JPH0360457B2 - - Google Patents

Info

Publication number
JPH0360457B2
JPH0360457B2 JP58166134A JP16613483A JPH0360457B2 JP H0360457 B2 JPH0360457 B2 JP H0360457B2 JP 58166134 A JP58166134 A JP 58166134A JP 16613483 A JP16613483 A JP 16613483A JP H0360457 B2 JPH0360457 B2 JP H0360457B2
Authority
JP
Japan
Prior art keywords
compost
pine
sawdust
cow dung
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58166134A
Other languages
Japanese (ja)
Other versions
JPS6058018A (en
Inventor
Tatsuo Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP58166134A priority Critical patent/JPS6058018A/en
Publication of JPS6058018A publication Critical patent/JPS6058018A/en
Publication of JPH0360457B2 publication Critical patent/JPH0360457B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mushroom Cultivation (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 産業上の利用分野 この発明は牛糞オガクズを利用したマツシユル
ームの栽培方法に関するものである。 ロ 従来技術 マツシユルームの人工的栽培は古く(17世紀頃
フランスで)から行われてきており、当時は、馬
廐肥を施肥したメロンを収穫した後の床に散水し
て発生した子実体を採取していた。 我国においても馬廐肥を利用したマツシユルー
ムの栽培が行われてきたが、馬廐肥の入手が困難
化し、合成堆肥を利用する栽培法が主流化してき
た。 例えば、最近では、バガスに化学肥料を加えて
醗酵させた堆肥によりマツシユルームを栽培する
方法(特開昭50−129347号公報)、木資材料に化
学肥料を加えて醗酵させた堆肥によりマツシユル
ームを栽培する方法(特開昭53−81353号公報)、
純粋合成堆肥による方法(特公昭55−20647号公
報)、もみ殻を利用した方法(特公昭57−16763号
公報)等が提案され、さらには、畜肉・水産加工
時の排水や廃棄物とわら類とを主原料とした堆肥
による方法(特公昭51−16339号公報)が提案さ
れているが、牛舎で発生する牛糞オガクズを利用
する方法については、未だ適切な解決策が提供さ
れていない。 最近の牛舎では敷料としてオガクズが使われて
おり、牛糞が混入された牛糞オガクズが肉牛飼育
農家で大量に発生し、その廃棄処分に難渋してい
る。 しかし、馬廐肥等と異なり、牛糞の粒子は下表
の通り微細で緻密である。
B. Field of Industrial Application This invention relates to a method for cultivating pine loom using cow dung sawdust. B. Conventional technology Artificial cultivation of pine trees has been practiced for a long time (around the 17th century in France), and at that time, melons fertilized with manure and harvested were watered on the bed and the fruiting bodies produced were collected. Was. In Japan, cultivation of pine trees using horse manure has been carried out, but as it has become difficult to obtain horse manure, cultivation methods using synthetic compost have become mainstream. For example, recently, a method of cultivating pine loom using compost made by adding chemical fertilizer to bagasse and fermenting it (Japanese Patent Application Laid-open No. 129347/1983), and a method of cultivating pine loom using compost made by adding chemical fertilizer to wood materials and fermenting it have been introduced. method (Japanese Unexamined Patent Publication No. 53-81353),
Methods using pure synthetic compost (Japanese Patent Publication No. 55-20647) and methods using rice husks (Japanese Patent Publication No. 57-16763) have been proposed; A method of using compost as the main raw material has been proposed (Japanese Patent Publication No. 16339/1983), but no suitable solution has yet been provided regarding the method of utilizing cow dung sawdust generated in cow sheds. Nowadays, sawdust is used as bedding in cattle sheds, and beef cattle farmers are generating large amounts of cow dung sawdust mixed with cow dung, making it difficult to dispose of it. However, unlike horse manure, etc., the particles of cow dung are fine and dense, as shown in the table below.

