JPH0260754B2 - - Google Patents

Info

Publication number
JPH0260754B2
JPH0260754B2 JP15424182A JP15424182A JPH0260754B2 JP H0260754 B2 JPH0260754 B2 JP H0260754B2 JP 15424182 A JP15424182 A JP 15424182A JP 15424182 A JP15424182 A JP 15424182A JP H0260754 B2 JPH0260754 B2 JP H0260754B2
Authority
JP
Japan
Prior art keywords
evaporation
temperature
source
evaporated
evaporation material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15424182A
Other languages
Japanese (ja)
Other versions
JPS5943875A (en
Inventor
Hiroyuki Moriguchi
Masanori Matsumoto
Akira Nishiwaki
Yasuo Morohoshi
Hiroyuki Nomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP15424182A priority Critical patent/JPS5943875A/en
Priority to US06/528,215 priority patent/US4551303A/en
Publication of JPS5943875A publication Critical patent/JPS5943875A/en
Publication of JPH0260754B2 publication Critical patent/JPH0260754B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、2種以上の蒸発材料を加熱源によつ
て加熱、蒸発させるように配置し、加熱源を作動
させることにより、一方の蒸発材料が全量蒸発し
ても他方の蒸発材料がさらに蒸発されるように構
成した蒸発源及びその使用方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, two or more types of evaporation materials are arranged so as to be heated and evaporated by a heat source, and by operating the heat source, even if one of the evaporation materials is completely evaporated. The present invention relates to an evaporation source configured such that the other evaporation material is further evaporated, and a method for using the same.

セレン−テルル合金からなる感光体を製造する
際、いわゆるオープンボートや、クヌートセンセ
ル型と称される蒸発源が使用されることがある。
後者の蒸発源は、蒸発材料を収容した容器(ボー
ト)の上部開口を蒸発面積より狭く絞ることによ
り、蒸着速度が効果的に制御され、かつ突沸で飛
出した蒸発物が上部開口に至るまでの間に壁部に
付着して外方(即ち被蒸着基体側)へ飛翔するこ
とはない等の点で優れたものである。
When manufacturing a photoreceptor made of a selenium-tellurium alloy, an evaporation source called an open boat or a Knut-Sensel type is sometimes used.
In the latter evaporation source, the evaporation rate is effectively controlled by constricting the top opening of the vessel (boat) containing the evaporation material to be narrower than the evaporation area, and the evaporation rate is effectively controlled until the evaporation material that flies out due to bumping reaches the top opening. It is excellent in that it does not adhere to the wall during the process and will not fly outward (that is, toward the substrate to be evaporated).

こうしたクヌートセンセル型蒸発源としては、
構成が比較的簡素化しかつ操作性、蒸発安定性を
改良した単一ボート方式が例えば特開昭55−
176361号で提案されている。この公知の蒸発源
は、第1図の如く、1つのボート1の内空間を隔
壁2で2分し、これらの区分された各空間内に互
いに異なる成分濃度のセレン−テルル合金3,4
を配して、各セレン−テルル合金をヒーター5,
6で加熱、蒸発させ、上部開口7から導出させる
ことができる。この場合、各合金の温度を個々に
制御し、各蒸気を混合しながら例えばドラム状の
被蒸着基体8に蒸着することによつてテルルの濃
度プロフアイルをコントロールしている。
These Knutsensell type evaporation sources are
A single boat system with a relatively simple configuration and improved operability and evaporation stability is proposed, for example, in JP-A-55-
Proposed in No. 176361. As shown in FIG. 1, this known evaporation source divides the inner space of one boat 1 into two by a partition wall 2, and in each of these divided spaces, selenium-tellurium alloys 3, 4 with mutually different component concentrations are placed.
The heater 5,
6, it can be heated and evaporated, and it can be led out from the upper opening 7. In this case, the tellurium concentration profile is controlled by individually controlling the temperature of each alloy and depositing it on, for example, a drum-shaped substrate 8 while mixing each vapor.

