JPH0354971B2 - - Google Patents

Info

Publication number
JPH0354971B2
JPH0354971B2 JP59098636A JP9863684A JPH0354971B2 JP H0354971 B2 JPH0354971 B2 JP H0354971B2 JP 59098636 A JP59098636 A JP 59098636A JP 9863684 A JP9863684 A JP 9863684A JP H0354971 B2 JPH0354971 B2 JP H0354971B2
Authority
JP
Japan
Prior art keywords
formula
synthesis example
conductor
polyimide
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59098636A
Other languages
Japanese (ja)
Other versions
JPS60243120A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59098636A priority Critical patent/JPS60243120A/en
Publication of JPS60243120A publication Critical patent/JPS60243120A/en
Publication of JPH0354971B2 publication Critical patent/JPH0354971B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、温度変化に対しカール、ねじれ、反
り等がなく、かつ耐熱性、寸法安定性、接着性等
の優れたフレキシブルプリント基板及びその製造
方法に関する。 〔発明の背景〕 従来フレキシブルプリント基板あるいは、フラ
ツトケーブル(以後フレキシブルプリント板に含
める)は、一般に導体と有機ポリマーの絶縁材を
接着剤を介して接着していた。しかしこの際、熱
圧着などの熱履歴を加えると、冷間時に基板のカ
ール、ねじれ、反りなどを生じ、その後の導体パ
ターニング等が不可能となる欠点があつた。これ
らの諸問題は、導体と絶縁材の線膨張係数の差に
起因し、導体と同程度の線膨張係数をもつ有機ポ
リマーがあれば、解決されることが予想されるが
一般に有機ポリマーの線膨張係数は、導体に比べ
ると大きく3×10-5K-1以下のものはほとんど見
出されていない。そのためフレキシブルプリント
基板の導体と絶縁材の接着は、室温あるいは比較
的定温で行われなければならず、プリント基板の
耐熱性などの性能は、接着剤に支配され、絶縁材
として高耐熱性のポリイミドを用いてもその性能
を全く発揮できなかつた。また接着力も十分なも
のではなかつた。 絶縁材の線膨張係数を下げる手段として、フイ
ラーやガラス繊維等を入れる方法もあるが、その
方法では、フイラー等を入れることにより絶縁材
がもろくなり、フレキシブルプリント基板に必要
不可欠なフレキシビリテイーを欠くことになる。
また線膨張係数も沿層方向には、小さくなるが、
貫層方向には効果を示さずこれは特にプリント基
板のスルーホール部の信頼性に問題を生じる。 〔発明の目的〕 本発明の目的は、絶縁材の線膨張係数と導体の
それとの差が1.5×10-5K-1以下のものを使用する
ことによつて導体と絶縁材に、熱履歴を加えても
カール、ねじれ、反り等がなく、かつ十分な接着
力、耐熱性、寸法安定性等をもつ工業的に有用な
フレキシブルプリント基板とその製造方法を提供
することにある。 〔発明の概要〕 本発明を概説すれば、本発明はフレキシブルプ
リント基板の製造方法に関する発明であつて、少
なくとも導体と絶縁材を包含するフレキシブルプ
リント基板の製造方法において、導体に、下記一
般式: 〔式中Ar1は式:
[Field of Application of the Invention] The present invention relates to a flexible printed circuit board that does not curl, twist, warp, etc. due to temperature changes and has excellent heat resistance, dimensional stability, adhesiveness, etc., and a method for manufacturing the same. [Background of the Invention] Conventionally, flexible printed circuit boards or flat cables (hereinafter referred to as flexible printed circuit boards) generally have a conductor and an organic polymer insulating material bonded together with an adhesive. However, in this case, if a thermal history such as thermocompression bonding is applied, the substrate will curl, twist, warp, etc. when it is cold, and subsequent patterning of conductors etc. will be impossible. These problems are caused by the difference in linear expansion coefficient between the conductor and the insulating material, and it is expected that they can be solved if there is an organic polymer with a linear expansion coefficient similar to that of the conductor, but in general, organic polymer linear The coefficient of expansion is larger than that of conductors, and hardly any material with an expansion coefficient of 3×10 -5 K -1 or less has been found. Therefore, the conductor and insulating material of a flexible printed circuit board must be bonded at room temperature or a relatively constant temperature, and the heat resistance and other performance of the printed circuit board is controlled by the adhesive, and highly heat-resistant polyimide is used as the insulating material. However, the performance could not be demonstrated at all. Furthermore, the adhesive strength was not sufficient. One way to lower the coefficient of linear expansion of the insulating material is to add filler, glass fiber, etc., but with this method, adding filler etc. makes the insulating material brittle, which makes it difficult to maintain the flexibility that is essential for flexible printed circuit boards. It will be missing.
