JPS5943866A - Vapor depositing method - Google Patents
Vapor depositing methodInfo
- Publication number
- JPS5943866A JPS5943866A JP57154231A JP15423182A JPS5943866A JP S5943866 A JPS5943866 A JP S5943866A JP 57154231 A JP57154231 A JP 57154231A JP 15423182 A JP15423182 A JP 15423182A JP S5943866 A JPS5943866 A JP S5943866A
- Authority
- JP
- Japan
- Prior art keywords
- vapor deposition
- vapor
- alloy
- content
- tellurium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/243—Crucibles for source material
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Photoreceptors In Electrophotography (AREA)
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は蒸着方法に関し、例えば電子写真又は光電変換
素子等の感光体膜を作成するのに好適な蒸着方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor deposition method, for example, a vapor deposition method suitable for producing a photoreceptor film for an electrophotographic or photoelectric conversion element.
従来、電子写真用の感光体として、セレンにテルル含有
量L rcセレン−テルル合金(Se−Te)からなる
感光体が知られている。この5e−Te感光体はテルル
の含有によって特に長波長域での感度に優れたものとな
る。こうした感光体には、テルル濃度が比穎的低くてほ
ぼ一定の領域(例えば電荷輸送層二以下、CTLと略す
。)を具備せしめることが必要な場合がある。即ち、そ
うしたテルル濃度プロファイルによって、残留電位やキ
ャリアのトラップ準位の少ないものが44られるからで
ある。Conventionally, as a photoreceptor for electrophotography, a photoreceptor made of a selenium-tellurium alloy (Se-Te) containing selenium and tellurium content Lrc is known. This 5e-Te photoreceptor has excellent sensitivity particularly in the long wavelength range due to the inclusion of tellurium. Such a photoreceptor may be required to have a region where the tellurium concentration is relatively low and approximately constant (for example, charge transport layer 2 or less, abbreviated as CTL). That is, this is because such a tellurium concentration profile results in a structure with a small residual potential and carrier trap level.
テルル濃度を一定にするために、既に各種の方法が提案
されているが、いずれも満足すべきものとは言えない。Various methods have already been proposed to keep the tellurium concentration constant, but none of them can be said to be satisfactory.
例え目;、蒸発月料を大量に仕込み、表面側の薄い溶融
層の表面から部分蒸発させる方法があるが、これでは蒸
発率が小さくて、一定の膜厚の蒸着膜を得るのに大量の
原料を使用せざるを得す、蒸発源のサイズが大きくなシ
、かつコスト高ともなる。塘た、別々に配した異種材料
を複数の蒸発源から各蒸気を生せしめ、これらを蒸気相
で混合する方法では、蒸気の混合を充分に行なえず、し
かも混合の不均一さによって得られた蒸着膜に濃度ムシ
が生じ易い。更に、合金ワイヤを蒸発用ブロックを介し
て溶融、蒸発させるフラッシュ蒸発法もあるが、5μm
以上の膜を蒸着するときに蒸発が不安定となシ、かつチ
ャンバー内に各秤部材を配置せねばならず、構造が複雑
化する。For example, there is a method of charging a large amount of evaporation charge and partially evaporating it from the surface of the thin molten layer on the front side, but this method has a low evaporation rate and requires a large amount of vapor to obtain a deposited film of a constant thickness. Raw materials have to be used, the size of the evaporation source is large, and costs are high. However, the method of generating different vapors from multiple evaporation sources from dissimilar materials arranged separately and mixing them in the vapor phase did not allow for sufficient mixing of the vapors, and furthermore, it was difficult to obtain the results due to the non-uniformity of the mixing. Concentration irregularities tend to occur in the deposited film. Furthermore, there is a flash evaporation method in which alloy wire is melted and evaporated through an evaporation block, but
When depositing the above films, the evaporation is unstable, and each weighing member must be placed in the chamber, which complicates the structure.
