JPH0372152B2 - - Google Patents
Info
- Publication number
- JPH0372152B2 JPH0372152B2 JP15424282A JP15424282A JPH0372152B2 JP H0372152 B2 JPH0372152 B2 JP H0372152B2 JP 15424282 A JP15424282 A JP 15424282A JP 15424282 A JP15424282 A JP 15424282A JP H0372152 B2 JPH0372152 B2 JP H0372152B2
- Authority
- JP
- Japan
- Prior art keywords
- evaporation
- concentration
- evaporation material
- surface area
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001704 evaporation Methods 0.000 claims description 107
- 230000008020 evaporation Effects 0.000 claims description 107
- 239000000463 material Substances 0.000 claims description 51
- 239000000203 mixture Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910001370 Se alloy Inorganic materials 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 description 9
- 238000005192 partition Methods 0.000 description 8
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 8
- 229910018110 Se—Te Inorganic materials 0.000 description 7
- 108091008695 photoreceptors Proteins 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910001215 Te alloy Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/243—Crucibles for source material
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Photoreceptors In Electrophotography (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
本発明は、組成の異なるセレン合金からなる2
種以上の蒸発材料を各熱源によつて加熱、蒸発さ
せるように構成された蒸発源に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention provides two selenium alloys composed of different compositions.
The present invention relates to an evaporation source configured to heat and evaporate more than one type of evaporation material using each heat source.
セレン−テルル合金からなる感光体を製造する
際、いわゆるオープンボートや、クヌートセンセ
ル型と称される蒸発源が使用されることがある。
後者の蒸発源は、蒸発材料を収容した容器(ボー
ト)の上部開口を蒸発面積より狭く絞ることによ
り、蒸着速度が効果的に制御され、かつ突沸で飛
出した蒸発物が上部開口に至るまでの間に壁部に
付着して外方(即ち被蒸着基体側)へ飛翔するこ
とはない等の点で優れたものである。 When manufacturing a photoreceptor made of a selenium-tellurium alloy, an evaporation source called an open boat or a Knut-Sensel type is sometimes used.
In the latter evaporation source, the evaporation rate is effectively controlled by constricting the top opening of the vessel (boat) containing the evaporation material to be narrower than the evaporation area, and the evaporation rate is effectively controlled until the evaporation material that flies out due to bumping reaches the top opening. It is excellent in that it does not adhere to the wall during the process and will not fly outward (that is, toward the substrate to be evaporated).
こうしたクヌートセンセル型蒸発源としては、
構成が比較的簡素化しかつ操作性、蒸発安全性を
改良した単一ボート方式が例えば特開昭55−
176361号で提案されている。この公知の蒸発源
は、第1図の如く、1つのボート1の内空間を隔
壁2で2分し、これらの区分された各空間内に互
いに異なる成分濃度のセレン−テルル合金3,4
を配して、各セレン−テルル合金をヒーター5,
6で加熱、蒸発させ、上部開口7から導出させる
ことができる。この場合、各合金の温度を個々に
制御し、各蒸気を混合しながら例えばドラム状の
被蒸着基体8に蒸着することによつてテルルの濃
度プロフアイルをコントロールしている。 These Knutsensell type evaporation sources are
For example, a single boat system with a relatively simple configuration and improved operability and evaporation safety is disclosed in JP-A-55-
Proposed in No. 176361. As shown in FIG. 1, this known evaporation source divides the inner space of one boat 1 into two by a partition wall 2, and in each of these divided spaces, selenium-tellurium alloys 3, 4 with mutually different component concentrations are placed.
The heater 5,
6, it can be heated and evaporated, and it can be led out from the upper opening 7. In this case, the tellurium concentration profile is controlled by individually controlling the temperature of each alloy and depositing it on, for example, a drum-shaped substrate 8 while mixing each vapor.
しかしながら、この公知の装置及び方法には次
の如き欠点があることが判明した。即ち、各蒸発
材料の蒸発速度をコントロールするのに各温度を
個別に制御しているので、伝熱効果を無視でき
ず、温度の制御性に難がある。これを防止するた
めに伝熱を遮蔽することが考えられるが、遮蔽手
段の配置等の点で装置の構造が複雑となり、操作
性が劣る。 However, it has been found that this known device and method has the following drawbacks. That is, since each temperature is individually controlled to control the evaporation rate of each evaporation material, the heat transfer effect cannot be ignored and there is a difficulty in controlling the temperature. In order to prevent this, it is possible to shield the heat transfer, but the structure of the device becomes complicated due to the arrangement of the shielding means, and the operability is poor.
