JPH0368918B2 - - Google Patents

Info

Publication number
JPH0368918B2
JPH0368918B2 JP58027030A JP2703083A JPH0368918B2 JP H0368918 B2 JPH0368918 B2 JP H0368918B2 JP 58027030 A JP58027030 A JP 58027030A JP 2703083 A JP2703083 A JP 2703083A JP H0368918 B2 JPH0368918 B2 JP H0368918B2
Authority
JP
Japan
Prior art keywords
boiler
gas
amount
circulating gas
circulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58027030A
Other languages
English (en)
Other versions
JPS59155490A (ja
Inventor
Kyotaka Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP58027030A priority Critical patent/JPS59155490A/ja
Publication of JPS59155490A publication Critical patent/JPS59155490A/ja
Publication of JPH0368918B2 publication Critical patent/JPH0368918B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】 本発明はコークス乾式消火設備におけるボイラ
蒸気発生量の制御方法及びその装置に関し、特に
循環ガス中に冷却塔の入側から燃料ガスを合流さ
せ、赤熱コークスの冷却に供するとともに、操業
条件により生じるボイラの蒸気発生量の変動を上
記燃料ガスの燃焼によつて補い、コークス側の条
件に制約されることなくボイラを最高能力で安定
した蒸気発生量で運転でき、設備の有効利用と信
頼性の向上がはかれるコークス乾式消火設備にお
けるボイラ蒸気発生量の制御方法及びその装置に
係る。
第1図は一般的なコークス乾式消火設備の構成
を示したものであるが、これを簡単に説明する
と、赤熱コークスを装入した冷却塔1にN2ガス
を主成分とする循環ガスを循環供給させて赤熱コ
ークスの冷却を行い、且つ冷却により昇温された
循環ガスをボイラ2に導き熱回収を行うように循
環系3が構成されている。こうしたコークス乾式
消火設備には、循環ガスの成分調整のために空気
を供給する希釈空気フアン4と、該希釈空気フア
ン4により供給された空気又はガス成分調整用に
循環系に供給されたN2ガスによつて生じる余剰
ガスを放出する下部放散管5と、プリチヤンバー
6内ガスを放出させる上部放散管7とが備えられ
ている。
しかして、上記コークス乾式消火設備では、上
記希釈空気フアン4によりボイラ2の入側に空気
を供給し、循環ガス中のCO、H2等の可燃成分を
燃焼させてガス成分を調整すると共に、この燃焼
によりボイラ2入口ガス温度を上げ、蒸気発生量
を増加させていた。
ところで、蒸気を利用する需要側からみるとボ
イラ2の蒸気発生量は一定であることが望まし
い。しかしながら、ガス成分は断続的に行なわれ
るコークスの装入、コークスの品質等により大き
く変化するが、この変化に対応して上述のように
供給空気量を変化させると蒸気発生量自体が変化
し、蒸気を使用する後流設備に対する健全性を損
なうことになり信頼性に問題があつた。また、コ
ークス乾式消火設備はコークス炉の従属的設備で
あり、コークス処理量はコークス炉の稼働状態に
より大きく変る。このためボイラ2も含めコーク
スの最大処理量に見合う設備能力を発揮できるよ
うに設計されている。しかしながら、実際には設
備が能力上有効利用されない場合が多い。しか
も、コークス炉の稼働状態により蒸気発生量が変
動するので、その不足分を賄うため、他の蒸気発
生設備が必要であり、また余ると蒸気を捨てるこ
ともあるので非常に不経済であつた。このよう
に、一般に使用されているコークス乾式消火設備
にあつては、コークス側の条件によつてボイラ蒸
気発生量が変動するので、蒸気発生量を安定化す
るためにはコークス側の条件に制約されないこと
が必要となる。
そこで、連続的な蒸気発生を保証するものとし
て、特開昭56−139582号公報の方法が発表されて
いる。この方法はボイラ熱交換器装置の前の循環
ガス経路にバーナを設置して、循環ガスの温度が
目標値を維持するように上記バーナを燃焼させ、
コークス側の条件に制約されないようにしたもの
である。
ところが、循環ガス経路を流れる大量のガスを
加熱しなければならないため、バーナが非常に大
型となり、且つ冷却塔出口からの循環ガスは高温
(約800℃)であるため高度の耐熱性が要求され
る。また、循環系中のボイラ熱交換装置は断面積
を大にして流速を落とし、サイクロン及びブロア
には耐摩耗材を貼付していることからもわかるよ
うに、循環ガスは含塵ガスであつて、当然バーナ
にも大掛りな耐摩耗対策を施さなければならな
い。さらに、バーナに外部より燃料ガスと燃焼用
空気を投入して燃焼させるものであるが、燃料ガ
スは高温状態では投入されないため、完全燃焼さ
せる必要上空気過剰率を1.0以上にせざるを得な
い。この場合、循環ガス中の酸素濃度が増大する
が、循環系の各所でガス成分の検知を行ない酸素
の増加を監視していることからもわかるように、
赤熱コークスとの反応を助長するので、この増大
は絶対に許されない。このように、循環系にバー
ナを設けることは、寿命、メンテナンス、設備コ
スト上問題があり、非現実的である。
本発明は上記事情に鑑みてなされ、その目的と
するところは、ボイラ蒸気発生量増加による設備
の経済性の向上、同じく蒸気発生量の安定による
設備の信頼性の向上及びコークス冷却能力の向上
をはかつて高性能化、小型化を実現することがで
きるコークス乾式消火設備におけるボイラ蒸気発
生量の制御方法及びその装置を提供するにある。
上記目的は本発明によれば次のようにして達成
される。即ち、本発明は循環系を循環させ、冷却
塔の赤熱コークスから顕熱を回収する循環ガス流
量を調整してボイラの蒸気発生量を制御するに際
し、上記ボイラから排出された循環ガス中のH2
CO等の可燃成分割合を検出し、その検出値が設
定範囲内に収まるように循環系の冷却塔入側に
H2、CO等を含む燃料ガスを補給し、循環ガスの
ボイラ入側温度を検出し、その検出温度が設定範
囲内に収まるようにボイラ入側の循環系に循環ガ
ス中の可燃成分を燃焼させる燃焼用空気を供給し
てボイラの蒸気発生量を安定的に制御することを
特徴とするコークス乾式消火設備におけるボイラ
蒸気発生量の制御方法であり、また、循環ガスを
冷却塔に導入して赤熱コークスを冷却し、該冷却
によつて昇温された循環ガスをボイラに導いて熱
回収を行う循環系を設けると共に、該循環系に上
記ボイラの蒸気発生量によつて上記循環ガス流量
を制御する循環ガス調整弁を設けたコークス乾式
消火設備において、上記冷却塔の入側に循環ガス
中のH2、CO等の可燃成分割合によつて流量制御
されるH2、CO等の可燃成分を含む燃料ガスを導
く燃料ガス配管を合流接続し、上記循環系のボイ
ラ入側に、該ボイラ入側の循環ガス温度によつて
投入量を制御される燃焼用空気を供給する空気供
給手段を設けたことを特徴とするコークス乾式消
火設備のボイラ蒸気発生量の制御装置である。
以下、本発明の好適一実施例を添付図面に従つ
て詳述する。
第2図は、本発明方法を実施するためのボイラ
蒸気発生量の制御装置の一例を示す概略説明図で
ある。
図に示す如く、8は上部にプリチヤンバ9を有
し下部に冷却室10を形成した冷却塔、11は除
塵器、12はボイラ、13はサイクロン、14は
循環フアンを表わし、循環ガスを冷却塔8に導入
して冷却室10内の赤熱コークスを冷却し、該冷
却によつて昇温された循環ガスをボイラ12に導
いて蒸気として熱回収を行う循環系15を構成し
ている。
また、従前のように冷却塔出側16とボイラ入
側17との間の循環系15に、これに燃焼用空気
を供給する空気導入用希釈フアン30を設ける一
方、循環系15における冷却塔8への入側18に
下部放散管19が設けられており、前記プリチヤ
ンバー9には上部放散管20が設けられている。
上記構成において、上記循環系15の冷却塔入
側18、望ましくは冷却塔入口と下部放散管19
の分岐部との間に、外部よりH2、CO等の可燃成
分を含有する低カロリーの燃料ガス、例えば高炉
ガスを導く燃料ガス配管21を合流接続してい
る。この燃料ガス配管21に流量調節弁22を設
け、且つ上記ボイラ12の出側23に既設されて
いるガス成分検知器24によつてこれを流れる循
環ガス中のH2、CO又はH2+CO等の可燃成分割
合を検出させる。このガス成分検知器24の検出
値に基づいて上記流量調節弁22の弁開度制御を
行なう制御装置25を設ける。このように燃料ガ
ス配管21に流量調節弁22を設け燃料ガスを循
環系15に補給することにより循環ガス成分の調
整を可能とする。
また、上記ボイラ入側17の循環系15にこれ
を流れる循環ガスの温度を検出する温度検知器2
6を設け、ボイラ入口温度を一定とする様に上記
制御装置25によつて上記温度検知器26の検出
値に基づいて空気導入用希釈フアン30より循環
系15中に供給される燃焼空気の流量を調節する
ように構成されている。更にボイラ12の蒸気出
側27に蒸気発生量を検出する流量検知器28を
設け、同じく上記制御装置25を介して上記流量
検知器28の検出値に基づいて、循環ガス流量調
整弁31を調節して、循環系15を流れる循環ガ
スの流量を制御するように構成されている。
このように循環ガスの成分、温度及び流量の三
つのパラメータを検出して循環ガスの成分の調整
を可能としまた、ボイラ蒸気発生量の変動をなく
している。尚、図中29はガス回収管である。
次に、以上の構成よりなる制御装置の作用を詳
述する。
第2図において、制御装置25には、循環ガス
中の可燃成分(H2、CO又はH2+CO)割合、循
環ガスのボイラ入側温度及びボイラ蒸気発生量が
それぞれ一定値又は所定範囲となるように予め設
定値を設定しておく。
冷却塔8に装入されるコークス量、装入された
コークスより出る揮発ガス、その他の操業条件に
より循環系15を流れる循環ガスの成分が変動す
るが、今、循環ガス中の可燃分(H2、CO又はH2
+CO等)の割合が上記設定範囲より下回つたと
する。そうすると、制御装置25が流量調節弁2
2を制御し、これを開方向に作動して燃料ガス配
管21からの燃料ガス量を増加し、循環ガス中の
可燃成分割合を増加させるように制御する。また
逆に可燃分の割合が上回つたときは、流量調節弁
22を閉方向に作動して燃料ガス量を減少させ、
循環ガス中の可燃成分割合を減じさせるように制
御する。この場合において、外部から供給する燃
料ガスは低温(常温)であるので、本発明のよう
に燃料ガスを冷却塔8の入側18において合流さ
せれば冷却塔8に導かれる循環ガスの温度が低下
し、コークス冷却能力が向上する。燃料ガスとし
て高カロリーガスを使用することもできるが、低
カロリーガス、例えば高炉ガスを使用すると、そ
の高炉ガスはCO2、H2O等の不燃分の割合が多い
が、CO2、H2Oは各々冷却室10内で赤熱コーク
スと反応する。この反応は次に示す如く、 CO2+C→2CO(ソリユーシヨン反応) H2O+C→H2+CO(水性ガス反応) 吸熱反応となるので、コークス冷却能力の向上に
寄与する。また、結果物としてCO、H2等の可燃
性ガスを発生する。この可燃性ガスの発生に消費
されるコークスは粒塊ではなく反応しやすい粉コ
ークスであるため、循環ガス中の粉塵を減少させ
る。また、低カロリーガスを使用することにより
次のような利点もある。ガス成分からみて希釈空
気を必要としない場合、ガス温度が低くて希釈空
気を投入できない場合、あるいはバンキングのた
め希釈空気を投入できない場合等は、不活性ガス
としてN2ガスを循環系15に投入しているが、
低カロリーの燃料ガスではこのN2ガスの代用が
可能となる。このため、N2ガスの節約ができ、
プロセスにおけるN2ガス供給配管系の削減又は
省略ができる。一方、燃料ガスは外部から供給す
るので、循環ガスの比熱を大きくする、比重量を
大きくする等ガス成分を有利に調整することが可
能であり、これによりコークス冷却能力、蒸気発
生能力の増強をはかることができる。しかも、コ
ークスの揮発ガス量や循環ガス成分に応じて燃料
ガス供給量を調節するようにしてあるので、希釈
空気導入用フアン30にて空気量の調整のみによ
つている既存のガス成分調整法に比し、制御態様
が増えるので、ガス成分調節が容易となるかくし
て、循環ガス成分の変動に応じて燃料ガスを補給
するようにしたので、循環ガスはその可燃成分割
合がコークス側の影響に左右されず常に一定とな
り、ボイラ12に導かれることになる。
希釈空気フアン30から循環系15に供給され
る燃焼用空気量は、ボイラ入側17を流れる循環
ガス温度が上記設定温度範囲内に維持されるよう
に、その量を空気調整弁32で調整されて供給さ
れる。すなわち、設定値よりも低い場合には燃焼
用空気量を増加し循環ガスを大量に燃やして温度
を上昇させ、逆に設定値を超えた場合には燃焼用
空気量を減少し循環ガスの燃焼量を減らして温度
を降下させる。この場合において、上述したよう
に循環ガスの可燃成分割合が一定に維持されてい
るので、その割合が変動する場合に比較して温度
制御を極めて容易且つ正確に行なうことができ
る。また、燃焼する循環ガスは、その一部を構成