【表】【table】

【表】 これがため、次の様な問題がある。 (1) 0.1mm以下の微粒子が50%に達するため、通
気性が悪化し、好気性醗酵を阻害する。 (2) オガクズに含まれるフエノール化合物や精油
類などの有害物質によるマツシユルーム菌糸の
繁殖障害がある。 (3) 反すう後も体内で消化困難な難分解有機物が
残存してコンポストに汚染の原因を与える。 これらの理由によつて、牛糞オガクズを利用し
た本格的なマツシユルーム栽培は例がない。 ハ 発明の目的 この発明は、現在処理に困つている牛糞オガク
ズを利用してマツシユルームを栽培し、残つた堆
肥を土壌に還元させるようにして、肉牛飼育農家
の悩みを解消し、合わせて過疎地の農業振興を図
ることを目的としている。 ニ 発明の構成 この発明は、牛舎の敷料とされるオガクズと牛
糞との混合物、即ち、牛舎で発生し、排棄される
牛糞オガクズを回収し、これに適当な大きさに裁
断された稲わら類を適量(50〜75重量%)混合
し、これに若干の化学肥料を添加調整し、自然条
件下で適宜切返しと散水を行いつつ2〜3週間堆
積醗酵(一次醗酵)させて水分率約65%程度のコ
ンポストを作成し、このコンポストを菌糸に均等
な厚さに床詰めし、菌舎内を菌床温度58〜60℃で
3時間以上の殺菌とコンポストの後醗酵(二次醗
酵)を行わせて熟成(約1週間)させ、しかる
後、27℃以下に冷却して種菌を接種し、菌床温度
を20〜24℃に保ちつつ約2週間育成管理してコン
ポスト全体に菌糸を十分繁殖させ、次いで菌床上
に消毒済みの土を約3〜4cm被覆し、約2週間菌
床温度24℃で育成した後、15℃に冷却して子実体
を形成させ、以後、菌舎内を15〜18℃に保ちつつ
湿度、換気、給水、衛生を適宜管理し、約6週間
後、生長したマツシユルームを収穫し、この収穫
を数回(5〜6回)反復した後、70℃以上で蒸気
殺菌またはホルマリン消毒した後、土壌に還元し
て廃床処理するようにしたものである。 上記牛舎から回収される牛糞オガクズは、牛舎
内ですでに数ケ月経過しており、これら牛糞オガ
クズ、生牛糞及び稲わらは下表の成分組成を有し
ている。
[Table] This causes the following problems. (1) As fine particles of 0.1 mm or less account for 50% of the total, air permeability deteriorates and aerobic fermentation is inhibited. (2) Harmful substances such as phenolic compounds and essential oils contained in sawdust cause problems in the reproduction of pine room mycelium. (3) Even after rumination, persistent organic matter that is difficult to digest remains in the body, causing contamination of the compost. For these reasons, there are no examples of full-scale pine room cultivation using cow dung sawdust. C. Purpose of the Invention This invention solves the problems faced by beef cattle farmers by cultivating pine mushrooms using cow dung sawdust, which is currently difficult to dispose of, and returning the remaining compost to the soil. The aim is to promote agriculture in the area. D. Structure of the Invention This invention collects a mixture of sawdust and cow dung that is used as bedding for cow sheds, that is, cow dung sawdust that is generated and discarded in cow sheds, and mixes it with rice straw cut to an appropriate size. Mix an appropriate amount (50 to 75% by weight) of the above ingredients, add a small amount of chemical fertilizer, and ferment under natural conditions for 2 to 3 weeks with appropriate turning and watering (primary fermentation) to reach a moisture content of approximately Create about 65% compost, fill the bed with this compost to an even thickness on the mycelia, sterilize the inside of the fungus house at a bed temperature of 58 to 60℃ for over 3 hours, and ferment the compost after fermentation (secondary fermentation). After that, it is cooled to below 27°C, inoculated with seed fungi, and grown for about 2 weeks while maintaining the temperature of the fungus bed at 20-24°C, to infuse mycelium throughout the compost. After sufficient propagation, the fungus bed was covered with about 3 to 4 cm of sterilized soil, and the fungus bed was grown at a temperature of 24°C for about 2 weeks, and then cooled to 15°C to form fruiting bodies. While keeping the temperature at 15-18℃, humidity, ventilation, water supply, and hygiene are appropriately controlled. After about 6 weeks, the grown pine room is harvested. After repeating this harvest several times (5-6 times), the temperature is 70℃ or higher. After steam sterilization or formalin disinfection, the waste is returned to the soil and disposed of as waste. The cow dung sawdust collected from the cowshed has already been in the cow shed for several months, and these cow dung sawdust, raw cow dung, and rice straw have the composition shown in the table below.

【表】 また、牛舎の敷料に使用されるオガクズ材料の
炭素、窒素と炭素率は下記の通りである。
[Table] In addition, the carbon, nitrogen, and carbon percentages of sawdust materials used as bedding for cattle sheds are as follows.