本発明は、上記とは全く相違した制御方式の適
用によつて、上記の如き問題点を効果的に解消し
たものであつて、組成の異なるセレン合金からな
る2種以上の蒸発材料を加熱、蒸発させるように
構成された蒸発源において、各容器内に収容され
る各蒸発材料の蒸発表面積が互いに異なつてい
て、各蒸発材料が単一の容器内に夫々収容され、
各蒸発材料の混合蒸気を導出させるための開口部
を有し、各蒸発材料を加熱するためのヒーターが
夫々に配され、これらのヒーターが同時にオンす
るように構成したことを特徴とする蒸発源に係る
ものである。 The present invention effectively solves the above-mentioned problems by applying a control system completely different from that described above. In the evaporation source configured to evaporate, each evaporation material contained in each container has a different evaporation area, and each evaporation material is contained in a single container, and
An evaporation source having an opening for leading out a mixed vapor of each evaporation material, a heater for heating each evaporation material, and a configuration in which these heaters are turned on at the same time. This is related to.
本発明の蒸発源によれば、各蒸発材料の蒸発表
面積を互いに異ならせているので、その蒸発表面
積に対応した各蒸発速度(蒸発量)を制御性良く
得ることができる。従つて、常に所望の蒸発組成
で安定に蒸着することが可能となり、適切な濃度
プロフアイルの蒸着膜を得ることができるのであ
る。 According to the evaporation source of the present invention, since the evaporation surface area of each evaporation material is made different from each other, it is possible to obtain each evaporation rate (evaporation amount) corresponding to the evaporation surface area with good controllability. Therefore, it is possible to always perform stable vapor deposition with a desired evaporation composition, and it is possible to obtain a vapor-deposited film with an appropriate concentration profile.
本発明においては、第1の蒸発材料の蒸発表面
積をAL、第2の蒸発材料の蒸発表面積をAHとす
れば、0.1AL≦AM≦2ALであるのが望ましい。蒸
発速度の小さい材料のAMが、蒸発速度の大きい
材料のALの0.1倍未満であると、第2の蒸発材料
の蒸発中の濃度が少なすぎ、またAM>2ALであ
ると、逆に第1の蒸発材料の蒸発量が少なすぎ、
いずれにしても目的とする濃度プロフアイルは得
られ難くなる。好ましくは、蒸発速度の大きい第
1の蒸発材料の蒸発表面積が蒸発速度の小さい第
2の蒸発材料の蒸発表面積より大(AL>AM)と
するのがよい。 In the present invention, if the evaporation surface area of the first evaporation material is A L and the evaporation surface area of the second evaporation material is A H , it is desirable that 0.1A L ≦A M ≦2A L. If A M of the material with a low evaporation rate is less than 0.1 times A L of the material with a high evaporation rate, the concentration during evaporation of the second evaporation material is too small, and if A M > 2A L , On the contrary, the amount of evaporation of the first evaporation material is too small,
In either case, it becomes difficult to obtain the desired concentration profile. Preferably, the evaporation surface area of the first evaporation material with a high evaporation rate is larger than the evaporation surface area of the second evaporation material with a low evaporation rate (A L > A M ).
以下、本発明を実施例について図面参照下に詳
細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.
第2図に示す蒸発源11はクヌートセンセル型
に構成されるが、これによれば、容器本体10内
には、その内空間を実質的に区分する如き隔壁2
を設け、これにより区分された内空間2a及び2
bでは、濃度の異なる第1のSe−Te蒸発材料3
と第2のSe−Te蒸発材料4とが各内容器13,
14に夫々収容されている。各蒸発材料上には同
時にオンされるヒーターランプ5,6が夫々配さ
れ、更に上部には突沸防止板15,16、蒸気加
速及び凝縮防止用のヒーターランプ17,18が
配されている。 The evaporation source 11 shown in FIG. 2 is constructed in a Knutsensel type, and according to this, there is a partition wall 2 inside the container body 10 that substantially divides the internal space.
The internal spaces 2a and 2 separated by this
In b, the first Se-Te evaporation material 3 with different concentrations
and the second Se-Te evaporation material 4 in each inner container 13,
They are housed in 14. Heater lamps 5 and 6 which are turned on at the same time are arranged on each evaporation material, respectively, and bumping prevention plates 15 and 16 and heater lamps 17 and 18 for vapor acceleration and condensation prevention are arranged above.