する燃料ガスも冷却塔8を通つて加熱されて高温
となつている。このため空気は完全消費される。
このようにして、ボイラ12の熱源である赤熱コ
ークスの顕熱量と、赤熱コークスからの揮発分の
燃焼熱量との2者の不足分を上記燃料ガスの燃焼
によつて補なつている。
循環系15に燃料ガスと燃焼用空気とが供給さ
れると循環ガスの流量が増加することになるが、
この増加した余剰分は上部放散管20又は下部放
散管19よりその量を調整されて放出される。こ
の場合において、循環ガス自身可燃性を維持すべ
く調整されているので、その分岐ガスである余剰
ガス自身も可燃であり、これをガス回収管29よ
り回収して有効に使用することができる。ボイラ
12の蒸発量は、ボイラ入口温度が一定ならば、
ほぼ循環ガス流量に比例して増加又は減少する。
従つて、蒸発量をある一定又は所定範囲に維持
するためには、循環ガス流量を調整すればよい。
今、蒸発量が制御装置25での設定範囲を上回
つたとすれば、循環フアン14の入口に設けられ
た循環ガス流量調節弁31を閉方向に作動して循
環ガス流量を減少させ、蒸発量を減少させる様に
制御する。
これに依り、廃熱ボイラ12の最大の欠点の一
つである蒸気発生量の変動を防止することが可能
となる。
かくして、循環ガスの成分割合、ボイラ12の
入側温度及び循環ガス流量を、コークス処理量、
赤熱コークス温度、赤熱コークス揮発量等コーク
ス側の影響に左右されず、それぞれ設定値に維持
しボイラ12への入熱量を一定とすることによ
り、ボイラ蒸気発生量を安定して供給することが
でき、安定供給ゆえに蒸気発生量の増大をはかる
ことができる。これにより蒸気発生装置としての
信頼性が高まり、特に上記設定値を設備能力の最
大値が発揮されるように選定すれば、設備の有効
利用をはかることができ頗る経済性に富む。
尚、上記調整は手動、自動のいずれによつても
可能である。
以上要するに本発明によれば次のような効果を
発揮する。
(1) 蒸気発生熱源である赤熱コークス処理量、赤
熱コークス温度、赤熱コークスの揮発分の量等
コークス側の不足分を、燃料ガスを循環系に供
給しこれを燃焼させるようにして補うようにし
ているので、ボイラはコークス側の影響に左右
されず、単に空気のみを投入する従来のものに
比して、ボイラ入熱量が増加且つ一定となり、
ボイラ蒸気発生量を増加できるとともに安定し
た供給を行なうことができる。したがつて、コ
ークス側の条件に制約されず安定した蒸気を供
給できる本発明においては蒸気発生装置として
の信頼性を高めることができる。特に蒸気量を
設備能力の最大値近くに選べば設備の有効利用
をはかることができ、経済性がきわめて高い。
(2) 外部から流量制御される燃料ガスを補給して
循環ガスと合流するようにしたので循環ガス成
分の調整が容易であり、また、従来の空気希釈
の様に、ガス成分の調整がボイラ入熱量への外
乱とはならないので、運転の安定化、プロセス
の高性能化をはかることができる。
(3) 燃料ガスは低温であり、これを冷却塔の入側
から供給するようにしたので冷却塔へ導かれる
循環ガス温度が低下しコークス冷却能力が向上
する。特に燃焼ガスとして製鉄所内で大量に発
生し商品価値の低い高炉ガスを使用すれば、炉
内で吸熱反応をおこすので冷却能力が一層向上
し、これがため冷却塔の容積を小型化でき循環
ガス量を少なくすることができる。また、可燃
性ガスを発生するので、これを回収して有効利
用できる。
(4) 燃焼対象となる可燃ガスはすべて冷却塔から
出てきたもので高温なので、燃焼用空気は完全
消費され、冷却塔内に入る等の不具合はない。
(5) 燃焼用空気を供給する空気供給手段は既存設
備に備わつているものであり、燃料ガス配管を
循環系に接続するのみで構成できるもので装置
を簡単化することができる。
(6) 燃料ガスとして低カロリーのガスを使用すれ
ば、不活性ガスとして循環系に投入している
N2ガスの代用が可能であり、これによつてN2
ガスの節約ができ、またプロセスにおけるN2
ガス供給配管系を削減ないし省略することがで
きる。
【図面の簡単な説明】
第1図は従来装置の説明図、第2図は本発明を
実施する装置の好適一実施例を示す説明図であ
る。 尚、図中8は冷却塔、12はボイラ、15は循
環系、17はボイラ入側、18は冷却塔入側、1
9は下部放散管、20は上部放散管、21は燃料
ガス配管、22は流量調節弁、24はガス成分検
知器、25は制御装置、26はボイラ入口温度検
知器、28は蒸気流量検知器、30は空気供給手
段の例示である希釈空気フアン、31は循環ガス
流量調節弁である。