しかしながら、この公知の装置及び方法には次
の如き欠点があることが判明した。即ち、各蒸発
材料の温度を個別に制御するに際し、例えば蒸発
速度の大きい(換言すればテルル濃度の低い)合
金は蒸発速度の小さい(換言すればテルル濃度の
高い)合金より早く蒸発する。従つて、前者の合
金の温度を熱電対で測温し、これに基いて温度コ
ントロールする場合には、合金の残渣が少なくな
り或いは合金が全量蒸発してしまつたときに熱電
対の測温値はそれまでよりも高めとなる。この高
めの検出温度に基いて、次にヒーター出力を低下
せしめる制御信号がヒーターに加えられることに
なるから、ヒーター出力は全体として大幅に低下
してしまう。この結果、ボート内の温度が低下し
すぎ、蒸気が壁面等に付着し易くなり、蒸着を安
定に行なうことができなくなる。このような付着
(内部付着)が生じると、得られた感光体の感度
のばらつきや疲労特性の劣化を招く。
However, it has been found that this known device and method has the following drawbacks. That is, when controlling the temperature of each evaporation material individually, for example, an alloy with a high evaporation rate (in other words, a low tellurium concentration) evaporates faster than an alloy with a low evaporation rate (in other words, a high tellurium concentration). Therefore, in the case of measuring the temperature of the former alloy with a thermocouple and controlling the temperature based on this, the temperature value measured by the thermocouple will be will be higher than before. Based on this higher detected temperature, a control signal is then applied to the heater to reduce the heater output, resulting in a significant overall reduction in the heater output. As a result, the temperature inside the boat drops too much, making it easy for steam to adhere to the walls and the like, making it impossible to perform stable vapor deposition. When such adhesion (internal adhesion) occurs, it causes variations in sensitivity and deterioration of fatigue characteristics of the obtained photoreceptor.

本発明は、上記の如き蒸発源の特長を生かしつ
つその欠陥を是正し、所望の濃度プロフアイルの
膜質及び膜特性の良好な蒸着膜を作成できる蒸発
源及びその使用方法を提供するものである。
The present invention provides an evaporation source and a method for using the same, which can take advantage of the above-mentioned features of the evaporation source while correcting its deficiencies and create a deposited film with a desired concentration profile and good film quality and properties. .

即ち、本発明は冒頭に述べた蒸発源において、
最後まで蒸発される蒸発材料の温度を検知する検
知手段と、この検知手段の検出温度に基いて加熱
源を制御する制御手段とを有することを特徴とす
るものである。
That is, in the evaporation source mentioned at the beginning of the present invention,
The present invention is characterized by having a detection means for detecting the temperature of the evaporation material that is evaporated to the end, and a control means for controlling the heating source based on the temperature detected by the detection means.

このように構成すれば、蒸着操作中の蒸発源温
度は、蒸発速度の小さい蒸発材料の温度情報に基
いてコントロールでき、従つてその蒸発材料の残
渣が少なくなるまで(即ち、この時点で蒸発速度
の大きい蒸発材料が全量蒸発していても)各熱源
を常に一定のパワーに保持でき、蒸発源温度を充
分かつ一定に保持できる。これによつて、既述し
た如く蒸着中温度低下が生じることはなく、蒸気
の内部付着を防止して安定に蒸着を行なうことが
でき、所望の濃度プロフアイル(感度等の膜特性
及び膜質、疲労特性の良好な)の蒸着膜を得るこ
とができる。
With this configuration, the evaporation source temperature during the evaporation operation can be controlled based on the temperature information of the evaporation material whose evaporation rate is low. Even if all of the evaporation material with a large amount has been evaporated), each heat source can always be maintained at a constant power, and the evaporation source temperature can be maintained sufficiently and constant. As a result, as mentioned above, there is no temperature drop during vapor deposition, and it is possible to prevent vapor from adhering internally and perform stable vapor deposition, and to achieve the desired concentration profile (film characteristics such as sensitivity, film quality, etc.). A deposited film with good fatigue properties can be obtained.

本発明の蒸発源は従つて、次の如くにして使用
されるのが望ましい。即ち、2種以上の蒸発材料
を加熱源によつて加熱、蒸発させるように配置
し、加熱源を作動させることにより、一方の蒸発
材料が全量蒸発しても他方の蒸発材料がさらに蒸
発されるように構成した蒸発源の使用方法におい
て、最後まで蒸発される蒸発材料の温度を検知す
ることによつて蒸発源全体を温度制御し、各蒸発
材料を同時に加熱蒸発させて被蒸着基体上に蒸着
する。
The evaporation source of the present invention is therefore preferably used in the following manner. That is, by arranging two or more evaporation materials to be heated and evaporated by a heat source and activating the heat source, even if one evaporation material is completely evaporated, the other evaporation material is further evaporated. In the method of using the evaporation source configured as above, the temperature of the entire evaporation source is controlled by detecting the temperature of the evaporation material that is evaporated to the end, and each evaporation material is simultaneously heated and evaporated to be deposited on the substrate to be evaporated. do.

