58147060A (en) Semiconductor device reducing surface electric field intensity
US20230075374A1 (en) Semiconductor-on-insulator device with lightly doped extension region
JPS62126663A (en) Input protecting circuit
JPS6066473A (en) Input protective circuit for mos semiconductor device
JPH0513768A (en) Insulating gate type bipolar transistor
JPH02312281A (en) Conductivity modulation mosfet
JPS62297762A (en) Inspecting method for semiconductor device
JPH04107871A (en) Semiconductor device and igniter device using it

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees