JPS5943875A - Evaporation source and its using method - Google Patents

Evaporation source and its using method

Info

Publication number
JPS5943875A
JPS5943875A JP15424182A JP15424182A JPS5943875A JP S5943875 A JPS5943875 A JP S5943875A JP 15424182 A JP15424182 A JP 15424182A JP 15424182 A JP15424182 A JP 15424182A JP S5943875 A JPS5943875 A JP S5943875A
Authority
JP
Japan
Prior art keywords
evaporation
source
temperature
evaporated
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15424182A
Other languages
Japanese (ja)
Other versions
JPH0260754B2 (en
Inventor
Hiroyuki Moriguchi
博行 森口
Masanori Matsumoto
雅則 松本
Akira Nishiwaki
彰 西脇
Yasuo Morohoshi
保雄 諸星
Hiroyuki Nomori
野守 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP15424182A priority Critical patent/JPS5943875A/en
Priority to US06/528,215 priority patent/US4551303A/en
Publication of JPS5943875A publication Critical patent/JPS5943875A/en
Publication of JPH0260754B2 publication Critical patent/JPH0260754B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition

Abstract

PURPOSE:To prevent the internal sticking of vapor and to perform stable vapor deposition, by heating and evaporating >=2 kinds of materials to be evaporated in a vapor source with respective heat sources and controlling the temp. of the material to be evaporated which is lower in the rate of evaporation thereby controlling the temp. over the entire part. CONSTITUTION:The vessel body 10 of an evaporation source 11 is partitioned to spaces 2a, 2b by a partition wall 2 and the 1st and the 2nd Se-Te materials 3, 4 to be evaporated having respectively different concns. are stored in vessels 13, 14 and are heated and evaporated with heater lamps 5, 6. The vapors are conducted through an upper opening 7 smaller than the evaporation area thereof toward a substrate to be deposited therein with a film by evaporation (not shown). Plates 15, 16 for preventing bumping and heater lamps 17, 18 for accelerating the vapors and preventing condensation are preferably provided in the respective spaces 2a, 2b. The temp. of the 2nd material 4 which is lower in the rate of evaporation of the above-mentioned materials to be evaporated is detected with a thermocouple 19, and the lamps 5, 6 are controlled by a detection part 20 and a control circuit 21, whereby the temp. over the entire part of the source 11 is controlled constant.

Description

【発明の詳細な説明】 本発明は、2種以上の蒸発材料を各熱源によって加熱、
蒸発させるように構成された蒸発源及びその使用方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides heating of two or more types of evaporation materials by respective heat sources.
The present invention relates to an evaporation source configured to evaporate and a method of using the same.

セレン−テルル合金からなる感光体を製造する際、いわ
ゆるオープンボートや、クヌードセンセル型と称される
蒸発源が使用されることがある。後者の蒸発源は、蒸発
材料を収容した容器(ボート)の上部開口を蒸発面積よ
シ狭く絞ることによシ、蒸着速度が効果的に制御され、
かつ突沸で飛出した蒸発物が上部開口に至るまでの間に
壁部に付着して外方(即ち被蒸着基体側)へ飛翔するこ
とはない等の点て優れたものである。
When manufacturing a photoreceptor made of a selenium-tellurium alloy, an evaporation source called an open boat or a Knudsen cell type is sometimes used. In the latter evaporation source, the evaporation rate is effectively controlled by narrowing the upper opening of the vessel (boat) containing the evaporation material to a narrower area than the evaporation area.
It is also excellent in that the evaporated matter ejected by bumping does not adhere to the wall and fly outward (that is, toward the substrate to be deposited) before reaching the upper opening.