本発明は、上記した如き従来法の欠陥を解消し、簡略、
低コストにして濃度が均一な蒸着膜を安定に得る方法を
提案すべくなされたものであって、合金からなる蒸発材
料を蒸発せしめて被蒸着基体上に蒸着させるに際し、前
記合金の成分元素間の比揮発度が0.9〜1.1となる
ような条件下で蒸着することを特徴とする蒸着方法に係
るものである。The present invention solves the deficiencies of the conventional method as described above, simplifies and
This was developed to propose a method for stably obtaining a deposited film with a uniform concentration at a low cost. The present invention relates to a vapor deposition method characterized in that vapor deposition is carried out under conditions such that the specific volatility of is 0.9 to 1.1.
本発明によれば、蒸発材料としての合金の成分元素間の
比揮発度が0.9〜1.1となるようにしているので、
合金の組成比と実質的に同一の組成比の蒸気を生ぜしめ
ることができ、従って基体上に堆積する蒸着膜の組成比
をほぼ一定にすることができる。この結果、例えばテル
ル濃度が低くてほぼ一定の蒸着膜を製膜でき、上述した
如き5e−Te感光体として優れた特性を示すものを作
成できるのである。しかも、比揮発度をコントロールす
るのみでよいから、既述した従来法に比べ、蒸着槽(チ
ャンバー)内の構造が簡略化され、使用原料が少なくて
済むと共に、蒸気組成が常に安定となシ、蒸着膜の濃度
分布が均一となる。According to the present invention, since the relative volatility between the constituent elements of the alloy as the evaporation material is set to be 0.9 to 1.1,
It is possible to generate vapor having a composition ratio substantially the same as that of the alloy, and therefore the composition ratio of the vapor deposited film deposited on the substrate can be made approximately constant. As a result, for example, a vapor deposited film having a low and almost constant tellurium concentration can be formed, and a 5e-Te photoreceptor having excellent characteristics as described above can be produced. Moreover, since it is only necessary to control the specific volatility, the structure inside the deposition tank (chamber) is simplified compared to the conventional method described above, less raw materials are used, and the vapor composition is always stable. , the concentration distribution of the deposited film becomes uniform.
本発明による方法においては、上記合金の各成分元素間
の蒸着温度における蒸気圧比を1〇二1(好ましくは5
00 : 1 )以上(但、各元素が純粋な状態での蒸
気圧の比)とするのがよい。また、合金の成分元素のう
ち1.h#)低い蒸気圧を示す元素の含有量を7重量%
以下(好ましくは5.5重量%以下)とすることが望ま
しい。In the method according to the present invention, the vapor pressure ratio at the vapor deposition temperature between each component element of the alloy is 1021 (preferably 5
00:1) or more (however, the ratio of vapor pressures when each element is in a pure state) is preferable. Also, among the constituent elements of the alloy, 1. h#) The content of elements showing low vapor pressure is 7% by weight.
It is desirable that the content be below (preferably 5.5% by weight or below).
使用可能な合金としては、実質的にセレン及びテルルか
らなるものをはじめ、セレン−イオウ、鉄−ニッケル、
臭化銀−ヨウ素等の如き他の合金も使用してよい。Usable alloys include those consisting essentially of selenium and tellurium, as well as selenium-sulfur, iron-nickel,
Other alloys such as silver bromide-iodine and the like may also be used.
また、本発明の方法で作成される感光体膜は、その膜厚
方向において、少なくとも10μmの長さに亘る部分で
のテルル含有量の変動が含有率にして0.5%以内とな
るように蒸着するのがよい。Furthermore, the photoreceptor film produced by the method of the present invention is such that the tellurium content varies within 0.5% in terms of content over a length of at least 10 μm in the film thickness direction. It is best to evaporate.
以下、本発明を実施例について図面参照下に詳細に説明
する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.
第1図には、本発明による方法を実施する蒸着装置の一
例が示されている。FIG. 1 shows an example of a vapor deposition apparatus for carrying out the method according to the invention.
この蒸着装置では、ペルジャー(図示せず)内に蒸発源
5とこれに対向した被蒸着用ドラム6とが配される。蒸
発源5はいわゆるクヌードセンセル型に構成され、容器
7内にTe濃度が7重量%以下、例えば5重量部の第1
の5e−Tc蒸発材料8と、Te濃度が例えば22.5
重量部の第2の5e−Te蒸発材料9とを収容1.てい
る。これらの蒸発材料上にはヒーター1.0.11が夫
々間され、ヒーターの熱で蒸発した材料が容器7上部の
開口12から制御されながらドラム6に向って飛翔する
ようになされている。In this vapor deposition apparatus, an evaporation source 5 and a vapor deposition drum 6 facing the evaporation source 5 are arranged in a pelger (not shown). The evaporation source 5 is configured in a so-called Knudsen cell type, and the first evaporation source 5 has a Te concentration of 7% by weight or less, for example 5 parts by weight, in the container 7.
