JPH0377264B2 - - Google Patents
Info
- Publication number
- JPH0377264B2 JPH0377264B2 JP19195685A JP19195685A JPH0377264B2 JP H0377264 B2 JPH0377264 B2 JP H0377264B2 JP 19195685 A JP19195685 A JP 19195685A JP 19195685 A JP19195685 A JP 19195685A JP H0377264 B2 JPH0377264 B2 JP H0377264B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- alloy
- density
- iron
- sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- 239000000843 powder Substances 0.000 claims description 19
- 229910000531 Co alloy Inorganic materials 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 238000005245 sintering Methods 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 claims description 3
- 239000011812 mixed powder Substances 0.000 claims description 3
- 239000007858 starting material Substances 0.000 claims description 3
- 238000001513 hot isostatic pressing Methods 0.000 description 16
- 230000004907 flux Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000696 magnetic material Substances 0.000 description 5
- 238000004663 powder metallurgy Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 238000001272 pressureless sintering Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910017061 Fe Co Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
〔概要〕
鉄−50%コバルト合金を粉末治金法で製造し、
かつ高密度の焼結体を実現して優れた軟磁性材料
を提供するためにHIP処理を行なう。
かつ高密度の焼結体を実現して優れた軟磁性材料
を提供するためにHIP処理を行なう。
本発明は、鉄コバルト焼結合金の製法、特に、
軟磁性材料である鉄−50%コバルト系合金の粉末
治金法による製法に係る。
軟磁性材料である鉄−50%コバルト系合金の粉末
治金法による製法に係る。
従来、軟質性材料としては、鉄、珪素鋼、パー
マロイ(Ni40〜90%、残部Feの完全固溶体合金
の商品名)、センダスト(A15%、Si9%残部Feを
含む鉄合金の商品名)、パーメンジユール(Co50
%、残部Feの合金の商品名)などが知られてい
る。
マロイ(Ni40〜90%、残部Feの完全固溶体合金
の商品名)、センダスト(A15%、Si9%残部Feを
含む鉄合金の商品名)、パーメンジユール(Co50
%、残部Feの合金の商品名)などが知られてい
る。
上記軟質磁性材料のうち最も高い磁束密度
(2.35T)を有するのがパーメンジユールである
が、この合金はきわめてもろく、冷間加工が不可
能に近いという欠点がある。そこで、バナジウム
を約2%添加することにより、冷間加工性を改善
したものとして2V−パーメンジユールが知られ
ているが、未だ充分な加工性を有するに至つてい
ない。
(2.35T)を有するのがパーメンジユールである
が、この合金はきわめてもろく、冷間加工が不可
能に近いという欠点がある。そこで、バナジウム
を約2%添加することにより、冷間加工性を改善
したものとして2V−パーメンジユールが知られ
ているが、未だ充分な加工性を有するに至つてい
ない。
粉末治金法は、このような難加工性材料の成形
体の有力な製造方法の一つである。
体の有力な製造方法の一つである。
しかし、鉄粉とコバルト粉を混合して、成形、
焼結した場合、鉄のコバルトへの拡散係数がコバ
ルトの鉄への拡散係数よりも大きいので鉄にカー
ケンドールボイドが発生すること、および高温焼
結時におけるFe−Co合金の結晶構造に起因する
拡散係数の低さのために、焼結体の高密度化が困
難であり、実用性のある磁気的性質を有する材料
を得ることはできない。これらを解決するために
種々の添加元素の効果が調べられているが、未だ