こうしたクヌードセンセル型蒸発源としては、1成が比
較的簡素化しかつ操作性、蒸発安定性を改良した単一ボ
ート方式が例えば特開昭55−176361号で提案さ
れている。この公知の蒸発源は、第1図の如く、1つの
ボート1の内空間を隔壁2で2分し、これらの区分され
た各空間内に互いに異なる成分濃度のセレン−テルル合
金3.4を配して、各セレン−テルル合金をヒーター5
.6で加熱、蒸発させ、上部間ロアから導出させること
ができる。この場合、各合金の温度を個々に制御し、各
蒸気を混合しながら例えばドラム状の被蒸着基体8に蒸
着することによってテルルの濃度プロファイルをコント
ロールしている。
As such a Knudsen cell type evaporation source, a single boat system which has a relatively simple structure and improved operability and evaporation stability has been proposed, for example, in Japanese Patent Laid-Open No. 176361/1983. As shown in FIG. 1, this known evaporation source divides the inner space of one boat 1 into two by a partition wall 2, and selenium-tellurium alloy 3.4 with different component concentrations is placed in each of these divided spaces. Each selenium-tellurium alloy is placed in the heater 5
.. 6, it can be heated and evaporated, and it can be led out from the lower part between the upper parts. In this case, the concentration profile of tellurium is controlled by individually controlling the temperature of each alloy and depositing it on, for example, a drum-shaped deposition target substrate 8 while mixing each vapor.

しかしながら、この公知の装置及び方法に0次の如き欠
点があることが判明した。即ち、各蒸発材料の温度を個
別に制御するに際し、例えば蒸発速度の大きい(換言す
ればテルル濃度の低い)合金は蒸発速度の小さい(換言
すればテルル濃度の高い)合金より早く蒸発する。従っ
て、前者の合金の温度を熱電対で測温し、これに基いて
温度コントロールする場合には、合金の残涜が少なくな
シ或いは合金が全量蒸発してしまったときに熱電対の測
温値はそれまでよシも高めと々る。この高めの検出温度
に基いて、次にヒーター出力を低下せしめる制御信号が
ヒーターに加えられることになるから、ヒーター出力は
全体として大幅に低下してしまう。
However, it has been found that this known device and method has drawbacks such as zero order. That is, when controlling the temperature of each evaporation material individually, for example, an alloy with a high evaporation rate (in other words, a low tellurium concentration) evaporates faster than an alloy with a low evaporation rate (in other words, a high tellurium concentration). Therefore, in the case of measuring the temperature of the former alloy with a thermocouple and controlling the temperature based on this, it is necessary to measure the temperature of the thermocouple when there is little residual alloy or when the alloy has completely evaporated. The prices are even higher than before. Based on this higher detected temperature, a control signal is then applied to the heater to reduce the heater output, resulting in a significant overall reduction in the heater output.

この結果、ボート内の温度が低下しすぎ、蒸気が壁面等
に付着し易くなυ、蒸着を安定に行なうことができなく
なる。このような付yri(内部付着)が生じると、得
られた感光体の感度のばらつきや疲労特性の劣化を招く
As a result, the temperature inside the boat becomes too low, and the steam tends to adhere to the walls, etc., making it impossible to perform stable vapor deposition. When such adhesion (internal adhesion) occurs, it causes variations in sensitivity and deterioration of fatigue characteristics of the obtained photoreceptor.

本発明は、上記の如き蒸発源の特長を生かしつつその欠
陥を是正し、所望の濃度プロファイルの膜質及び膜特性
の良好な蒸着膜を作成できる蒸発源及びその使用方法を
提供するものである。
The present invention provides an evaporation source and a method for using the same, which can take advantage of the above-mentioned features of the evaporation source while correcting its deficiencies and create a deposited film with a desired concentration profile and good film quality and film properties.

即ち、本発明は冒頭に述べた蒸発源において、蒸発速度
の小さい方の蒸発材料の温度を検知する検知手段と、こ
の検知手段の検出温度に基いて前記各熱源を制御する制
御手段とを有することを特徴とするものである。
That is, the present invention includes, in the evaporation source described at the beginning, a detection means for detecting the temperature of the evaporation material having a smaller evaporation rate, and a control means for controlling each of the heat sources based on the temperature detected by the detection means. It is characterized by this.