5e-Tc evaporation material 8 and the Te concentration is, for example, 22.5.
parts by weight of the second 5e-Te evaporation material 9; ing. Heaters 1, 0, and 11 are placed above these evaporated materials, and the evaporated materials are caused to fly toward the drum 6 from the opening 12 at the top of the container 7 under the control of the heat of the heaters.
ここで注目すべきことは、上記蒸発材料80合金が7重
量−以下と低濃度にテルルを含有していることである。What should be noted here is that the evaporative material 80 alloy contains tellurium at a low concentration of less than 7% by weight.
本来、純粋なセレンとテルルとでは、蒸気圧比が500
: 1であってセレンの方がはるかに蒸発し易い。と
ころが、上記の如き合金組成にすれば、合金(融液)の
組成、即ち例えばSe : Te= 95 : 5とほ
ぼ同じ組成の蒸気が生じることが見出された。換言すれ
ば、テルル濃度が上記の低濃度の場合、セレンとテルル
との比揮発度が0.9〜1,1、特に実質的に1.0と
なるので、得られた蒸着膜中のテルル含有量はほぼ一定
と々リ、目的とする濃度プロファイルが得られる。Originally, pure selenium and tellurium have a vapor pressure ratio of 500.
: 1, and selenium evaporates much more easily. However, it has been found that when the alloy composition is made as described above, vapor having a composition substantially the same as that of the alloy (melt), ie, Se:Te=95:5, for example, is generated. In other words, when the tellurium concentration is as low as mentioned above, the specific volatility of selenium and tellurium is 0.9 to 1.1, particularly substantially 1.0, so the tellurium in the obtained vapor deposited film is The content remains almost constant, and the desired concentration profile can be obtained.
第2図には、上記の方法で得られた感光体が示されてい
るが、アルミニウム等の導電性支持基板6上に、Te含
有量が3〜7重量%、例えば5重量%で厚さ加μm以上
の8e−Teからなる電荷輸送層CTL2と、Te含有
量が10〜20重量%で厚さ2〜5μmの5e−Teか
らなる電荷(光キャリア)発生層CGL3とが設けられ
る。CTL2は、上記の蒸発材料8の蒸着で、CGL3
は上記の蒸発材料9の蒸着で製膜されたものである。FIG. 2 shows a photoreceptor obtained by the above method, in which a Te content of 3 to 7% by weight, for example 5% by weight, is formed on a conductive support substrate 6 made of aluminum or the like. A charge transport layer CTL2 made of 8e-Te with a thickness of 10 to 20% by weight and a thickness of 2 to 5 μm and a charge (photocarrier) generation layer CGL3 is provided. CTL2 is the deposition of the evaporation material 8 described above, and CGL3 is
is a film formed by vapor deposition of the above-mentioned evaporation material 9.
蒸着操作の具体例を示すと、M基体6を70℃に保持し
、第1の蒸発材料8としてTe濃度が5チの5e−Te
合金300g、第2の蒸発材料9としてTe濃度が22
.5%の5e−Te合金200gを用いた。まず、第1
の蒸発材料を2900Gに40分間加熱してCTL2を
形成した後、100℃まで冷却した。To give a specific example of the vapor deposition operation, the M substrate 6 is held at 70°C, and 5e-Te with a Te concentration of 5 is used as the first evaporation material 8.
300 g of alloy, Te concentration is 22 as second evaporation material 9
.. 200 g of 5% 5e-Te alloy was used. First, the first
The evaporated material was heated to 2900G for 40 minutes to form CTL2, and then cooled to 100°C.