記第1の蒸発材料3としては蒸発速度の大きい
例えばTe濃度4重量%のSe−Teを装填し、上記
第2の蒸発材料4として蒸発速度の小さい例えば
Te濃度20重量%のSe−Teを別々に装填した。そ
して、ここで注目すべき構成は、蒸発速度の大き
い低Te濃度の蒸発材料3の蒸発表面積が、蒸発
速度の小さい高Te濃度の蒸発材料4の蒸発表面
積より大きく(例えば2〜3倍)されていること
である。これによつて、各蒸発量はその蒸発表面
積に対応したものとなり、蒸気のSeとTeとの組
成比をコントロールすることができる。蒸気中の
Te濃度(YTe)は次式で表わされる。 The first evaporation material 3 is loaded with a high evaporation rate, for example, Se-Te with a Te concentration of 4% by weight, and the second evaporation material 4 is loaded with a low evaporation rate, for example, Se-Te.
Se-Te with a Te concentration of 20% by weight was loaded separately. The noteworthy configuration here is that the evaporation surface area of the low Te concentration evaporation material 3 with a high evaporation rate is larger (for example, 2 to 3 times) than the evaporation surface area of the high Te concentration evaporation material 4 with a low evaporation rate. This is what is happening. As a result, each evaporation amount corresponds to the evaporation surface area, and the composition ratio of Se and Te in the vapor can be controlled. in steam
The Te concentration (YTe) is expressed by the following formula.
YTe=GL/GTOT×YTeL+GM/GTOT×YTeM
(但、GL:低Te濃度の蒸発材料の蒸気量、
GM:高Te濃度の蒸発材料の蒸発量、GTOT:全
蒸発量、YTeL:蒸気中の低Te濃度分、YTeH:
蒸気中の高Te濃度分)
上記のGL,GM,GTOTは、
GL=υL×AL
GM=υM×AM
GTOT=GL+GM
(但、υL:低Te濃度の蒸発材料の蒸発速度、
υH:高Te濃度の蒸発材料の蒸発速度、AL:低
Te濃度の蒸発材料の蒸発表面積、AH:高Te濃
度の蒸発材料の蒸発表面積)
従つて、
YTe=υL・AL/GTOT×YTeL+υM・AM/GTOT×YTeM
となる。この式から、蒸気中のTe濃度(YTe)は
各蒸発材料の蒸発表面積に比例して変化し、蒸発
表面積の選択によつて精度良くコントロールでき
ることが分る。なお、他のパラメータは、蒸発材
料の合金組成、加熱温度によつて予め一定に設定
される。 Y Te = G L /G TOT ×Y TeL +G M /G TOT ×Y TeM (However, G L : vapor amount of evaporation material with low Te concentration,
G M : Evaporation amount of high Te concentration evaporation material, G TOT : Total evaporation amount, Y TeL : Low Te concentration portion in steam, Y TeH :
The above G L , GM , and G TOT are as follows: G L = υ L × A L G M = υ M × A M G TOT = G L + G M (However, υ L is low Evaporation rate of evaporation material with Te concentration,
υ H : Evaporation rate of evaporation material with high Te concentration, A L : Low
Evaporation surface area of evaporation material with Te concentration, A H : evaporation surface area of evaporation material with high Te concentration) Therefore, Y Te = υ L・A L /G TOT ×Y TeL +υ M・A M /G TOT ×Y TeM becomes. From this equation, it can be seen that the Te concentration (Y Te ) in the vapor changes in proportion to the evaporation surface area of each evaporation material, and can be controlled with high accuracy by selecting the evaporation surface area. Note that other parameters are set constant in advance depending on the alloy composition of the evaporation material and the heating temperature.
本発明に従つて得られた蒸着膜、即ちSe−Te
感光体をX線マイクロアナライザーで解析した結
果、第3図に示す如き理想的なTe濃度プロフア
イルを示し、内層は主として第1の蒸発材料3の
蒸発により形成され、ほぼ一定の低Te濃度
(Te5重量%)であつて厚みの大きい電荷輸送層
として機能する。表層は第2の蒸発材料4の蒸発
により形成され、Te18重量%であり、テルルの
高含有量により特に長波長域の感度が良好となつ
た電荷発生層として機能する。また、この感光体
について、電子写真複写機U−BixV2(小西六写
真工業(株)製)で実写特性を調べたところ、カブリ
のない高濃度な画像が得られた。 The deposited film obtained according to the present invention, namely Se-Te
As a result of analyzing the photoreceptor with an X-ray microanalyzer, it showed an ideal Te concentration profile as shown in FIG. (Te5% by weight) and functions as a thick charge transport layer. The surface layer is formed by evaporation of the second evaporation material 4, contains 18% by weight of Te, and functions as a charge generation layer with particularly good sensitivity in the long wavelength range due to the high tellurium content. Furthermore, when the actual copying characteristics of this photoreceptor were examined using an electrophotographic copying machine U-BixV 2 (manufactured by Konishiroku Photo Industry Co., Ltd.), high-density images without fog were obtained.