このように構成すれば、蒸着操作中の蒸発源温度は、蒸
発速度の小さい蒸発材料の温度情報に基いてコントロー
ルでき、従ってその蒸発材料の残11少なくなるまで(
即ち、この時点で蒸発速度の大きい蒸発材料が全量蒸発
していても)各熱源を常に一定のパワーに保持でき、蒸
発源温度を充分かつ一定に保持できる。これによって、
既述した如く蒸着中温度低下が生じることはなく、蒸気
の内部付着を防止して安定に蒸着を行なうことができ、
所望の濃度プロファイル(感度等の膜特性及び膜質、疲
労特性の良好な)の蒸着膜を得ることができる。
With this configuration, the evaporation source temperature during the evaporation operation can be controlled based on the temperature information of the evaporation material with a low evaporation rate, and therefore, the temperature of the evaporation source during the evaporation operation can be controlled based on the temperature information of the evaporation material whose evaporation rate is low.
That is, even if the evaporation material with a high evaporation rate has completely evaporated at this point, each heat source can always be maintained at a constant power, and the evaporation source temperature can be maintained sufficiently and constant. by this,
As mentioned above, there is no temperature drop during vapor deposition, and it is possible to prevent vapor from adhering internally and perform stable vapor deposition.
A deposited film with a desired concentration profile (good film properties such as sensitivity, film quality, and fatigue properties) can be obtained.

本発明の蒸発源は従って、次の如くにして使用されるの
が望ましい。即ち、2種以」二の蒸発材料を各熱源によ
って加熱、蒸発させるように構成された蒸発源の使用方
法において、蒸発速度の小さい方の蒸発材料の温度を制
御することによって蒸発源全体を温度制御し、各蒸発材
料を同時に加熱蒸発させて被蒸着基体上に蒸着する。
The evaporation source of the present invention is therefore preferably used in the following manner. That is, in a method of using an evaporation source configured to heat and evaporate two or more types of evaporation materials using each heat source, the temperature of the entire evaporation source can be adjusted by controlling the temperature of the evaporation material with a smaller evaporation rate. Each evaporation material is heated and evaporated at the same time and deposited on the substrate.

この使用方法においては、蒸発材料とじとはセレン合金
が使用可能であるが、各セレン合金間において、セレン
以外の同一種類の成分元素の濃度が互いに異なっていた
シ、各セレン合金間において、セレン以外の成分元素の
種類が互いに異なっていてもよい。
In this usage method, selenium alloys can be used for evaporation material binding, but the concentrations of the same type of component elements other than selenium are different between each selenium alloy, and selenium The types of component elements other than the above may be different from each other.

以下、本発明を実施例について図面参照下に詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.

第2図に示す蒸発源11はクヌードセンセル型に構成さ
れるが、これによれば、容器本体10内には、その内空
間を実質的に区分する如き隔壁2を設け、これによシー
区分された内空間2a及び2bでは、濃度の異なる第1
の5e−Te蒸発材料3と第2の5e−Te蒸発材料4
とが各内容器13.14に夫々収容されている。各蒸発
材料上にはヒーターランプ5.6が夫々配され、更に上
部には突沸防止板へ16、蒸気加速及び凝縮防止用のヒ
ーターランプ17.1Bが配されている。
The evaporation source 11 shown in FIG. 2 is constructed in the Knudsen cell type, and according to this, a partition wall 2 is provided in the container body 10 to substantially divide the internal space. In the internal spaces 2a and 2b, which are divided into spaces 2a and 2b, the first
5e-Te evaporation material 3 and second 5e-Te evaporation material 4
and are accommodated in each inner container 13, 14, respectively. A heater lamp 5.6 is arranged on each evaporation material, and furthermore, a bumping prevention plate 16 and a heater lamp 17.1B for vapor acceleration and condensation prevention are arranged on the upper part.