しかる後、第2の蒸発源9を300℃に昇温し、10分
間蒸着を行ない、CTLの表面にCGLを形成した。得
られた感光体のTe濃度プロファイルを第3図に示した
。Thereafter, the temperature of the second evaporation source 9 was raised to 300° C., and evaporation was performed for 10 minutes to form CGL on the surface of CTL. The Te concentration profile of the obtained photoreceptor is shown in FIG.
これによれば、本発明に従って形成されだCTL2は5
%程度とほぼ一定のテルル濃度を有しているから、感光
体として残留電位が少なくかつトラップ準位の少ないも
のが得られる。CGL3の方は高テルル濃度であるから
、光感度が良好なものとなる。According to this, CTL2 formed according to the present invention is 5
Since the tellurium concentration is approximately constant at about 1.5%, a photoreceptor with low residual potential and few trap levels can be obtained. Since CGL3 has a high tellurium concentration, it has good photosensitivity.
なお、上記した如く比揮発度を実質的に1.0とするに
は、蒸発材料の合金組成としてテルル濃度が低いもの(
特VC7重量%以下)を選ぶべきである。この比揮発度
は、原子吸光モニタ(日本真空技術■製)によシ蒸気濃
度を計ることによシ測定できる。また、蒸発材料の加熱
温度は高めにする方が、比揮発度=1.0にできる合金
組成範囲をよシ広くできる傾向があるから、特に250
℃以上とするのが望ましい。ペルジャー内の真空度は一
般に1O−3Torr以上と高真空にするのがよい。As mentioned above, in order to make the specific volatility substantially 1.0, the alloy composition of the evaporation material should have a low tellurium concentration (
In particular, VC (7% by weight or less) should be selected. This specific volatility can be measured by measuring the vapor concentration using an atomic absorption monitor (manufactured by Japan Vacuum Technology Co., Ltd.). In addition, if the heating temperature of the evaporation material is set higher, the alloy composition range in which the specific volatility can be made to be 1.0 tends to be wider.
It is desirable to keep the temperature above ℃. Generally, the degree of vacuum in the Pelger is preferably set to a high vacuum of 10-3 Torr or more.
また、第3図に破線で示す如くに、テルル濃度が596
の領域を更に延ばすようにしてよい。この場合には、上
記の第1の蒸発材料8のみを蒸発させる。In addition, as shown by the broken line in Figure 3, the tellurium concentration is 596
The area may be further extended. In this case, only the first evaporation material 8 described above is evaporated.
以上、本発明を例示したが、上述の例は本発明の技術的
思想に基いて更に変形が可能である。Although the present invention has been illustrated above, the above-mentioned example can be further modified based on the technical idea of the present invention.
例えば、使用する合金はS e −T cに限らず、ε
(e−8,Fe−Ni%AgBr−I等でアッテよいし
、本発明における比揮発度に設定できる合金組成も種々
選択できる。For example, the alloy used is not limited to S e −T c, but also ε
(E-8, Fe-Ni%AgBr-I, etc. are suitable, and various alloy compositions that can be set to the specific volatility in the present invention can be selected.
図面は本発明の実施例を示すものであって、第1図は真
空蒸虐装置の要部概略図、
第2図は得られた感光体の断面図、
第3図はその71.1et6i度プロファイルを示す図
である。
なお、図面に示し、だ符号において、
2・・・・・・・・・C’l’L(電荷輸送層)3・・
・・・・・・・CGL(電荷発生層)5・・・・・・・
・・蒸発源
6・・・・・・・・・基体
8.9・・・・・・蒸発材料
10、11・・・・・・ヒーター
である。
382
9
−The drawings show an embodiment of the present invention, in which Fig. 1 is a schematic diagram of the main parts of a vacuum ablation apparatus, Fig. 2 is a sectional view of the obtained photoreceptor, and Fig. 3 is its 71.1et6i degree. It is a figure showing a profile. In addition, as shown in the drawing, in the symbol 2...C'l'L (charge transport layer) 3...
......CGL (charge generation layer) 5...