上記の如く、本発明に従う蒸発源及びその使用
方法によれば、蒸発源自体の構造が簡素化される
上に、容易に所望の濃度コントロールを行なうこ
とができる。得られた濃度プロフアイル(第3図
参照)は非常に望ましいものであり、感光体の高
感度化、電位保持性、残留電位の低下、黒紙電位
の低下といつた優れた静電特性を奏し得るものと
なる。 As described above, according to the evaporation source and method of using the same according to the present invention, the structure of the evaporation source itself is simplified, and desired concentration control can be easily performed. The density profile obtained (see Figure 3) is very desirable and shows excellent electrostatic properties such as high sensitivity of the photoreceptor, potential retention, low residual potential, and low black paper potential. It becomes something that can be played.
なお、上記の各蒸発材料3及び4間におけるテ
ルル濃度は種々選択でき、例えば第1の蒸発材料
3ではTe濃度を0〜8重量%、第2の蒸発材料
4ではTe濃度を15〜25重量%の範囲で夫々選択
してよい。また、テルルに代えて他の成分元素、
例えばヒ素、アンチモン等を用い、これらを各蒸
発材料とも同一種類としてよいし、或いはその種
類を異ならせてもよい。 Note that the tellurium concentration between the above-mentioned evaporation materials 3 and 4 can be selected variously. For example, the first evaporation material 3 has a Te concentration of 0 to 8% by weight, and the second evaporation material 4 has a Te concentration of 15 to 25% by weight. You may select each within the range of %. In addition, other component elements can be used instead of tellurium.
For example, arsenic, antimony, etc. may be used, and these evaporation materials may be of the same type or may be of different types.
第4図は、別の例による蒸発源を示している
が、ここでは各蒸発材料3,4間には上述した如
き隔壁を設けておらず、共通の内空間12に各蒸
発材料を配し、共通の突沸防止板15、ヒーター
17を設けている。第4図の蒸発源によれば、隔
壁がないために、各蒸発材料を共通の空間中へ蒸
発させ得るために蒸気の混合を均一化し、均一若
しくは連続した濃度コントロールを行なうことが
できる。これに加えて、容器内に隔壁を設けない
もう一つの利点として、隔壁を設けた場合に生じ
る(テルルによる)隔壁の腐食や蒸着膜への不純
物の混入という事態も避けることができる。 FIG. 4 shows another example of an evaporation source, in which no partition wall as described above is provided between the evaporation materials 3 and 4, and each evaporation material is arranged in a common inner space 12. , a common bumping prevention plate 15 and a heater 17 are provided. According to the evaporation source of FIG. 4, since there is no partition wall, each evaporation material can be evaporated into a common space, so that the mixture of vapors can be made uniform, and the concentration can be controlled uniformly or continuously. In addition to this, another advantage of not providing a partition wall inside the container is that it is possible to avoid corrosion of the partition wall (due to tellurium) and contamination of the deposited film with impurities, which would occur if a partition wall was provided.
以上、本発明を例示したが、上述の例は本発明
の技術的思想に基いて更に変形が可能である。 Although the present invention has been illustrated above, the above-mentioned example can be further modified based on the technical idea of the present invention.
例えば、蒸発源の形状や構造、蒸発材料の配置
や個数は種々変更できる。蒸発材料の容器は種々
の形状にして、蒸発表面積をコントロールしてよ
い。また、使用する蒸発材料はSe−Teに限らず、
Se−S、等でもよい。 For example, the shape and structure of the evaporation source, and the arrangement and number of evaporation materials can be changed in various ways. The container for the evaporative material may be of various shapes to control the evaporation surface area. In addition, the evaporation material used is not limited to Se-Te.
Se-S, etc. may also be used.