上記第1の蒸発材料3としては蒸発速度の大きい例えば
Te濃度4重量−の5e−Teを装填し、上記第2の蒸
発材料4として蒸発速度の小さい例えばTe濃濃度2這 そして、ここで注目すべき構成は、蒸発速度の小さい5
eTed中に挿入された熱電対19で測定された温度情
報が検知部20を介して制御回路部21に入力され、こ
の制御回路部によりて各ヒーター6及び5のパワーが制
御されることである。従って本発明における上記した効
果を奏するために、蒸発源温度は常に蒸発速度の小さい
材料4の温度に基いて一定に保持できることになり、こ
の間は蒸発速度の大きい材料3(即ち内空間2a)の温
度も高く保持されることになる。材料3中に挿入された
熱電対22は単に測温用として用いられるにすぎない。
The first evaporation material 3 is loaded with 5e-Te, which has a high evaporation rate, for example, a Te concentration of 4 weight, and the second evaporation material 4 has a low evaporation rate, for example, with a Te concentration of 2. The configuration that should be used is 5, which has a low evaporation rate.
Temperature information measured by a thermocouple 19 inserted into the eTed is input to a control circuit section 21 via a detection section 20, and the power of each heater 6 and 5 is controlled by this control circuit section. . Therefore, in order to achieve the above-mentioned effects of the present invention, the evaporation source temperature can always be kept constant based on the temperature of the material 4 with a low evaporation rate, and during this time, the temperature of the material 3 with a high evaporation rate (i.e., the inner space 2a) can be kept constant. The temperature will also be kept high. The thermocouple 22 inserted into the material 3 is used merely for temperature measurement.

第3図は、上記の温度制御のプログラムを示すものであ
るが、ヒーター5、6を同時に,]ンさせ、各蒸発材料
を所定の蒸着温度T(例えば290℃)に高め、このま
まの温度に所定時間保持して蒸着操作を行なう。この間
に、蒸発し易い5e−Teaが蒸発し、これが全量蒸発
しても引続いてSe −Te4はなお蒸発する。この場
合、5e−Te3がtlの時点で無くなって破線で示す
如くによシ高温(例えば330℃)に昇温しても、この
温度は無視し、5e−Te4の温度(即ち、一定の蒸発
温度)を保持できるよう温度コントロールし、ヒーター
5、6のノくワーを保持する。この結果、蒸発源全体と
しての温度は常に一定に保持されるから、既述した如き
内部付着等の問題が生じることはない。
FIG. 3 shows the temperature control program described above. Heaters 5 and 6 are turned on at the same time to raise each evaporation material to a predetermined evaporation temperature T (for example, 290°C), and then the temperature is maintained at this temperature. The vapor deposition operation is performed by holding the temperature for a predetermined time. During this time, 5e-Tea, which is easily evaporated, evaporates, and even if all of this evaporates, Se-Te4 still evaporates. In this case, even if 5e-Te3 disappears at time tl and the temperature rises to a much higher temperature (for example, 330°C) as shown by the broken line, this temperature is ignored and the temperature of 5e-Te4 (i.e., constant evaporation The temperature is controlled so that the temperature is maintained, and the nozzles of heaters 5 and 6 are maintained. As a result, the temperature of the evaporation source as a whole is always kept constant, so problems such as internal adhesion as described above do not occur.

これに反し、蒸発速度の大きい5e−Teaの温度に基
いてヒーターをコントロールした場合には、第4図に示
す如く、第3図に破線で示した昇温状態に対応してヒー
ターのパワーを低下せしめるように制御されるから、実
際の蒸発源温度は実線で示す如くt,の時点から降温し
てしまい、不適当な状態と万る。
On the other hand, when the heater is controlled based on the temperature of 5e-Tea, which has a high evaporation rate, as shown in Figure 4, the power of the heater is adjusted according to the temperature increase shown by the broken line in Figure 3. Since the temperature of the evaporation source is controlled to decrease, the actual temperature of the evaporation source drops from the time point t, as shown by the solid line, resulting in an inappropriate state.

なお、蒸着に際しての蒸着槽内の真空度は10−” T
Orr以上とするのがよい。
The degree of vacuum in the vapor deposition tank during vapor deposition is 10-”T.
It is preferable to set it to Orr or more.