根本的な解決に至つていない。
焼結した場合、鉄のコバルトへの拡散係数がコバ
ルトの鉄への拡散係数よりも大きいので鉄にカー
ケンドールボイドが発生すること、および高温焼
結時におけるFe−Co合金の結晶構造に起因する
拡散係数の低さのために、焼結体の高密度化が困
難であり、実用性のある磁気的性質を有する材料
を得ることはできない。これらを解決するために
種々の添加元素の効果が調べられているが、未だ
根本的な解決に至つていない。
また、Fe−50%Co合金溶解材粉を成形、焼結
する場合、最終的な焼結密度に大きな影響を持つ
粉末の圧縮性がFe−50%Co組成における規則格
子の形成に起因する高硬度のために相当に悪いと
いう欠点がある。
する場合、最終的な焼結密度に大きな影響を持つ
粉末の圧縮性がFe−50%Co組成における規則格
子の形成に起因する高硬度のために相当に悪いと
いう欠点がある。
本発明は、上記問題点を解決するために、鉄粉
(Fe粉)とコバルト粉(Co粉)と必要に応じて鉄
コバルト合金粉(Fe−Co合金粉)との混合粉を
出発材料として圧縮形成し、焼結して鉄−50%コ
バルト(Fe−50%Co)焼結合金成型品を製造す
る方法において、温度1000〜1350℃、圧力1000Kg
f/cm2以上、時間0.5h以上のHIP(熱間静水圧プ
レス)処理を適用する。
(Fe粉)とコバルト粉(Co粉)と必要に応じて鉄
コバルト合金粉(Fe−Co合金粉)との混合粉を
出発材料として圧縮形成し、焼結して鉄−50%コ
バルト(Fe−50%Co)焼結合金成型品を製造す
る方法において、温度1000〜1350℃、圧力1000Kg
f/cm2以上、時間0.5h以上のHIP(熱間静水圧プ
レス)処理を適用する。
HIP処理の適用により粉末治金法により得られ
るFe−50%Co焼結合金の密度が向上する。
るFe−50%Co焼結合金の密度が向上する。
HIP処理の適用は、一般的には、圧縮成形処理
後先ず常圧焼結しその後で行なう方が好ましい。
その理由はオープンポアが存在すると圧力がかか
りにくいからで、最適条件にて常圧焼結を行い、
オープンポアを少なくするほどHIPの効果が大き
い。
後先ず常圧焼結しその後で行なう方が好ましい。
その理由はオープンポアが存在すると圧力がかか
りにくいからで、最適条件にて常圧焼結を行い、
オープンポアを少なくするほどHIPの効果が大き
い。
HIP処理において、温度は1000〜1350℃好まし
くは1300℃である。1350℃より高温では焼結体が
融解してしまい、1000℃より低温では緻密化され
ない。圧力は500Kgf/cm2以上、通常800〜1200Kg
f/cm2、好ましくは1000Kgf/cm2である。800Kg
f/cm2より低圧では緻密化が進行せず、また1200
Kgf/cm2より高圧にしてもそれ以上の密度の向上
は認められない。時間は0.5h以上、通常0.5〜2h、
好ましくは1hである。0.5hより短時間では緻密化
が向上せず、また2hより長時間HIPを適用しても
それ以上の密度の向上は認められない。
くは1300℃である。1350℃より高温では焼結体が
融解してしまい、1000℃より低温では緻密化され
ない。圧力は500Kgf/cm2以上、通常800〜1200Kg
f/cm2、好ましくは1000Kgf/cm2である。800Kg
f/cm2より低圧では緻密化が進行せず、また1200
Kgf/cm2より高圧にしてもそれ以上の密度の向上
は認められない。時間は0.5h以上、通常0.5〜2h、
好ましくは1hである。0.5hより短時間では緻密化
が向上せず、また2hより長時間HIPを適用しても
それ以上の密度の向上は認められない。
我々は、先に、特願昭60−104946号において、
出発金属粉中に規則格子を形成していないFe−
Co合金粉を用いることにより粉末治金法で高密
度のFe−50%Co焼結合金を得ることができるこ
とを開示した。この手法はここでも併用すること
が可能である。規則格子を有さないFe−Co合金
粉としては、規則格子を有するFe−50%Co合金
溶解材を急冷して規則格子を解いたもの、あるい
はFeに富むFe−Co合金が用いられる。
出発金属粉中に規則格子を形成していないFe−
Co合金粉を用いることにより粉末治金法で高密
度のFe−50%Co焼結合金を得ることができるこ
とを開示した。この手法はここでも併用すること
が可能である。規則格子を有さないFe−Co合金
粉としては、規則格子を有するFe−50%Co合金
溶解材を急冷して規則格子を解いたもの、あるい
はFeに富むFe−Co合金が用いられる。
原料粉として、−200メツシユの電解Fe粉、−
400メツシユ還元Co粉、および−350メツシユの
アトマイズFe−50%Co合金粉を用意し、合金粉
の量を0〜60重量%の範囲内で変え、Fe/Co=
1となるようにし、さらに潤滑剤として0.75質量
%のステアリン酸亜鉛を加えて混合した。これら
の混合粉を392MPa(4t/cm2)の成形圧力でφ45×
φ35×7tの形状に圧粉成形した。その後、400℃に
おいて圧粉体より前述の潤滑剤を除去してから、
750〜850℃において1時間水素雰囲気にて予備焼
結し、さらに588MPa(6t/cm2)の圧力で再圧縮