第1図は従来例による真空蒸着装置の要部概略
図である。第2図〜第4図は本発明の実施例を示
すものであつて、第2図は蒸発源の断面図、第3
図は蒸着膜のテルル濃度プロフアイルを示す図、
第4図は別の蒸発源の断面図である。
なお、図面に示された符号において、2…隔
壁、3…低テルル濃度の蒸発材料、4…高テルル
濃度の蒸発材料、5,6,17,18…ヒータ
ー、7…上部開口、8…被蒸着基体、11…蒸発
源、15,16…突沸防止板、である。
FIG. 1 is a schematic diagram of main parts of a conventional vacuum evaporation apparatus. 2 to 4 show embodiments of the present invention, in which FIG. 2 is a cross-sectional view of the evaporation source, and FIG.
The figure shows the tellurium concentration profile of the deposited film.
FIG. 4 is a cross-sectional view of another evaporation source. In addition, in the symbols shown in the drawings, 2... partition wall, 3... evaporation material with low tellurium concentration, 4... evaporation material with high tellurium concentration, 5, 6, 17, 18... heater, 7... upper opening, 8... covering evaporation substrate, 11... evaporation source, 15, 16... bumping prevention plate.
Claims (1)
蒸発材料を加熱、蒸発させるように構成された蒸
発源において、各容器内に収容される各蒸発材料
の蒸発表面積が互いに異なつていて、各蒸発材料
が単一の容器内に夫々収容され、各蒸発材料の混
合蒸気を導出させるための開口部を有し、各蒸発
材料を加熱するためのヒーターが夫々に配され、
これらのヒーターが同時にオンするように構成し
たことを特徴とする蒸発源。1. In an evaporation source configured to heat and evaporate two or more evaporation materials made of selenium alloys with different compositions, the evaporation surface area of each evaporation material housed in each container is different from each other, and each evaporation material is The materials are each housed in a single container, each having an opening for leading out a mixed vapor of each evaporation material, and a heater for heating each evaporation material,
An evaporation source characterized in that these heaters are configured to turn on at the same time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15424282A JPS5943876A (en) | 1982-09-04 | 1982-09-04 | Evaporation source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15424282A JPS5943876A (en) | 1982-09-04 | 1982-09-04 | Evaporation source |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5943876A JPS5943876A (en) | 1984-03-12 |
JPH0372152B2 true JPH0372152B2 (en) | 1991-11-15 |
Family
ID=15579939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15424282A Granted JPS5943876A (en) | 1982-09-04 | 1982-09-04 | Evaporation source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5943876A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2582095B2 (en) * | 1987-11-16 | 1997-02-19 | 住友電気工業株式会社 | Manufacturing method of diamond heat sink |
DE4104415C1 (en) * | 1991-02-14 | 1992-06-04 | 4P Verpackungen Ronsberg Gmbh, 8951 Ronsberg, De | |
US7166169B2 (en) * | 2005-01-11 | 2007-01-23 | Eastman Kodak Company | Vaporization source with baffle |
-
1982
- 1982-09-04 JP JP15424282A patent/JPS5943876A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5943876A (en) | 1984-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0372152B2 (en) | ||
US4551303A (en) | Method of using an evaporation source | |
US3927638A (en) | Vacuum evaporation plating apparatus | |
NO127943B (en) | ||
JPH0260754B2 (en) | ||
US3984585A (en) | Vacuum evaporation plating method | |
JPS636865B2 (en) | ||
JPS5943874A (en) | Vessel for storing material to be evaporated and its using method | |
JPH0151182B2 (en) | ||
JPS5943868A (en) | Vapor depositing method | |
JPH06299336A (en) | Crucible of evaporating source for vacuum deposition | |
JPH07111585B2 (en) | Vacuum evaporation source container for electrophotographic photoreceptor | |
JPS59223436A (en) | Photosensitive body of selenium-tellurium alloy | |
JPS6138266B2 (en) | ||
JPS58168052A (en) | Electrophotographic receptor and its manufacture | |
JPS61139663A (en) | Formation of vapor-deposited film and evaporating source | |
JPS6237233Y2 (en) | ||
JPS55143563A (en) | Manufacture of selenium photoreceptor | |
JPS5943866A (en) | Vapor depositing method | |
JPS5944058A (en) | Manufacture of photoreceptor | |
HU187919B (en) | Method for making photoelectrically sensitive and conductive layer | |
JPS60252354A (en) | Electrophotographic sensitive selenium and selenium photosensitive film and its manufacture | |
RU1789966C (en) | Electrophotographic material | |
JPH029107B2 (en) | ||
JPS60166954A (en) | Electrophotographic sensitive body made of selenium |