本発明に従って得られた蒸着膜、即ち5e−Te感光体
をX線マイクロアナライザーで解析した結果、第5図に
示す如き理想的なTe濃度プロファイルを示し、内層は
Te53A量チであって電荷輸送埴として機能し、表層
はTe 18重量%であシ、テルルの高含有量により特
に長波長城の感度が良好となった電荷発生層として機能
する。また、この感光体について、電子写真複写機U 
−BixV、 (小西六写真工業(株)製)で実写特性
を調べたところ、カプリのない高濃度な画像が得られた
As a result of analyzing the deposited film obtained according to the present invention, that is, the 5e-Te photoreceptor, with an X-ray microanalyzer, it showed an ideal Te concentration profile as shown in FIG. The surface layer is composed of 18% by weight of Te and functions as a charge generation layer with particularly good sensitivity at long wavelengths due to the high tellurium content. Regarding this photoreceptor, electrophotographic copying machine U
-BixV (manufactured by Konishiroku Photo Industry Co., Ltd.) was examined for actual photographic characteristics, and high-density images without capri were obtained.

上記の如く、本発明に従う蒸発源及びその使用方法によ
れば、蒸発源自体の構造が簡素化される上に、容易に所
望の濃度コントロールを行なうことができる。得られた
濃度プロファイル(第5図参照)は非常に望ましいもの
であシ、感光体の高感度化、電位保持性、残留電位の低
下、黒紙電位の低下といつだ優れた静電特性を奏し得る
ものとなる。
As described above, according to the evaporation source and method of using the same according to the present invention, the structure of the evaporation source itself is simplified, and desired concentration control can be easily performed. The density profile obtained (see Figure 5) is very desirable, and it shows excellent electrostatic properties such as high sensitivity of the photoreceptor, potential retention, low residual potential, and low black paper potential. It becomes something that can be performed.

なお、上記の各蒸発利料3及び4間におけるチル西濃度
は種々選択でき、例えば第1の蒸発材料3ではTe1l
¥!度を0〜8重量%、第2の蒸発利料4ではTe濃度
を15〜25重量%の範囲で夫々選択してよい。
Note that the chill concentration between the above-mentioned evaporation materials 3 and 4 can be variously selected; for example, in the first evaporation material 3, Te1l
¥! The Te concentration may be selected in the range of 0 to 8% by weight, and the Te concentration in the second evaporation charge 4 may be selected in the range of 15 to 25% by weight.

また、テルルに代えて他の成分元素、例えばヒ素、アン
チモン等を用い、これらを各蒸発材料とも同一種類とし
てよいし、或いはその種類を異ならせてもよい0 第6図は、別の例による蒸発源を示しているが、ここで
は各蒸発材料3.4間には一ヒ述した如き隔壁を設けて
おらず、共通の内空間12に各蒸発材料を配し、共通の
突沸防止板15、ヒーター17を設けている0なお、上
述した温度検知及び制御回路系は図示省略した。
Further, other component elements such as arsenic, antimony, etc. may be used in place of tellurium, and these may be the same type for each evaporation material, or the types may be different. Figure 6 shows another example. Although the evaporation source is shown here, there is no partition wall between each evaporation material 3.4 as described above, and each evaporation material is arranged in a common inner space 12, and a common bumping prevention plate 15 is provided. , a heater 17 is provided. Note that the temperature detection and control circuit system described above is not shown.

このような蒸発源においても、ヒーター5.6を個別に
制御すると既述した如き内部付着が生じる傾向がある。
Even in such an evaporation source, if the heaters 5, 6 are individually controlled, internal adhesion as described above tends to occur.

従って、本発明によって第2図で示した如くに温度コン
トロールすることは効果的である。
Therefore, it is effective to control the temperature as shown in FIG. 2 according to the present invention.

なお、第6図の蒸発源によれば、隔壁がないために、各
蒸発材料を共通の空間中へ蒸発させ得るために蒸気の混
合を均一化し、均−着しくけ連続した濃度コントキール
を行なうことができる。これに加えて、容器内に隔壁を
設けないもう1つの利点として、隔壁を設けた場合に生
じる(テルルによる)隔壁の腐食や蒸着膜への不純物の
混入という事態も避けることができる。
According to the evaporation source shown in Fig. 6, since there is no partition wall, each evaporation material can be evaporated into a common space, so that the mixture of vapors is made uniform, and a continuous concentration control is achieved by uniformity. can be done. In addition to this, another advantage of not providing a partition wall in the container is that it is possible to avoid corrosion of the partition wall (due to tellurium) and contamination of the deposited film with impurities, which would occur if a partition wall was provided.