【表】 上記オガクズの炭素率は、数百〜千数百に及ぶ
もので、一方、牛糞は80%が水分で粘性も高く通
気性が極めて悪いため、オガクズの高い水分吸収
率を利用して牛舎での水分調整を行わせているの
である。 上記オガクズは、牛舎に保存されている間に変
化を受けて可溶性抽出物が増加し、易分解性有機
物が醗酵を促進するものと考えられる。 次にこの発明の牛糞オガクズによるマツシユル
ームの栽培手順を説明する。 マツシユルーム栽培の大要 第1段階 (1) 堆肥造成(一次醗酵) 稲わら、有機資材その他添加物を配合し、
堆積醗酵を行ないマツシユルームの栄養源と
なる基質(コンポスト)を準備する。 (2) 菌床作り 3.3m2当り330〜350Kgのコンポストを均等
な厚さに床詰めする。 (3) 後醗酵(二次醗酵) 菌舎内を菌床温度58〜60℃で3時間以上の
加温殺菌とコンポストの熟成を行う(約1週
間)。 第2段階 (4) 種菌接種 二次醗酵終了後、菌床を27℃以下に冷却し
た後、種菌を接種する。 (5) 菌糸育成 菌床温を20〜24℃に保ちつつ約2週間育成
を管理し、コンポスト全体に菌糸を充分繁殖
させる。 (6) 覆土 菌床上に消毒済みの土を約3〜4cm被覆す
る。 第3段階 (7) 子実体形成 約2週間菌床温度24℃で育成した後、15℃
に冷却し、子実体を形成させる。 (8) 収穫管理 温度、湿度、換気、給水、衛生を管理し、
6週間で3.3m2当り50Kgの品質良好な子実体
を得る。 (9) 廃床処理 70℃以上で蒸気殺菌またはホルマリン消毒
した後廃床する。廃床は農作物の有機肥料と
して有用である。 上記した第1段階は好温性微生物群の活動に
よる分解と合成作用である。 第2段階ではマツシユルーム菌糸の育成の時
期である。 第3段階はミクロの生活史からマクロの生活
史への転換を誘発する時期である。 上記マツシユルーム栽培のフローチヤートは
第1図に示す通りであり、全過程の温度管理は
第2図に示している。 堆肥造成 マツシユルーム産業を企業化するためには、
常時大量の良質なコンポストを確保する必要が
ある。そのためには、主原料の稲わらが安価に
大量に入手でき、補助添加物も安価で取扱いが
容易で貯蔵性にすぐれている必要がある。 コンポストは、マツシユルームの栄養成分で
あると共に、菌糸時代を支持し、生活環境とな
り、さらに外界からの保護の役目も果してい
る。 この発明のコンポストは次の成分を含んでい
る。 窒素:マツシユルームには特異的な蛋白要求性
があつて、添加した窒素は醗酵中に好熱性微
生物の菌体となり、またそれらの生産物がマ
ツシユルームの好適な窒素源となる。 炭素:エネルギー源は、稲わらのセルローズ、
ヘミセルローズリグニンがマツシユルーム菌
糸の分泌する酵素によつて分解されて簡単な
糖類や有機酸となり吸収される。 無機質:Ca、P、K、その他、必要微量成分
は稲わら、牛糞、添加肥料に充分存在する。 ビタミン:成長促進因子は、堆積中に好熱性微
生物によつて合成される。 コンポストの原料 原理的にはコンポストの主原料として種々の
植物性廃棄物の利用が可能である。これらは充
分に炭素化合物を含んでいるからである。稲わ
らの他、麦稈類、トウモロコシ、アワ、キビの
穂軸や、乾草、ココナツツ、パイナツプルの廃
棄部などが主原料として利用できる。窒素源と
しては、無機肥料の他、米ヌカ、大豆粕、麦
芽、綿実粕、鶏糞などが添加物として利用でき
る。これらの有機資材は窒素と同時に炭素をも
補給するため、堆積中の成分バランスの混乱を
防止できるので有効である。 わら類としては、イネ、オオムギ、ハダカム
ギ、コムギの順に適するが、堆積前に20cm位に
切断しておく必要がある。 堆積の目的 堆積の主目的は原料にすでに含まれている栄
養成分を消失させ、マツシユルームに適した栄
養素に交換することである。 (1) 自然界の微生物の作用により稲わらの炭水
化物を限定分解してマツシユルーム菌の栄養
源として利用し易くする。 (2) 好熱性微生物の作用で発生する高熱によ
り、有害な雑菌や害虫を死滅させる。 (3) 稲わら、添加有機物に含まれる易分解性有
機物(糖質、ペクチン)を除き、同時にマツ
シユルーム菌だけに有効な菌体蛋白質や高窒
素リグニン腐植複合体を合成蓄積させる。 (4) 物理化学性質が均質で水分、空気、栄養成
分が均等に含まれ、単位面積当りの床詰量が
充分なコンポストを準備する。 一次醗酵の特徴 (1) 約20cmに切断した稲わらと添加物を混合
し、散水しながら堆積する。屋根付きコンク
リートの上で行うのがよい。化学的または微
生物学的活性による自然な条件での発熱反応
の進行であつて、堆積物の大きさは、高さ
1.7m×巾1.7m前後が良い。 (2) 醗酵期間は外気温によつて異るが、2〜3
週間程度で、この期間中に数回の切返しを行
う。切返しの目的は、酸素の供給、各添加物
の混合均質化、稲わらの崩壊軟化、水分均等
化などである。 コンポスト造成中の堆積断面は第3図に示す
様に、最外層(A)、放線菌の活動層(B)、醗酵最適
層(C)及び嫌気層(D)となる。 一次醗酵は高温の自己醗酵であるが、堆積の
場所によつて温度は異る。最外層(A)と嫌気層(D)
は冷たく、外層は通気性が良く、外気温に近く
多くの微生物を保留しており、切返しの際にこ
の層は全体に移植され、再び醗酵が活発となる
ので、接種層と呼ぶ。嫌気層(D)は、乳酸菌の作
用で酸性となり、合成された蛋白態窒素は再び
分解されて、マツシユルームには全く不敵なコ
ンポストとなり、温度は40℃以下を示す。 堆積直後の温度は低いが、徐々に昇温し、温
度の上昇と共に微生物の交代が反復し、この過
程は65℃付近まで続く。この温度以上では全微
生物は長時間の存在は不可能である。 堆積は条件さえよければ、80℃付近まで上昇
するが、これは化学反応で有機物の酸化作用が
進行しているものと思われる。 マツシユルーム子実体は、90%以上が水分で
あるから、堆積が正しい水分量を含むよう管理
すべきで、多すぎると酸素不足となり、嫌気性
のコンポストとなり、少なすぎると堆積が乾燥
し、好気性微生物の生存が熱の消失によつて不
可能となり、どちらも適したコンポストの生成
ができなくなる。 一次醗酵堆積中の微生物群 一次醗酵の初期には、数十種の微生物が検出
されるが、中温性微生物は、醗酵の経過と共に
消滅し、少数の好熱性微生物のみが検出される 堆積中の稲わら成分の変化 稲わらのセルローズ、ヘミセルローズは、堆
積中に上記微生物群によつて分解される。微生
物の炭素率は一般には5〜6程度であるから、
菌体の炭素量は窒素の5〜6倍である。 稲わらは約60であるから菌体の炭素率の10倍
以上高い値である。微生物は堆積中に稲わらや
有機物の炭素を酸化してエネルギー源としてい
るので、有機物は、菌体自身の炭素率に近づく
に従つて堆肥化が進み、炭素率16〜17のコンポ
ストがマツシユルームには最適である。 セルローズは、稲わら細胞膜の主成分で最も
量は多い。ヘミセルローズは通常リグニンと強
固に結合しており、その結合が解放されると分
解される。 リグニンは木質化した植物体に含まれてい
て、細胞壁に強度を与え、細胞と細胞を硬く結
合させる接着材の役目をしている。化学作用や
微生物の侵害に対して強い抵抗性を示し、分解
は極めて困難である。しかし、マツシユルーム
菌糸はphenoloxy daseをもつており、リグニ
ン物質を分解する能力がある。 好気性醗酵によつて温度が上昇すると、セル
ローズとヘミセルローズの分解が促進されて、
複雑に組合さつていたリグニンとの結合が解放
されて遊離した変性リグニンとなる。この様な
分解過程で増殖した微生物は、更新する際に死
滅し、その菌体蛋白質と変性リグニンが再度結
合してリグノプロテインと呼ばれる腐植物質が
形成される。この様な分解変性を受けた暗色不
定形の有機物は、微生物の細胞、菌体、胞子な
どを含み、40%糖質、12%蛋白、4%フエノー
ル物質からなり、マツシユルームの重要な栄養
源である。 堆積の実際 稲わらは強靭なものがよい。保管中に水に濡
れたり、強度を失つたわらは使えない。堆積の
数日前に加湿切断しておくのがよい。 最初の内は水分の吸着は困難であるが、手で
振り締めた時に指の間から水がにじむ程度が好
ましい。水分量は最終的に希望する量よりも不
足気味から始める方が良い。醗酵によつて有機
物が分解されると、水分が生産される。新わら
は表面がロウ質で光つており、アンモニアと熱
によつて軟化する。 実験的には、積込みは高さ40cm、巾1.7mの
適当な長さの木枠をつくつて、その中に行う。
まず、枠の中に30cmの厚さにわらを踏む。その
上に窒素を加えながら均一に水をまく。水分含
量は65%程度がよく、それからこの枠を少し上
に上げ、わらを踏み込む。この作業を繰り返し
て180cm位の高さに堆積する。 堆積中の切返しはホークで材料の塊りをほぐ
し、堆積の上下及び内部と外部とを入れかえて
空気を供給し、乾いた部分と湿つた部分とを混
ぜ合せ、水分が不足しているときは適度に散水
し、最後には両側は垂直し、頂上は平とするこ
とによつて堆積を通過する空気の流れが正常と
なる。堆積の上を歩いても足跡が着くだけで落
ち込むことはない。堆積が高温になり水分が欠
乏してくると、放線菌で白ぽくなり、切返しの
ときの散水の目安となる。 一次醗酵のコンポストの性状 黒褐色を呈し、わらの表面はかすかに濡れて
いる。わらは長く少々抵抗があるが曳きちぎれ
る。握り締めたわらの塊りは弾力性があつて手
を開くと拡がる。適切な水分は68〜70%程度で
強く握り締めると指の間から水がにじむ。アン
モニア臭が残つており、PHは8.2程度を示す。
粘性があつて手は湿り気で汚れる。白色の放線
菌の斑紋がコンポストの乾燥した部分に見られ
る。窒素の量は1.8〜2.0%でNH3は0.4%であ
る。コンポストの水分判定は、手で握り締めて
測定する。そのおよその目安は (1) 指間から水が滲み出して流れる場合
…75%以上。 (2) 指間から水が滲み出して滴下する場合
…72〜75%。 (3) 掌を濡らす程度 65〜72%。 (4) 掌は濡れない …60%以下。 コンポストを手で握つた時、水が流れ出して
はいけない。一般には積みすぎよりも不足の方
が好ましい。二次醗酵によつて調節が可能であ
る。 ホ 発明の効果 この発明によれば、現在処理に困つている牛糞