この使用方法においては、蒸発材料としてはセ
レン合金が使用可能であるが、各セレン合金間に
おいて、セレン以外の同一種類の成分元素の濃度
が互いに異なつていたり、各セレン合金間におい
て、セレン以外の成分元素の種類が互いに異なつ
ていてもよい。
In this usage method, a selenium alloy can be used as the evaporation material, but the concentrations of the same type of component elements other than selenium may differ between each selenium alloy, and The types of component elements may be different from each other.

以下、本発明を実施例について図面参照下に詳
細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.

第2図に示す蒸発源11はクヌートセンセル型
に構成されるが、これによれば、容器本体10内
には、その内空間を実質的に区分する如き隔壁2
を設け、これにより区分された内空間2a及び2
bでは、濃度の異なる第1のSe−Te蒸発材料3
と第2のSe−Te蒸発材料4とが各内容器13,
14に夫々収容されている。各蒸発材料上にはヒ
ーターランプ5,6が夫々配され、更に上部には
突沸防止板15,16、蒸気加速及び凝縮防止用
のヒーターランプ17,18が配されている。
The evaporation source 11 shown in FIG. 2 is constructed in a Knutsensel type, and according to this, there is a partition wall 2 inside the container body 10 that substantially divides the internal space.
The internal spaces 2a and 2 separated by this
In b, the first Se-Te evaporation material 3 with different concentrations
and the second Se-Te evaporation material 4 in each inner container 13,
They are housed in 14. Heater lamps 5 and 6 are disposed on each evaporation material, and bumping prevention plates 15 and 16 and heater lamps 17 and 18 for vapor acceleration and condensation prevention are further disposed on the top.

上記第1の蒸発材料3としては蒸発速度の大き
い例えばTe濃度4重量%のSe−Teを装填し、上
記第2の蒸発材料4として蒸発速度の小さい例え
ばTe濃度20重量%のSe−Teを別々に装填した。
そして、ここで注目すべき構成は、蒸発速度の小
さいSe−Te4中に挿入された熱電対19で測定
された温度情報が検知部20を介して制御回路部
21に入力され、この制御回路部によつて各ヒー
ター6及び5のパワーが制御されることである。
従つて本発明における上記した効果を奏するため
に、蒸発源温度は常に蒸発速度の小さい材料4の
温度に基いて一定に保持できることになり、この
間は蒸発速度の大きい材料3(即ち内空間2a)
の温度も高く保持されることになる。材料3中に
挿入された熱電対22は単に測温用として用いら
れるにすぎない。
As the first evaporation material 3, Se-Te with a high evaporation rate, for example, a Te concentration of 4% by weight, is loaded, and as the second evaporation material 4, Se-Te with a low evaporation rate, for example, a Te concentration of 20% by weight, is loaded. Loaded separately.
The noteworthy configuration here is that the temperature information measured by the thermocouple 19 inserted into the Se-Te 4 having a low evaporation rate is input to the control circuit section 21 via the detection section 20. The power of each heater 6 and 5 is controlled by.
Therefore, in order to achieve the above-described effects of the present invention, the evaporation source temperature can always be kept constant based on the temperature of the material 4 with a low evaporation rate, and during this time, the temperature of the material 3 with a high evaporation rate (i.e., the inner space 2a)
The temperature will also be maintained high. The thermocouple 22 inserted into the material 3 is used merely for temperature measurement.

第3図は、上記の温度制御のプログラムを示す
ものであるが、ヒーター5,6を同時にオンさ
せ、各蒸発材料を所定の蒸着温度T(例えば290
℃)に高め、このままの温度に所定時間保持して
蒸着操作を行なう。この間に、蒸発し易いSe−
Te3が蒸発し、これが全量蒸発しても引続いて
Se−Te4はなお蒸発する。この場合、Se−Te3
がt1の時点で無くなつて破線で示す如くにより高
温(例えば330℃)に昇温しても、この温度は無
視し、Se−Te4の温度(即ち、一定の蒸発温度)
を保持できるよう温度コントロールし、ヒーター
5,6のパワーを保持する。この結果、蒸発源全
体としての温度は常に一定に保持されるから、既
述した如き内部付着等の問題が生じることはな
い。
FIG. 3 shows the above temperature control program, in which heaters 5 and 6 are turned on at the same time, and each evaporation material is heated to a predetermined evaporation temperature T (for example, 290°C).
℃) and held at this temperature for a predetermined period of time to perform the vapor deposition operation. During this time, Se-
Te3 evaporates, and even if all of this evaporates, it continues
Se-Te4 still evaporates. In this case, Se−Te3
Even if the temperature disappears at time t 1 and the temperature rises to a higher temperature (for example, 330℃) as shown by the broken line, this temperature is ignored and the temperature of Se-Te4 (i.e., constant evaporation temperature) is
The temperature is controlled to maintain the power of the heaters 5 and 6. As a result, the temperature of the evaporation source as a whole is always kept constant, so problems such as internal adhesion as described above do not occur.