Claims (1)

  1. 【特許請求の範囲】 1 循環系を循環させ、冷却塔の赤熱コークスか
    ら顕熱を回収する循環ガス流量を調整してボイラ
    の蒸気発生量を制御するに際し、上記ボイラから
    排出された循環ガス中のH2、CO等の可燃成分割
    合を検出し、その検出値が設定範囲内に収まるよ
    うに循環系の冷却塔入側にH2、CO等を含む燃料
    ガスを補給し、循環ガスのボイラ入側温度を検出
    し、その検出温度が設定範囲内に収まるようにボ
    イラ入側の循環系に循環ガス中の可燃成分を燃焼
    させる燃焼用空気を供給してボイラの蒸気発生量
    を安定的に制御することを特徴とするコークス乾
    式消火設備におけるボイラ蒸気発生量の制御方
    法。 2 循環ガスを冷却塔に導入して赤熱コークスを
    冷却し、該冷却によつて昇温された循環ガスをボ
    イラに導いて熱回収を行う循環系を設けると共
    に、該循環系に上記ボイラの蒸気発生量によつて
    上記循環ガス流量を制御する循環ガス調整弁を設
    けたコークス乾式消火設備において、上記冷却塔
    の入側に循環ガス中のH2、CO等の可燃成分割合
    によつて流量制御されるH2、CO等の可燃成分を
    含む燃料ガスを導く燃料ガス配管を合流接続し、
    上記循環系のボイラ入側に、該ボイラ入側の循環
    ガス温度によつて投入量を制御される燃焼用空気
    を供給する空気供給手段を設けたことを特徴とす
    るコークス乾式消火設備のボイラ蒸気発生量の制
    御装置。
JP58027030A 1983-02-22 1983-02-22 コ−クス乾式消火設備におけるボイラ蒸気発生量の制御方法及びその装置 Granted JPS59155490A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58027030A JPS59155490A (ja) 1983-02-22 1983-02-22 コ−クス乾式消火設備におけるボイラ蒸気発生量の制御方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58027030A JPS59155490A (ja) 1983-02-22 1983-02-22 コ−クス乾式消火設備におけるボイラ蒸気発生量の制御方法及びその装置