オガクズを利用してマツシユルームを栽培し、残
つた堆肥を土壌に還元させるため、肉牛飼育農家
の悩みを解消し、合わせて過疎地の農業振興に役
立つものである。
[Table] The carbon content of the above-mentioned sawdust ranges from hundreds to thousands of carbon atoms.On the other hand, cow dung is 80% water, has a high viscosity, and has extremely poor breathability. They are having the cows adjust the water content in the cowshed. It is thought that the above-mentioned sawdust undergoes changes while being stored in a cowshed, resulting in an increase in soluble extractables and easily decomposable organic matter that promotes fermentation. Next, a procedure for cultivating a pine tree room using cow dung sawdust according to the present invention will be explained. Outline of pine room cultivation First stage (1) Compost creation (primary fermentation) Mix rice straw, organic materials and other additives,
Perform sedimentary fermentation to prepare a substrate (compost) that will serve as a nutritional source for the pine room. (2) Making a fungal bed Fill the bed with 330 to 350 kg of compost per 3.3 m2 to an even thickness. (3) Post-fermentation (secondary fermentation) Heat sterilization in the bacteria house at a temperature of 58 to 60℃ for more than 3 hours and mature the compost (about 1 week). Second stage (4) Inoculum inoculation After the secondary fermentation is completed, the fungal bed is cooled to below 27°C, and then the inoculum is inoculated. (5) Mycelium cultivation Control the growth for about two weeks while keeping the temperature of the fungal bed at 20 to 24°C to allow sufficient mycelium to propagate throughout the compost. (6) Covering with soil Cover the fungal bed with approximately 3 to 4 cm of sterilized soil. 3rd stage (7) Fruiting body formation After growing at a fungus bed temperature of 24℃ for about 2 weeks, grow at 15℃
Cool to form fruiting bodies. (8) Harvest management: Control temperature, humidity, ventilation, water supply, hygiene,
Obtain 50 kg of good quality fruiting bodies per 3.3 m 2 in 6 weeks. (9) Waste bed treatment Dispose of the bed after steam sterilization or formalin disinfection at 70°C or above. Waste beds are useful as organic fertilizer for crops. The first stage described above is decomposition and synthesis by the activities of thermophilic microorganisms. The second stage is the period of growth of pine room mycelium. The third stage is the period that induces a shift from micro life history to macro life history. The flowchart of the pine room cultivation described above is as shown in FIG. 1, and the temperature control throughout the process is shown in FIG. Compost creation In order to commercialize the pine room industry,
It is necessary to secure a large amount of high-quality compost at all times. To this end, the main raw material, rice straw, must be available at low cost in large quantities, and the auxiliary additives must also be inexpensive, easy to handle, and have excellent storage stability. Compost is a nutritional component of the pine room, supports the mycelium era, provides a living environment, and also serves as protection from the outside world. The compost of this invention contains the following components. Nitrogen: Pine room has a specific protein requirement, and the added nitrogen becomes the cells of thermophilic microorganisms during fermentation, and their products serve as a suitable nitrogen source for pine room. Carbon: Energy source is cellulose from rice straw,
Hemicellulose lignin is broken down by enzymes secreted by pine room hyphae and converted into simple sugars and organic acids, which are absorbed. Inorganic substances: Ca, P, K, and other necessary trace components are present in sufficient quantities in rice straw, cow dung, and added fertilizer. Vitamins: growth-promoting factors synthesized by thermophilic microorganisms during deposition. Raw materials for compost In principle, various vegetable wastes can be used as the main raw materials for compost. This is because these contain a sufficient amount of carbon compounds. In addition to rice straw, the main raw materials that can be used include wheat culm, corn, millet, and millet cobs, as well as hay, coconut, and pineapple waste. As nitrogen sources, in addition to inorganic fertilizers, rice bran, soybean meal, malt, cottonseed meal, chicken manure, etc. can be used as additives. These organic materials are effective because they replenish nitrogen and carbon at the same time, preventing disruption of the component balance during deposition. Suitable