これに反し、蒸発速度の大きいSe−Te3の温
度に基いてヒーターをコントロールした場合に
は、第4図に示す如く、第3図に破線で示した昇
温状態に対応してヒーターのパワーを低下せしめ
るように制御されるから、実際の蒸発源温度は実
線で示す如くt1の時点から降温してしまい、不適
当な状態となる。なお、蒸着に際しての蒸着槽内
の真空度は10-3Torr以上とするのがよい。
On the other hand, when the heater is controlled based on the temperature of Se-Te3, which has a high evaporation rate, as shown in Figure 4, the power of the heater is adjusted according to the temperature increase shown by the broken line in Figure 3. Since the temperature of the evaporation source is controlled to decrease, the actual temperature of the evaporation source drops from the time point t1 as shown by the solid line, resulting in an inappropriate state. Note that the degree of vacuum in the vapor deposition tank during vapor deposition is preferably 10 −3 Torr or higher.

本発明に従つて得られた蒸着膜、即ちSe−Te
感光層をX線マイクロアナライザーで解析した結
果、第5図に示す如き理想的なTe濃度プロフア
イルを示し、内層はTe5重量%であつて電荷輸送
層として機能し、表層はTe18重量%であり、テ
ルルの高含有量により特に長波長域の感度が良好
となつた電荷発生層として機能する。また、この
感光体について、電子写真複写機U−BixV2(小
西六写真工業(株)製)で実写特性を調べたところ、
カブリのない高濃度な画像が得られた。
The deposited film obtained according to the present invention, namely Se-Te
As a result of analyzing the photosensitive layer with an X-ray microanalyzer, it showed an ideal Te concentration profile as shown in Figure 5, with the inner layer containing 5% by weight of Te and functioning as a charge transport layer, and the surface layer containing 18% by weight of Te. , functions as a charge generation layer with particularly good sensitivity in the long wavelength range due to the high tellurium content. In addition, when we investigated the photosensitive characteristics of this photoreceptor using an electrophotographic copying machine U-BixV 2 (manufactured by Konishiroku Photo Industry Co., Ltd.), we found that
A high-density image with no fog was obtained.

上記の如く、本発明に従う蒸発源及びその使用
方法によれば、蒸発源自体の構造が簡素化される
上に、容易に所望の濃度コントロールを行なうこ
とができる。得られた濃度プロフアイル(第5図
参照)は非常に望ましいものであり、感光体の高
感度化、電位保持性、残留電位の低下、黒紙電位
の低下といつた優れた静電特性を奏し得るものと
なる。
As described above, according to the evaporation source and method of using the same according to the present invention, the structure of the evaporation source itself is simplified, and desired concentration control can be easily performed. The density profile obtained (see Figure 5) is very desirable and shows excellent electrostatic properties such as high sensitivity of the photoreceptor, potential retention, low residual potential, and low black paper potential. It becomes something that can be played.

なお、上記の各蒸発材料3及び4間におけるテ
ルル濃度は種々選択でき、例えば第1の蒸発材料
3ではTe濃度を0〜8重量%、第2の蒸発材料
4ではTe濃度を15〜25重量%の範囲で夫々選択
してよい。また、テルルに代えて他の成分元素、
例えばヒ素、アンチモン等を用い、これらを各蒸
発材料とも同一種類としてよいし、或いはその種
類を異ならせてもよい。
Note that the tellurium concentration between the above-mentioned evaporation materials 3 and 4 can be selected variously. For example, the first evaporation material 3 has a Te concentration of 0 to 8% by weight, and the second evaporation material 4 has a Te concentration of 15 to 25% by weight. You may select each within the range of %. In addition, other component elements can be used instead of tellurium.
For example, arsenic, antimony, etc. may be used, and these evaporation materials may be of the same type or may be of different types.