以上、本発明を例示したが、上述の例は本発明の技術的
思想に基いて更に変形が可能である。
Although the present invention has been illustrated above, the above-mentioned example can be further modified based on the technical idea of the present invention.

例えば、蒸着源の形状や構造、蒸発材料の配置や個数は
種々変更できる。また、使用する蒸発材料は5e−Te
に限らず、Se −S、、Fe−Ni、AyBr  I
等でもよい。本発明は、オープンボート型の蒸発源にも
適用可能である。
For example, the shape and structure of the evaporation source, and the arrangement and number of evaporation materials can be changed in various ways. In addition, the evaporation material used is 5e-Te.
Se-S, , Fe-Ni, AyBr I
etc. may be used. The present invention is also applicable to open boat type evaporation sources.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例による真空蒸着装置の要部概略図である
。 第2図〜第6図は本発明の実施例を示すものであって、 第2図は蒸発源の断面図、 第3図は蒸発源の温度プログラム図、 第4図は従来例による蒸発源の温度プログラム図、第5
図は蒸着膜のテルル濃度プロファイルを示す図、 第6図は別の蒸発源の断面図 である。 なお、図面に示された符号において、 2−−−−−−一隔壁 3−−−−−−低テルル濃度の蒸発材料4−−−−−−
高テルル濃度の蒸発材料5.6.17.1B−−−−−
セータ−7−−−−−−−土部開口 8−−−−−−一被蒸着基体 11−−−−−−一蒸発源 15.16−−−−突沸防止板 19.22−一−熱電対 20−−−−−−一温度検知部 21−−−−−−制御回路部 である。 代理人 弁理士 逢 坂  宏 第3図 第4図 時間 第5図 第6図 3    4
FIG. 1 is a schematic diagram of main parts of a conventional vacuum evaporation apparatus. Figures 2 to 6 show examples of the present invention, in which Figure 2 is a cross-sectional view of the evaporation source, Figure 3 is a temperature program diagram of the evaporation source, and Figure 4 is a conventional evaporation source. Temperature program diagram, 5th
The figure shows the tellurium concentration profile of the deposited film, and FIG. 6 is a cross-sectional view of another evaporation source. In addition, in the reference numerals shown in the drawings, 2---------1 partition 3-------- Evaporation material 4 with low tellurium concentration
Evaporation material with high tellurium concentration 5.6.17.1B------
Sweater - 7 - - Soil opening 8 - - Vapor deposition substrate 11 - Evaporation source 15.16 - Bumping prevention plate 19.22 - - Thermocouple 20 --- Temperature detection section 21 --- Control circuit section. Agent Patent Attorney Hiroshi Aisaka Figure 3 Figure 4 Time Figure 5 Figure 6 3 4

Claims (1)