straws include rice, barley, barley, and wheat, but they must be cut into pieces of about 20 cm before piling. Purpose of deposition The main purpose of deposition is to eliminate the nutrients already present in the raw material and replace them with nutrients suitable for the pine room. (1) The carbohydrates in rice straw are decomposed to a limited extent by the action of natural microorganisms, making them easier to use as a nutrient source for the pine mushroom fungus. (2) The high heat generated by the action of thermophilic microorganisms kills harmful bacteria and pests. (3) Easily degradable organic substances (carbohydrates, pectin) contained in rice straw and added organic matter are removed, and at the same time, bacterial protein and high nitrogen lignin humus complex, which are effective only for pine room fungi, are synthesized and accumulated. (4) Prepare compost that has homogeneous physicochemical properties, contains moisture, air, and nutrients evenly, and has a sufficient bed volume per unit area. Characteristics of primary fermentation (1) Rice straw cut into approximately 20cm pieces and additives are mixed and piled up while being sprinkled with water. It is best to do this on a concrete roof. The progression of an exothermic reaction under natural conditions due to chemical or microbiological activity, the size of the deposit being
Around 1.7m x width 1.7m is good. (2) The fermentation period varies depending on the outside temperature, but it takes 2 to 3
It takes about a week, and several cuts are made during this period. The purpose of cutting is to supply oxygen, mix and homogenize additives, disintegrate and soften the rice straw, and equalize water content. As shown in Figure 3, the cross section of the pile during compost creation consists of the outermost layer (A), the active layer of actinomycetes (B), the optimal fermentation layer (C), and the anaerobic layer (D). Primary fermentation is high-temperature self-fermentation, but the temperature varies depending on the location of deposition. Outermost layer (A) and anaerobic layer (D)
The outer layer is cold, has good ventilation, and is close to the outside temperature, retaining many microorganisms.When the fermentation process is carried out, this layer is transplanted to the entire surface and fermentation becomes active again, so it is called the inoculation layer. The anaerobic layer (D) becomes acidic due to the action of lactic acid bacteria, and the synthesized protein nitrogen is decomposed again, resulting in compost that is completely invulnerable to pine rooms, with a temperature below 40°C. Immediately after deposition, the temperature is low, but it gradually rises, and as the temperature rises, the microorganisms are replaced repeatedly, and this process continues until around 65℃. Above this temperature, all microorganisms are unable to exist for long periods of time. If the conditions are right, the temperature of the deposition can reach around 80 degrees Celsius, but this is thought to be due to the oxidation of organic matter progressing through a chemical reaction. Pine fruit bodies are more than 90% water, so they should be managed so that the pile contains the correct amount of moisture; too much will result in a lack of oxygen, resulting in anaerobic compost; too little will dry out the pile, resulting in aerobic compost. The survival of microorganisms becomes impossible due to the loss of heat, and neither can produce suitable compost. Microorganisms in the primary fermentation sediment At the beginning of the primary fermentation, several dozen types of microorganisms are detected, but mesophilic microorganisms disappear as the fermentation progresses, and only a small number of thermophilic microorganisms are detected in the sediment. Changes in Rice Straw Components Cellulose and hemicellulose in rice straw are decomposed by the above microorganisms during deposition. Since the carbon rate of microorganisms is generally around 5 to 6,