Publications (2)

Publication Number Publication Date
JPS59155490A JPS59155490A (ja) 1984-09-04
JPH0368918B2 true JPH0368918B2 (ja) 1991-10-30

Family

ID=12209670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58027030A Granted JPS59155490A (ja) 1983-02-22 1983-02-22 コ−クス乾式消火設備におけるボイラ蒸気発生量の制御方法及びその装置

Country Status (1)

Country Link
JP (1) JPS59155490A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4036305A1 (de) * 1989-11-14 1991-05-16 Sumitomo Metal Ind Verfahren zum betreiben einer trockenloeschanlage fuer heissen koks
CN1694943B (zh) * 2002-08-29 2012-10-10 新日本制铁株式会社 干熄焦方法及装置
KR100716682B1 (ko) * 2005-02-25 2007-05-09 신닛뽄세이테쯔 카부시키카이샤 코크스 건식 소화 방법 및 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125501A (ja) * 1974-08-23 1976-03-02 Gosudarusutoennui Vi Ho Puroek Kookusukanshikikyureikateino netsukaishu niokeru ondoanteikaho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125501A (ja) * 1974-08-23 1976-03-02 Gosudarusutoennui Vi Ho Puroek Kookusukanshikikyureikateino netsukaishu niokeru ondoanteikaho

Also Published As

Publication number Publication date
JPS59155490A (ja) 1984-09-04

Similar Documents

Publication Publication Date Title
US4472936A (en) Method and apparatus for controlling combustion of gasified fuel
JP3230564U (ja) 炉煙不活性化に基づく石炭ミル出口温度制御システム
JPH06264062A (ja) コークス炉乾式消火設備の操業方法
JPS6030356B2 (ja) 石炭をガス化する方法及び装置
JP4938043B2 (ja) コークス乾式消火方法
JPH0368918B2 (ja)
JP4299841B2 (ja) コークス乾式消火方法及び装置
KR100393023B1 (ko) 코우크스 건식 소화 방법 및 소화 장치
CA1120799A (en) Furnace heat absorption control
JP3869669B2 (ja) コークス乾式消火方法及び装置
JP2000028129A (ja) 微粉炭燃焼装置
JP2001158883A (ja) コークス乾式消火方法及び消火装置
JPH07242878A (ja) コークス乾式消火設備の操業方法
JPH0126399B2 (ja)
JP6702109B2 (ja) 粉砕プラントにおけるプロセス制御方法、粉砕プラントにおけるプロセス制御装置、およびプログラム
JP3020737B2 (ja) 可燃性放散ガスの燃焼処理装置
JPH10274007A (ja) コークス乾式消火設備への蒸気供給方法及び装置
JPH01139915A (ja) スラリバーナの制御方法
JPH0126398B2 (ja)
JPS6310690A (ja) 乾式コ−クス消火設備の消火方法
JPS5964692A (ja) コ−クスの乾式消火設備における循環ガスカロリ−制御方法
JPH0873861A (ja) コークス乾式消火設備のプレチャンバー圧力制御方法
JP2015104724A (ja) 排ガス循環系粉砕プラントのミル出口温度制御方法、装置及びプログラム
KR20210079805A (ko) 코크스 건식 소화 설비
JP2001240862A (ja) コークス乾式消火設備の操業方法