【特許請求の範囲】 1.2種以上の蒸発材料を各熱源によって加熱、蒸発さ
せるように構成された蒸発源において、蒸発速度の小さ
い方の蒸発材料の温度を検知する検知手段と、この検知
手段の検出温度に基いて前記各熱源を制御する制御手段
とを有することを特徴とする蒸発源。 2、温度検知手段の検出温度情報が、各熱源に接続され
た制御回路部に大刀される、特許請求の範囲の第1項に
記載した蒸発源。 3、温度検知手段が熱電対からなる、特許請求の範囲の
第1項又は第2項に記載した蒸発源。 4、各蒸発材料が、その蒸発面積よシ小さい開口を通し
て外方へ導出される、特許請求の範囲の第1項〜第3項
に記載した蒸発源。 5、各蒸発材料が単一の容器内に夫々収容され、かつ各
蒸発材料間に前記容器の内空間を実質的に区分する隔壁
が設けられている、特許請求の範囲の第4項に記載した
蒸発源。 6、各蒸発材料が単一の容器内に夫々収容され、かつ各
蒸発材料間に前記容器の内空間を実質的に区分する隔壁
が設けられていない、特許請求の範囲の第4項に記載し
た蒸発源。 7、各蒸発材料を加熱するためのヒーターが夫々配され
、これらのヒーターが同時にオンするように構成した、
特許請求の範囲の第1項〜第6項のいずれか1項に記載
した蒸発源。 8、蒸発材料上に突沸防止板が設けられている、特許請
求の範囲の第1項〜第7項のいずれか1項に記載した蒸
発源。 9.2種以上の蒸発材料を各熱源によって加熱、蒸発さ
せるように構成された蒸発源の使用方法において、蒸発
速度の小さい方の蒸発材料の温度を制御することによっ
て蒸発源全体を温度制御し、各蒸発材料を同時に加熱蒸
発させて被蒸着基体上に蒸着することを特徴とする蒸発
源の使用方法。 10、蒸発速度の小さい方の蒸発材料の温度を検知し、
この温度情報を制御回路部に入力せしめ、この制御回路
部によって各蒸発材料の各熱源を制御する、特許請求の
範囲の第9項に記載した方法。 11、各蒸発材料を、その蒸発面積よシ小さい開口を通
して外方へ導出する、特許請求の範囲の第9項又は第1
0項に記載した方法。 12、各蒸発材料を単一の容器内に夫々収容し、かつ各
蒸発材料間に前記容器の内空間を実質的に区分する隔壁
を設ける、特許請求の範囲の第9項〜第11項のいずれ
か1項に記載した方法。 13、各蒸発材料を単一の容器内に夫々収容し、゛かつ
各蒸発材料間に前記容器の内空間を実質的に区分する隔
壁を設けない、特許請求の範囲の第9項〜第11項のい
ずれか1項に記載した方法。 14、各蒸発材料を加熱するだめのヒーターを夫々配し
、これらのヒーターを同時にオンさせる、特許請求の範
囲の第9項〜第13項のいずれか1項に記載した方法。 15、蒸発材料としてセレン合金を用いる、特許請求の
範囲の第9項〜第14項のいずれか1項に記載した方法
。 16各セレン合金間において、セレン以外の同−m類の
成分元素の濃度が互いに異なっている、特許請求の範囲
の第15項に記載した方法。 17、各セレン合金間において、セレン以外の成分元素
の種類が互いに異なっている、特許請求の範囲の第15
項に記載した方法。
[Scope of Claims] 1. In an evaporation source configured to heat and evaporate two or more types of evaporation materials using respective heat sources, a detection means for detecting the temperature of the evaporation material with a smaller evaporation rate, and this detection and control means for controlling each of the heat sources based on the temperature detected by the means. 2. The evaporation source according to claim 1, wherein the temperature information detected by the temperature detection means is transmitted to a control circuit connected to each heat source. 3. The evaporation source according to claim 1 or 2, wherein the temperature detection means is a thermocouple. 4. The evaporation source according to claims 1 to 3, wherein each evaporation material is led out through an opening smaller than its evaporation area. 5. According to claim 4, each evaporative material is housed in a single container, and a partition wall is provided between each evaporative material to substantially divide the internal space of the container. source of evaporation. 6. According to claim 4, wherein each evaporative material is housed in a single container, and there is no partition between each evaporable material that substantially divides the internal space of the container. source of evaporation. 7. Heaters are arranged to heat each evaporation material, and these heaters are configured to be turned on at the same time.
An evaporation source according to any one of claims 1 to 6. 8. The evaporation source according to any one of claims 1 to 7, wherein a bumping prevention plate is provided on the evaporation material. 9. In a method of using an evaporation source configured to heat and evaporate two or more evaporation materials using each heat source, the temperature of the entire evaporation source is controlled by controlling the temperature of the evaporation material with a smaller evaporation rate. . A method of using an evaporation source, characterized in that each evaporation material is simultaneously heated and evaporated and deposited on a substrate to be evaporated. 10. Detecting the temperature of the evaporation material with the smaller evaporation rate,
10. The method according to claim 9, wherein this temperature information is input to a control circuit section, and the control circuit section controls each heat source for each evaporation material. 11. Claim 9 or 1, in which each evaporation material is led out through an opening smaller than its evaporation area.
The method described in item 0. 12. Each evaporation material is housed in a single container, and a partition wall is provided between each evaporation material to substantially divide the internal space of the container, according to claims 9 to 11. The method described in any one of the paragraphs. 13. Claims 9 to 11, wherein each evaporative material is housed in a single container, and no partition wall is provided between each evaporative material to substantially divide the internal space of the container. The method described in any one of the paragraphs. 14. The method according to any one of claims 9 to 13, wherein heaters are provided to heat each evaporation material, and these heaters are turned on at the same time. 15. The method described in any one of claims 9 to 14, wherein a selenium alloy is used as the evaporation material. 16. The method according to claim 15, wherein the concentrations of constituent elements of the same -m class other than selenium are different among the selenium alloys. 17. The fifteenth aspect of claim 1, wherein the types of constituent elements other than selenium are different between the selenium alloys.
The method described in section.
JP15424182A 1982-09-04 1982-09-04 Evaporation source and its using method Granted JPS5943875A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15424182A JPS5943875A (en) 1982-09-04 1982-09-04 Evaporation source and its using method
US06/528,215 US4551303A (en) 1982-09-04 1983-08-31 Method of using an evaporation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15424182A JPS5943875A (en) 1982-09-04 1982-09-04 Evaporation source and its using method