The amount of carbon in bacterial cells is 5 to 6 times that of nitrogen. Rice straw has a carbon content of about 60, which is more than 10 times higher than the carbon content of bacterial cells. Microorganisms oxidize carbon in rice straw and organic matter as an energy source during sedimentation, so as organic matter approaches the carbon content of the microorganisms themselves, composting progresses, and compost with a carbon content of 16 to 17 is placed in the pine room. is optimal. Cellulose is the main component of rice straw cell membranes and is the largest in amount. Hemicellulose is normally tightly bound to lignin, and when that bond is released, it is degraded. Lignin is contained in lignified plant bodies, gives strength to cell walls, and acts as an adhesive that firmly binds cells together. It exhibits strong resistance to chemical action and microbial attack and is extremely difficult to degrade. However, pine room mycelia contain phenoloxy dase, which has the ability to degrade lignin materials. When the temperature increases due to aerobic fermentation, the decomposition of cellulose and hemicellulose is accelerated,
The complex combinations of lignin bonds are released, resulting in liberated modified lignin. The microorganisms that proliferate during this decomposition process die during renewal, and the microbial protein and denatured lignin combine again to form a humic substance called lignoprotein. The dark-colored, amorphous organic matter that has been decomposed and denatured includes microbial cells, fungi, and spores, and is composed of 40% carbohydrates, 12% protein, and 4% phenolic substances, and is an important nutritional source for the pine room. be. The reality of piling rice straw should be strong. Straw that gets wet or loses its strength during storage cannot be used. It is best to humidify and cut it several days before deposition. Although it is difficult to absorb moisture at first, it is preferable that water oozes between the fingers when shaken by hand. It is better to start with a lack of water than the desired amount. Water is produced when organic matter is broken down through fermentation. The surface of new straw is waxy and shiny, and it softens when exposed to ammonia and heat. Experimentally, loading was carried out inside a wooden frame of appropriate length, 40 cm high and 1.7 m wide.
First, step on straw to a thickness of 30 cm inside the frame. Water evenly while adding nitrogen on top. The moisture content should be around 65%, then raise this frame a little higher and step in the straw. Repeat this process until it is piled up to a height of about 180cm. When turning during stacking, loosen the lumps of material with a hawk, replace the top and bottom of the stack, and the inside and outside to supply air, mix the dry and wet parts, and when there is insufficient moisture, Appropriate watering and finally vertical sides and a flat top will allow for normal air flow through the pile. Even if you walk on the pile, you will only leave footprints and will not feel depressed. When the piles reach high temperatures and lack moisture, they become whitish due to actinomycetes, which becomes a guideline for watering when cutting back. Characteristics of primary fermented compost It is blackish brown in color and the surface of the straw is slightly wet. The straw is long and there is some resistance, but it can be torn off. The clump of straw you hold is elastic and expands when you open your hand. The appropriate moisture content is around 68-70%, and if you squeeze it tightly, water will ooze between your fingers. The smell of ammonia remains, and the pH is around 8.2.
It's sticky and makes your hands wet and dirty. White actinomycete spots can be seen on the dry parts of the compost. The amount of nitrogen is 1.8-2.0% and NH3 is 0.4%. To determine the moisture content of compost, measure it by squeezing it in your hands. The approximate guideline is (1) When water oozes and flows from between the fingers.
…more than 75%. (2) If water oozes and drips from between your fingers
...72-75%. (3) Wetting the palm: 65-72%. (4) Palms do not get wet…60% or less. Water should not flow out when you hold the compost in your hands. In general, it is better to be understocked than overstocked. Adjustment is possible by secondary fermentation. E. Effects of the Invention According to this invention, pine room is cultivated using cow dung sawdust, which is currently difficult to dispose of, and the remaining compost is returned to the soil. It is useful for agricultural promotion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるマツシユルーム栽培方法
のプロセス説明図、第2図は各過程における温度
管理の一例を示すグラフ、第3図はコンポスト堆
積状態の断面図である。
FIG. 1 is a process explanatory diagram of the pine room cultivation method according to the present invention, FIG. 2 is a graph showing an example of temperature control in each process, and FIG. 3 is a sectional view of the compost piled up state.