第6図は、別の例による蒸発源を示している
が、ここでは各蒸発材料3,4間には上述した如
き隔壁を設けておらず、共通の内空間12に各蒸
発材料を配し、共通の突沸防止板15、ヒーター
17を設けている。なお、上述した温度検知及び
制御回路系は図示省略した。
FIG. 6 shows another example of an evaporation source, in which no partition wall as described above is provided between the evaporation materials 3 and 4, and each evaporation material is arranged in a common inner space 12. , a common bumping prevention plate 15 and a heater 17 are provided. Note that the temperature detection and control circuit system described above is not shown.

このような蒸発源においても、ヒーター5,6
を個別に制御すると既述した如き内部付着が生じ
る傾向がある。従つて、本発明によつて第2図で
示した如くに温度コントロールすることは効果的
である。
Even in such an evaporation source, the heaters 5 and 6
If these are individually controlled, internal adhesion as described above tends to occur. Therefore, it is effective to control the temperature as shown in FIG. 2 according to the present invention.

なお、第6図の蒸発源によれば、隔壁がないた
めに、各蒸発材料を共通の空間中へ蒸発させ得る
ために蒸気の混合を均一化し、均一若しくは連続
した濃度コントロールを行なうことができる。こ
れに加えて、容器内に隔壁を設けないもう1つの
利点として、隔壁を設けた場合に生じる(テルル
による)隔壁の腐食や蒸着膜への不純物の混入と
いう事態も避けることができる。
In addition, according to the evaporation source shown in FIG. 6, since there is no partition wall, each evaporation material can be evaporated into a common space, so that the mixture of vapors can be made uniform, and the concentration can be controlled uniformly or continuously. . In addition to this, another advantage of not providing a partition wall in the container is that it is possible to avoid corrosion of the partition wall (due to tellurium) and contamination of the deposited film with impurities, which would occur if a partition wall was provided.

以上、本発明を例示したが、上述の例は本発明
の技術的思想に基いて更に変形が可能である。
Although the present invention has been illustrated above, the above-mentioned example can be further modified based on the technical idea of the present invention.

例えば、蒸着源の形状や構造、蒸発材料の配置
や個数は種々変更できる。また、使用する蒸発材
料はSe−Teに限らず、Se−S、Fe−Ni、AgBr
−I等でもよい。本発明は、オープンボート型の
蒸発源にも適用可能である。
For example, the shape and structure of the evaporation source, and the arrangement and number of evaporation materials can be changed in various ways. In addition, the evaporation materials used are not limited to Se-Te, but also Se-S, Fe-Ni, AgBr
-I etc. may be used. The present invention is also applicable to open boat type evaporation sources.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例による真空蒸着装置の要部概略
図である。第2図〜第6図は本発明の実施例を示
すものであつて、第2図は蒸発源の断面図、第3
図は蒸発源の温度プログラム図、第4図は従来例
による蒸発源の温度プログラム図、第5図は蒸着
膜のテルル濃度プロフアイルを示す図、第6図は
別の蒸発源の断面図である。 なお、図面に示された符号において、2……隔
壁、3……低テルル濃度の蒸発材料、4……高テ
ルル濃度の蒸発材料、5,6,17,18……ヒ
ーター、7……上部開口、8……被蒸着基体、1
1……蒸発源、15,16……突沸防止板、1
9,22……熱電対、20……温度検知部、21
……制御回路部である。
FIG. 1 is a schematic diagram of main parts of a conventional vacuum evaporation apparatus. 2 to 6 show embodiments of the present invention, in which FIG. 2 is a cross-sectional view of the evaporation source, and FIG.
Figure 4 is a temperature program diagram of an evaporation source, Figure 4 is a temperature program diagram of a conventional evaporation source, Figure 5 is a diagram showing the tellurium concentration profile of a deposited film, and Figure 6 is a cross-sectional view of another evaporation source. be. In addition, in the symbols shown in the drawings, 2... partition wall, 3... evaporation material with low tellurium concentration, 4... evaporation material with high tellurium concentration, 5, 6, 17, 18... heater, 7... upper part Opening, 8... Vapor deposition target substrate, 1
1... Evaporation source, 15, 16... Bumping prevention plate, 1
9, 22...Thermocouple, 20...Temperature detection section, 21
...This is the control circuit section.