Also, the coefficient of linear expansion decreases in the longitudinal direction,
It has no effect in the direction of through-layers, and this causes problems in reliability, especially in the through-hole portions of printed circuit boards. [Objective of the Invention] The object of the present invention is to reduce the thermal history of the conductor and the insulating material by using an insulating material in which the difference between the coefficient of linear expansion and that of the conductor is 1.5×10 -5 K -1 or less. It is an object of the present invention to provide an industrially useful flexible printed circuit board that does not curl, twist, warp, etc. even when added, and has sufficient adhesive strength, heat resistance, dimensional stability, etc., and a method for manufacturing the same. [Summary of the Invention] To summarize the present invention, the present invention relates to a method for manufacturing a flexible printed circuit board, which includes at least a conductor and an insulating material, in which the conductor is formed by the following general formula: [In the formula, Ar 1 is the formula:

【式】【formula】

【式】又は で示される基(式中Rは同一又は異なり、低級ア
ルキル基、低級アルコキシ基又はハロゲンを示
し、n,n′,n″,nは、0〜4の数を示す)で
あり、Ar2
[Formula] or is a group represented by

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例、合成例及び比較例によ
り更に具体的に説明するが、本発明はこれらに限
定されない。 なお、各例における略号は以下のとおりであ
る。 s−BPDA 3,3′,4,4′−ビフエニルテトラ
カルボン酸二無水物 BTDA 3,3′,4,4′−テトラカルボキシベン
ゾフエノン三無水物 DAPP 2,2−ビス〔4−(4−アミノフエノ
キシ)フエニル〕プロパン DAQP 4,4−ジアミノクオーターフエニル DATP 4,4″−ジアミノターフエニル DDE 4,4′−ジアミノジフエニルエーテル NMP N−メチル−2−ピロリドン PMDA ピロメリツト酸二無水物 o−TLDN o−トリジン 合成例 1 温度計、塩化カルシウム管、かくはん棒、窒素
吹込口を取付けた500mlの4つ口フラスコに毎分
約100mlの窒素を流しながら、DDE35.9gと
NMP425gを入れかくはんし、DDEを溶解した。
この溶液を水冷浴で10℃以下に冷却しながら、
PMDA39.1gを徐々に加え縮重合して、粘ちよ
うなポリアミツク酸を得、更に以後の塗膜作業性
を良くするためにこのワニスの回転粘度が約50ポ
アズになるまで85℃でクツキングを行つた。 上述のようにして得られたポリアミツク酸ワニ
スを、ガラス板上にアプリケータを用いて均一に
塗布し120℃の強制通風炉中に1時間放置し予備
乾燥を行いポリアミツク酸フイルムを得、次いで
このポリアミツク酸フイルムを鉄枠に固定し200
℃、300℃でそれぞれ1時間保持後、コハク色の
ポリイミドフイルムを得た。 比較例 1 合成例1で得たポリイミドの線膨張係数は、
5.59×10-5K-1で約35μmの厚みをもつこのフイル
ムにボスチツクジヤパン社製H2766エポキシ−ゴ
ム系接着剤(以下H2766と略記する)を約20μm
塗布し、片面ニツケルメツキ処理した厚さ35μm
の圧延銅箔と張合わせ、これに油圧式プレス機で
40Kg/cm2の圧力と150℃の熱をかけて30分間保持
した。室温でこのフレキシブル銅張板は大きく湾
曲してしまつた。 本発明において使用する線膨張係数とは、特に
ことわりがない限りガラス状態におけるもので測
定は、フイルム状の試料をサーモメカニカルアナ
ライザー(以下TMAと略記する)を用いて行
い、その結果ガラス転移点以下で最大傾きをもつ
直線部から算出したものである。この際注意しな