Claims (1)

【特許請求の範囲】[Claims] 1 牛糞オガクズに、約20cmに裁断した稲わら類
を50〜75重量%混合し、これに若干の化学肥料を
添加調整し、自然条件下で一次醗酵させて水分率
約65%程度のコンポストを作成し、この後、従来
と同様に床詰め、殺菌、二次醗酵、冷却、接種、
菌糸繁殖、覆土、換気散水、子実体形成、収穫を
なし、その後、70℃以上で蒸気殺菌またはホルマ
リン消毒した後、土壌に還元して廃床処理するよ
うになしたことを特徴とする牛糞オガクズを利用
したマツシユルームの栽培方法。
1 Mix 50 to 75% by weight of rice straw cut into approximately 20 cm pieces with cow dung sawdust, add some chemical fertilizer to this, and ferment it under natural conditions to produce compost with a moisture content of approximately 65%. After that, as usual, it is packed in the bed, sterilized, secondary fermentation, cooled, inoculated,
Cow dung sawdust characterized by mycelial propagation, soil covering, ventilation and watering, fruiting body formation, and harvesting, followed by steam sterilization or formalin sterilization at 70°C or higher, followed by return to soil and waste bed treatment. How to grow pine loom using.
JP58166134A 1983-09-08 1983-09-08 Mushroom culture method using cow manure and saw dust Granted JPS6058018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58166134A JPS6058018A (en) 1983-09-08 1983-09-08 Mushroom culture method using cow manure and saw dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58166134A JPS6058018A (en) 1983-09-08 1983-09-08 Mushroom culture method using cow manure and saw dust