Publications (2)

Publication Number Publication Date
JPS5943875A true JPS5943875A (en) 1984-03-12
JPH0260754B2 JPH0260754B2 (en) 1990-12-18

Family

ID=15579918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15424182A Granted JPS5943875A (en) 1982-09-04 1982-09-04 Evaporation source and its using method

Country Status (1)

Country Link
JP (1) JPS5943875A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115970A (en) * 1984-07-02 1986-01-24 Matsushita Electric Ind Co Ltd Vapor deposition apparatus
JPH01129961A (en) * 1987-11-16 1989-05-23 Sumitomo Electric Ind Ltd Physical vapor deposition method for alloy
JPH0189953U (en) * 1987-12-07 1989-06-13

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115970A (en) * 1984-07-02 1986-01-24 Matsushita Electric Ind Co Ltd Vapor deposition apparatus
JPH01129961A (en) * 1987-11-16 1989-05-23 Sumitomo Electric Ind Ltd Physical vapor deposition method for alloy
JPH0189953U (en) * 1987-12-07 1989-06-13
JPH047182Y2 (en) * 1987-12-07 1992-02-26

Also Published As

Publication number Publication date
JPH0260754B2 (en) 1990-12-18

Similar Documents

Publication Publication Date Title
JP3300986B2 (en) Vacuum evaporation system
US4551303A (en) Method of using an evaporation source
JPH05139882A (en) Molecular beam source
JPS5943875A (en) Evaporation source and its using method
US3927638A (en) Vacuum evaporation plating apparatus
JPH0372152B2 (en)
US3219448A (en) Photographic medium and methods of preparing same
US4266009A (en) Imaging material and method of producing image thereon
US3932180A (en) Direct alpha to X phase conversion of metal-free phthalocyanine
JPS6299459A (en) Evaporating source for vacuum deposition
JPS5943874A (en) Vessel for storing material to be evaporated and its using method
JPH02171756A (en) Vacuum evaporation source container of photosensitive body for electrophotography
JPS5852479A (en) Vapor depositing device
US4415642A (en) Electrophotographic member of Se-Te-As with halogen
US3990894A (en) Method of preparing photosensitive element for use in electrophotography
JPS59113180A (en) Vapor deposition device
JPS6338569A (en) Evaporating device for vacuum deposition
JPH0243865Y2 (en)
JPS59137308A (en) Method for refining selenium material
JPS59223436A (en) Photosensitive body of selenium-tellurium alloy
JPS58207369A (en) Vacuum deposition device
JPH04217265A (en) Evaporation source for evaporating electrophotosensitive material
JPS60122979A (en) Photosensitive body for electrophotography
JPH0798863A (en) Apparatus for production of magnetic recording medium
JPS5944058A (en) Manufacture of photoreceptor