Claims (1)

【特許請求の範囲】 1 2種以上の蒸発材料を加熱源によつて加熱、
蒸発させるように配置し、加熱源を作動させるこ
とにより、一方の蒸発材料が全量蒸発しても他方
の蒸発材料がさらに蒸発されるように構成した蒸
発源において、最後まで蒸発される蒸発材料の温
度を検知する検知手段と、この検知手段の検出温
度に基いて加熱源を制御する制御手段とを有する
ことを特徴とする蒸発源。 2 2種以上の蒸発材料を加熱源によつて加熱、
蒸発させるように配置し、加熱源を作動させるこ
とにより、一方の蒸発材料が全量蒸発しても他方
の蒸発材料がさらに蒸発されるように構成した蒸
発源の使用方法において、最後まで蒸発される蒸
発材料の温度を検知することによつて蒸発源全体
を温度制御し、各蒸発材料を同時に加熱蒸発させ
て被蒸着基体上に蒸着することを特徴とする蒸発
源の使用方法。
[Claims] 1. Heating two or more evaporation materials with a heat source,
The evaporation source is arranged so that the evaporation material is evaporated to the end, and the heating source is operated so that even if one evaporation material is completely evaporated, the other evaporation material is further evaporated. An evaporation source comprising: a detection means for detecting temperature; and a control means for controlling a heating source based on the temperature detected by the detection means. 2 Heating two or more evaporation materials with a heat source,
In a method of using an evaporation source configured to evaporate and operate a heating source, even if one evaporation material is completely evaporated, the other evaporation material is further evaporated. A method of using an evaporation source, characterized in that the temperature of the entire evaporation source is controlled by detecting the temperature of the evaporation material, and each evaporation material is simultaneously heated and evaporated to be deposited on a substrate to be evaporated.
JP15424182A 1982-09-04 1982-09-04 Evaporation source and its using method Granted JPS5943875A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15424182A JPS5943875A (en) 1982-09-04 1982-09-04 Evaporation source and its using method
US06/528,215 US4551303A (en) 1982-09-04 1983-08-31 Method of using an evaporation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15424182A JPS5943875A (en) 1982-09-04 1982-09-04 Evaporation source and its using method

Publications (2)

Publication Number Publication Date
JPS5943875A JPS5943875A (en) 1984-03-12
JPH0260754B2 true JPH0260754B2 (en) 1990-12-18

Family

ID=15579918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15424182A Granted JPS5943875A (en) 1982-09-04 1982-09-04 Evaporation source and its using method

Country Status (1)

Country Link
JP (1) JPS5943875A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115970A (en) * 1984-07-02 1986-01-24 Matsushita Electric Ind Co Ltd Vapor deposition apparatus
JP2582095B2 (en) * 1987-11-16 1997-02-19 住友電気工業株式会社 Manufacturing method of diamond heat sink
JPH047182Y2 (en) * 1987-12-07 1992-02-26

Also Published As

Publication number Publication date
JPS5943875A (en) 1984-03-12

Similar Documents

Publication Publication Date Title
JPH05139882A (en) Molecular beam source
US4551303A (en) Method of using an evaporation source
JPH0260754B2 (en)
US3927638A (en) Vacuum evaporation plating apparatus
JPH0372152B2 (en)
US3984585A (en) Vacuum evaporation plating method
JPH02171756A (en) Vacuum evaporation source container of photosensitive body for electrophotography
JPS6299459A (en) Evaporating source for vacuum deposition
GB2145842A (en) Photoconductive member
JPS636865B2 (en)
JPS5943874A (en) Vessel for storing material to be evaporated and its using method
US4415642A (en) Electrophotographic member of Se-Te-As with halogen
JPH0151182B2 (en)
US4626486A (en) Electrophotographic element comprising alloy of selenium and tellurium doped with chlorine and oxygen
JPS59223436A (en) Photosensitive body of selenium-tellurium alloy
JPS5943866A (en) Vapor depositing method
US4476209A (en) Selenium-antimony alloy electrophotographic photoreceptors
JPS59113180A (en) Vapor deposition device
JPS58168052A (en) Electrophotographic receptor and its manufacture
JPH0243865Y2 (en)
JPH0536785B2 (en)
JPS5852479A (en) Vapor depositing device
JPS6064357A (en) Electrophotographic sensitive body made of selenium
JP2599950B2 (en) Photoconductor structure
JPS61139663A (en) Formation of vapor-deposited film and evaporating source