成形した。次いでプツシヤー型水素雰囲気炉にて
1400℃で1時間常圧焼結した。それから、1300℃
まで真空昇温した後、1000Kgf/cm2までArガス
により昇圧して昇温先行型のHIP処理を行い、
1300℃、1000Kgf/cm2に1時間保持した。
400メツシユ還元Co粉、および−350メツシユの
アトマイズFe−50%Co合金粉を用意し、合金粉
の量を0〜60重量%の範囲内で変え、Fe/Co=
1となるようにし、さらに潤滑剤として0.75質量
%のステアリン酸亜鉛を加えて混合した。これら
の混合粉を392MPa(4t/cm2)の成形圧力でφ45×
φ35×7tの形状に圧粉成形した。その後、400℃に
おいて圧粉体より前述の潤滑剤を除去してから、
750〜850℃において1時間水素雰囲気にて予備焼
結し、さらに588MPa(6t/cm2)の圧力で再圧縮
成形した。次いでプツシヤー型水素雰囲気炉にて
1400℃で1時間常圧焼結した。それから、1300℃
まで真空昇温した後、1000Kgf/cm2までArガス
により昇圧して昇温先行型のHIP処理を行い、
1300℃、1000Kgf/cm2に1時間保持した。
得られた材料の特性を下記の方法で評価した。
JIS Z 2505に規定されている。『金属焼結体
の密度測定方法』によつて焼結密度を求め、溶解
材のFe−50%Co合金(パーメンジユール)の密
度8.18(g/c.c.)〔アール・エム・ボゾース〕(R.
M.Bozorth):フエロマグネテイズム
(Ferromagnetism)、デー・フアン・ノストラン
ド社(D.Van Nostrand CO.、Inc.)、P.190
(1964)参照〕で除して相対密度とした。
の密度測定方法』によつて焼結密度を求め、溶解
材のFe−50%Co合金(パーメンジユール)の密
度8.18(g/c.c.)〔アール・エム・ボゾース〕(R.
M.Bozorth):フエロマグネテイズム
(Ferromagnetism)、デー・フアン・ノストラン
ド社(D.Van Nostrand CO.、Inc.)、P.190
(1964)参照〕で除して相対密度とした。
試料の寸法および重量をもとに計算により求め
た。
た。
得られた焼結合金に励磁コイル及びサーチコイ
ルを共に42ターン巻いて最大印加場4kA/m
(50Oe)にて直流自磁束計によりBHヒステリシ
ス曲線を描いて磁束密度、保持力、および透磁率
を求めた。
ルを共に42ターン巻いて最大印加場4kA/m
(50Oe)にて直流自磁束計によりBHヒステリシ
ス曲線を描いて磁束密度、保持力、および透磁率
を求めた。
第1図は、常圧焼結後とHIP処理後の焼結品の
相対密度を、比較のために圧縮成形後のグリーン
の相対密度と共に図示したものである。同図か
ら、HIP処理を行なうことによつて、焼結密度が
大幅に向上し、Fe粉、Co粉、Fe−50%Coの混合
割合にかかわらずいずれも99%以上の焼結密度を
示すことが認められる。
相対密度を、比較のために圧縮成形後のグリーン
の相対密度と共に図示したものである。同図か
ら、HIP処理を行なうことによつて、焼結密度が
大幅に向上し、Fe粉、Co粉、Fe−50%Coの混合
割合にかかわらずいずれも99%以上の焼結密度を
示すことが認められる。
第2〜4図は常圧焼結後およびHIP処理後の結
晶体のそれぞれ磁束密度(B4K)、保磁力(HC)
および最大透磁率(μm)を図示したものであ
る。これらの図から、HIP処理により軟質磁性材
料として好ましい磁気的性質(高磁束密度、低保
磁力、高透磁率)が向上することが認められる。
晶体のそれぞれ磁束密度(B4K)、保磁力(HC)
および最大透磁率(μm)を図示したものであ
る。これらの図から、HIP処理により軟質磁性材
料として好ましい磁気的性質(高磁束密度、低保
磁力、高透磁率)が向上することが認められる。
また、第1〜4図のすべてにおいてFe−50%
Co合金粉を添加した場合、少なくとも60質量%
の範囲までは添加量と共に特性が向上することが
認められる。
Co合金粉を添加した場合、少なくとも60質量%
の範囲までは添加量と共に特性が向上することが
認められる。
本発明によれば、HIPを適用することにより焼
結密度を高め、その結果として、実用性のある磁
気的性質を有するFe−Co合金を得ることができ
る。したがつて本発明に係る焼結軟質磁性材料を
電磁部品に応用すれば、切削加工が非常に困難な
パーメンジユール溶解材を用いるよりも経済的で
ある。
結密度を高め、その結果として、実用性のある磁
気的性質を有するFe−Co合金を得ることができ
る。したがつて本発明に係る焼結軟質磁性材料を
電磁部品に応用すれば、切削加工が非常に困難な
パーメンジユール溶解材を用いるよりも経済的で
ある。
第1〜4図は常圧焼結体とHIP処理品のそれぞ
れ密度(第1図)、磁束密度(第2図)、保磁力
(第3図)、最大透磁率(第4図)をFe−50%Co
合金粉の含有量の関数として表わしたグラフ図で
ある。
れ密度(第1図)、磁束密度(第2図)、保磁力
(第3図)、最大透磁率(第4図)をFe−50%Co
合金粉の含有量の関数として表わしたグラフ図で
ある。
Claims (1)