Publications (2)

Publication Number Publication Date
JPS6058018A JPS6058018A (en) 1985-04-04
JPH0360457B2 true JPH0360457B2 (en) 1991-09-13

Family

ID=15825661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58166134A Granted JPS6058018A (en) 1983-09-08 1983-09-08 Mushroom culture method using cow manure and saw dust

Country Status (1)

Country Link
JP (1) JPS6058018A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1275956C (en) * 1985-07-01 1990-11-06 Campbell Soup Company Substrate for growing shiitake mushrooms
JPH0380023A (en) * 1989-08-22 1991-04-04 Japan Tobacco Inc Cultivation of large-sized mushroom

Also Published As

Publication number Publication date
JPS6058018A (en) 1985-04-04

Similar Documents

Publication Publication Date Title
CN110192493B (en) Cultivation method of stropharia rugoso-annulata under artificial larch forest in northern area and application of cultivation method
Raviv Production of high-quality composts for horticultural purposes: A mini-review
CN1965638B (en) Compact type substrate seedling nursery culture pan
CN103848701B (en) A kind of preparation method of soilless plant cultivation matrix and the matrix prepared by the method
JPH0283287A (en) Compost for cultivation of mushroom and mushroom cultivation method
CN101125773B (en) Method for cultivating drumstick mushroom by using swamp liquid
CN104844382B (en) A kind of organic composite fertilizer of suitable asparagus lettuce growth
CN103992185A (en) Environment-friendly lightweight nutrition matrix for soilless cultivation and preparation method thereof
CN104054563B (en) A kind of production method of practicality and high efficiency vegetable soilless culture and nutrient medium for flowers material
CN1956652A (en) Plant growing bed, seedling raising bed and cover soil material for seedling raising bed
CN105684847A (en) Seedling cultivation substrate special for watermelons and preparation method thereof
CN107324945A (en) A kind of method that utilization animal dung produces particular biological organic fertilizer
KR102228080B1 (en) Method for Manufacturing Fertilizer Using Organic Waste
CN104761385A (en) Multifunctional microbial organic fertilizer and preparation method thereof
CN111527980B (en) Cultivation method for improving yield of agaricus bisporus
JP3859254B2 (en) How to grow Agaricus brazii
US4311511A (en) Method for producing high-grade fertilizer
JPH0625A (en) Cultivation of edible mushroom and medium therefor
CN103951479B (en) Fertilizer and preparation method thereof
JP2006169043A (en) Soil fungi soil aspergillus, soil fungi rice aspergillus, organic soil fungi fertilizer and soil fungi fertilizer by microorganism and method of cultivation by organic soil fungi fertilizer and the like
CN114982412A (en) Planting method capable of enabling soybeans to resist continuous cropping
JPH0360457B2 (en)
KR102430672B1 (en) Fertilizer manufacturing method using indigenous microorganisms
JP2920259B2 (en) Compost material fermentation promoter, method for producing compost material fermentation promoter, and liquid containing active rhizobia for use therein
CN109997604A (en) A kind of Stropharia rugoso-annulata and muskmelon wheel plant cultural method