...Evaporation source 6...Base 8.9...Evaporation materials 10, 11...Heater. 382 9 -
Claims (1)
に蒸着させるに際し、前記合金の成分元素間の比揮発度
が0.9〜1.1となるような条件下で蒸着することを
特徴とする蒸着方法。 2、合金の各成分元素間の蒸着温度における蒸気圧比を
10:1以上とする、特許請求の範囲の第1項に記載し
た方法。 30.蒸気圧比を500 : 1以上とする、特許請求
の範囲の第2項に記載した方法。 4、合金の成分元素のうち、より低い蒸気圧を示す元素
の含有量を7重量%以下とする、特許請求の範囲の第1
項〜第3項のいずれか1項に記載した方法。 5、低蒸気圧の元素の含有量を5.5重量%以下とする
、特許請求の範囲の第4項に記載した方法。 6、合金として、実質的にセレン及びテルルからなるも
のを特徴する特許請求の範囲の第1項〜第5項のいずれ
か1項に記載した方法。 7、蒸着によって形成される蒸着膜の膜厚方向において
、少なくとも10μmの長さに亘る部分でのテルル含有
量の変動が含有率にして0.5%以内である感光体膜を
特徴する特許請求の範囲の第6項に記載した方法。[Claims] When evaporating an evaporation material consisting of a 10 alloy and depositing it on a substrate to be evaporated, under conditions such that the relative volatility among the constituent elements of the alloy is 0.9 to 1.1. A vapor deposition method characterized by vapor deposition. 2. The method according to claim 1, wherein the vapor pressure ratio at the vapor deposition temperature between each component element of the alloy is 10:1 or more. 30. The method according to claim 2, wherein the vapor pressure ratio is 500:1 or more. 4. Among the constituent elements of the alloy, the content of the element exhibiting a lower vapor pressure is 7% by weight or less, the first claim of claim 1.
The method described in any one of Items 1 to 3. 5. The method according to claim 4, wherein the content of the low vapor pressure element is 5.5% by weight or less. 6. The method according to any one of claims 1 to 5, characterized in that the alloy consists essentially of selenium and tellurium. 7. A patent claim characterized by a photoreceptor film in which the tellurium content varies within 0.5% in terms of content over a length of at least 10 μm in the thickness direction of the vapor-deposited film formed by vapor deposition. The method described in Section 6 of the scope of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57154231A JPS5943866A (en) | 1982-09-04 | 1982-09-04 | Vapor depositing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57154231A JPS5943866A (en) | 1982-09-04 | 1982-09-04 | Vapor depositing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5943866A true JPS5943866A (en) | 1984-03-12 |
Family
ID=15579709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57154231A Pending JPS5943866A (en) | 1982-09-04 | 1982-09-04 | Vapor depositing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5943866A (en) |
-
1982
- 1982-09-04 JP JP57154231A patent/JPS5943866A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59200248A (en) | Production of image forming member | |
US3524745A (en) | Photoconductive alloy of arsenic,antimony and selenium | |
JPS5943866A (en) | Vapor depositing method | |
US4551303A (en) | Method of using an evaporation source | |
US3984585A (en) | Vacuum evaporation plating method | |
US4008082A (en) | Method for producing an electrophotographic recording material | |
JPS5943868A (en) | Vapor depositing method | |
JPS5943869A (en) | Vapor depositing method | |
JPH0239786B2 (en) | ||
JPS6348558A (en) | Electrophotographic sensitive body | |
JPS5943867A (en) | Vapor depositing method | |
JPH0372152B2 (en) | ||
JPH0260754B2 (en) | ||
JPH02171756A (en) | Vacuum evaporation source container of photosensitive body for electrophotography | |
JP2574485B2 (en) | Method for controlling crystallization of chalcogenide alloys | |
JPS59223436A (en) | Photosensitive body of selenium-tellurium alloy | |
JPS5953678A (en) | Vapor deposition method | |
JPS5855934A (en) | Electrophotographic receptor | |
JPS61139663A (en) | Formation of vapor-deposited film and evaporating source | |
US4418136A (en) | Electrophotographic element comprises arsenic selenide doped with Bi | |
JPS56168658A (en) | Manufacture of electrophotographic receptor | |
JPS60166954A (en) | Electrophotographic sensitive body made of selenium | |
JPS6064357A (en) | Electrophotographic sensitive body made of selenium | |
JPS59121341A (en) | Manufacture of photosensitive selenium body for electrophotography | |
JPH03290669A (en) | Production of electrophotographic sensitive body |