- 1 鉄粉とコバルト粉、または鉄粉とコバルト粉
と鉄コバルト合金粉の混合粉を出発材料として圧
縮形成し、焼結して鉄−50%コバルト焼結合金成
形品を製造する方法において、温度1000〜1350
℃、圧力800Kgf/cm2以上、時間0.5h以上の条件
の熱間静水圧プレス(HIP)処理工程を含むこと
を特徴とする鉄コバルト焼結合金の製法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19195685A JPS6254041A (ja) | 1985-09-02 | 1985-09-02 | 鉄コバルト焼結合金の製法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19195685A JPS6254041A (ja) | 1985-09-02 | 1985-09-02 | 鉄コバルト焼結合金の製法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6254041A JPS6254041A (ja) | 1987-03-09 |
JPH0377264B2 true JPH0377264B2 (ja) | 1991-12-10 |
Family
ID=16283243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19195685A Granted JPS6254041A (ja) | 1985-09-02 | 1985-09-02 | 鉄コバルト焼結合金の製法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6254041A (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0832949B2 (ja) * | 1987-12-28 | 1996-03-29 | 富士通株式会社 | 鉄―コバルト系軟質磁性材料の製造方法 |
JP4907597B2 (ja) * | 2008-05-13 | 2012-03-28 | 山陽特殊製鋼株式会社 | Fe−Co−V系合金材料の製造方法 |
-
1985
- 1985-09-02 JP JP19195685A patent/JPS6254041A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6254041A (ja) | 1987-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2687683B2 (ja) | 複合材料及びその製造方法 | |
JPH04329847A (ja) | Fe−Ni合金軟質磁性材料の製造方法 | |
JPS63304603A (ja) | Fe基軟磁性合金圧粉体及びその製造方法 | |
JP3400027B2 (ja) | 鉄系軟磁性焼結体の製造方法およびその方法により得られた鉄系軟磁性焼結体 | |
JPH01219143A (ja) | 焼結永久磁石材料とその製造方法 | |
US5123979A (en) | Alloy for fe nd b type permanent magnet, sintered permanent magnet and process for obtaining it | |
JP2003068514A (ja) | 圧粉磁心とその製造方法 | |
JPH0377264B2 (ja) | ||
US4069043A (en) | Wear-resistant shaped magnetic article and process for making the same | |
JPS61136656A (ja) | 高性能焼結永久磁石材料の製造方法 | |
JPS61208807A (ja) | 永久磁石 | |
JPS61291934A (ja) | 鉄コバルト焼結合金の製法 | |
JPH01172548A (ja) | 鉄―コバルト系軟質磁性材料の製造方法 | |
JP2002226970A (ja) | Co系ターゲットおよびその製造方法 | |
JP3492884B2 (ja) | 軟磁性燒結金属の製造方法 | |
JPS63137136A (ja) | 希土類−鉄族系焼結永久磁石材料の製造方法 | |
JPH0430452B2 (ja) | ||
JP2000119792A (ja) | 軟磁性合金板の製造方法 | |
JP2007162064A (ja) | 磁歪材料粉末の製造方法及び磁歪素子の製造方法 | |
JPH0570881A (ja) | Fe−Ni−P合金軟質磁性材料焼結体の製造方法 | |
JPS6263617A (ja) | Fe−Co軟質磁性材料の製造方法 | |
JPH10147832A (ja) | パーマロイ焼結体の製造方法 | |
JPS59190338A (ja) | アルニコ系永久磁石合金の製造方法 | |
JPS62103343A (ja) | 鉄−ニツケル系軟磁性焼結材料およびその製造法 | |
JPH07335468A (ja) | 希土類磁石の製造方法 |