ければならないのは、試料のイミド化が完結して
いなかつたり、残留応力、吸湿水分等があると、
測定途中に試料の収縮が起り真の線膨張係数を求
めることができないので、試料はあらかじめその
ガラス転移温度以上に加熱し徐冷したものを用い
なければならないことである。 比較例 2 合成例1で合成したポリアミツク酸ワニスを片
面粗化処理した厚さ35μmの圧延銅箔にアプリケ
ーターを用いて均一に塗布し、強制通風炉中に
120℃で1時間乾燥後鉄枠に固定し、200℃、400
℃でそれぞれ1時間、30分保持した。室温まで冷
却後、鉄枠をはずすと約35μmのポリイミド層を
もつフレキシブル銅張板は、ポリイミド層を内側
に大きくカールし、このカールの湾曲半径は11.4
mmで厚さ10mmの真ちゆう板をのせて一昼夜放置し
ても直らなかつた。 合成例 2 o−TLDN31.43gとs−BPDA43.57gを用
い、ポリイミドの最終硬化条件を窒素気流中350
℃1時間とした他は合成例1と同様にしてポリイ
ミドフイルムを得た。このフイルムの線膨張係数
は1.29×10-5K-1であつた。 実施例 1 合成例2で合成したポリアミツク酸ワニスを片
面粗化処理した厚さ35μmの圧延銅箔にアプリケ
ーターを用いて約500μm均一に塗布し、強制通
風炉中に120℃で1時間乾燥後、鉄枠に固定し、
窒素気流中で200℃、350℃でそれぞれ1時間保持
した。室温まで冷却後鉄枠をはずすと、フレキシ
ブル銅張板は、銅箔を内側にわずかに湾曲した。
その曲率半径は90mmであつた。ポリイミド膜厚は
35μmであつた。 合成例 3 o−TLDN31.01g、BTDA11.77g、s−
BPDA32.23g(モル比o−TLDN1/
BTDA0.25/s−BPDA0.75)を用いた他は合成
例2と同様にしてポリイミドフイルムを得た。こ
のフイルムの線膨張係数は、2.20×10-5K-1であ
つた。 実施例 2 合成例3で得られたポリアミツク酸ワニスを比
較例2と同様にフレキシブル銅張板を得た。この
銅張板は室温でのカールは認められなかつた。 合成例 4 DDE5.96g、o−TLDN25.27g、s−
BPDA43.77g(モル比DDE0.2/o−
TLDN0.8/s−BPDA1)を用いた他は合成例2
の同様にしてポリイミドフイルムを得た。このフ
イルムの線膨張係数は、1.96×10-5K-1であつた。 実施例 3 合成例4で得られたポリアミツク酸ワニスを比
較例2と同様にしてフレキシブル銅張板を得た。
この銅張板は室温でカールは認められなかつた。 合成例 5 DATP38.3g、PMDA22.47g、BTDA14.22g
(モル比DATP1/PMDA0.7/BTDA0.3)を用
いた他は、合成例2を同様にしてポリイミドフイ
ルムを得た。このフイルムの線膨張係数は、2.42
×10-5K-1であつた。 実施例 4 合成例5で得られたポリアミツク酸ワニスを比
較例2と同様にしてフレキシブル銅張板を得た。
この銅張板はゆるやかにカールしその湾曲半径は
106mmであつた。しかしこの程度の湾曲はエツチ
ング操作に支障はない。 合成例 6 DAQP37.92g、DAPP8.16g、PMDA28.92g
(モル比DAQP0.85/DAPP/0.15/PMDA1)を
用いた他は、合成例2と同様にしてポリイミドフ
イルムを得た。このフイルムの線膨張係数は1.86
×10-5K-1であつた。 実施例 5 合成例6で得られたポリアミツク酸ワニスを実
施例3と同様にしてフレキシブル銅張板を得た。
この銅張板にカール、反り等は認められなかつ
た。 〔発明の効果〕 以上述べたように本発明のフレキシブルプリン
ト基板は、導体と絶縁材との間に熱履歴を加えて
もカール、ねじれ、反り等を生じないので、微細
パターンの製造に好適であり、接着剤を使用しな
くても良い場合は製造工程が簡素化されるという
効果を有する。
Hereinafter, the present invention will be explained in more detail with reference to Examples, Synthesis Examples, and Comparative Examples, but the present invention is not limited thereto. The abbreviations in each example are as follows. s-BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride BTDA 3,3',4,4'-tetracarboxybenzophenone dianhydride DAPP 2,2-bis[4-( 4-Aminophenoxy)phenyl]propane DAQP 4,4-diaminoquarterphenyl DATP 4,4″-diaminoterphenyl DDE 4,4′-diaminodiphenyl ether NMP N-methyl-2-pyrrolidone PMDA pyromellitic dianhydride o -TLDN o-Tolidine Synthesis Example 1 35.9 g of DDE and
425 g of NMP was added and stirred to dissolve DDE.
While cooling this solution to below 10℃ in a water cooling bath,
39.1 g of PMDA was gradually added and polycondensed to obtain a sticky polyamic acid. Furthermore, in order to improve the workability of subsequent coatings, the varnish was cured at 85°C until the rotational viscosity of the varnish reached approximately 50 poise. I went. The polyamic acid varnish obtained as described above was applied uniformly onto a glass plate using an applicator and left in a forced draft oven at 120°C for 1 hour to pre-dry to obtain a polyamic acid film. A polyamic acid film is fixed to an iron frame for 200 min.
After holding the mixture at 300°C and 300°C for 1 hour, an amber polyimide film was obtained. Comparative Example 1 The linear expansion coefficient of the polyimide obtained in Synthesis Example 1 is
Approximately 20 μm thick of H2766 epoxy-rubber adhesive (hereinafter abbreviated as H2766) manufactured by Bostik Japan Co. , Ltd.
Coated and treated with nickel plating on one side, thickness 35μm
This is then laminated with rolled copper foil, which is then pressed using a hydraulic press.
A pressure of 40 Kg/cm 2 and heat of 150°C were applied and held for 30 minutes. At room temperature, this flexible copper clad board was severely bent. Unless otherwise specified, the linear expansion coefficient used in the present invention refers to the coefficient of linear expansion in a glass state.Measurements are made using a thermomechanical analyzer (hereinafter abbreviated as TMA) on a film-like sample, and the results are as follows: This is calculated from the straight line section with the maximum slope. At this time, you must be careful if the imidization of the sample is not completed, or if there is residual stress, hygroscopic moisture, etc.
Since the sample shrinks during the measurement and the true coefficient of linear expansion cannot be determined, the sample must be heated above its glass transition temperature and slowly cooled beforehand. Comparative Example 2 The polyamic acid varnish synthesized in Synthesis Example 1 was applied uniformly to a 35 μm thick rolled copper foil with one side roughened using an applicator and placed in a forced draft oven.
After drying at 120℃ for 1 hour, fix it on an iron frame and heat it at 200℃ and 400℃.
It was kept at ℃ for 1 hour and 30 minutes, respectively. After cooling to room temperature and removing the steel frame, the flexible copper clad board with a polyimide layer of about 35 μm will curl the polyimide layer inward, and the radius of curvature of this curl will be 11.4
Even if I placed a 10mm thick brass board on it and left it for a day and night, it still didn't fix it. Synthesis Example 2 Using 31.43 g of o-TLDN and 43.57 g of s-BPDA, the final curing conditions of polyimide were set to 350 g in a nitrogen stream.
A polyimide film was obtained in the same manner as in Synthesis Example 1 except that the temperature was 1 hour. The coefficient of linear expansion of this film was 1.29×10 -5 K -1 . Example 1 The polyamic acid varnish synthesized in Synthesis Example 2 was applied uniformly to a thickness of about 500 μm using an applicator onto a rolled copper foil with a thickness of 35 μm that had been roughened on one side, and after drying in a forced draft oven at 120° C. for 1 hour, Fixed to iron frame,
It was held at 200°C and 350°C for 1 hour each in a nitrogen stream. When the steel frame was removed after cooling to room temperature, the flexible copper clad plate had a slight inward bend in the copper foil.
Its radius of curvature was 90 mm. The polyimide film thickness is
It was 35 μm. Synthesis example 3 o-TLDN31.01g, BTDA11.77g, s-
BPDA32.23g (molar ratio o-TLDN1/
A polyimide film was obtained in the same manner as in Synthesis Example 2 except that BTDA0.25/s-BPDA0.75) was used. The coefficient of linear expansion of this film was 2.20×10 −5 K −1 . Example 2 A flexible copper-clad board was obtained using the polyamic acid varnish obtained in Synthesis Example 3 in the same manner as in Comparative Example 2. No curling was observed in this copper-clad board at room temperature. Synthesis example 4 DDE5.96g, o-TLDN25.27g, s-
BPDA43.77g (molar ratio DDE0.2/o-
Synthesis example 2 except that TLDN0.8/s-BPDA1) was used.
A polyimide film was obtained in the same manner. The coefficient of linear expansion of this film was 1.96×10 −5 K −1 . Example 3 A flexible copper clad board was obtained using the polyamic acid varnish obtained in Synthesis Example 4 in the same manner as in Comparative Example 2.
No curling was observed in this copper-clad board at room temperature. Synthesis example 5 DATP38.3g, PMDA22.47g, BTDA14.22g
A polyimide film was obtained in the same manner as in Synthesis Example 2 except that (molar ratio DATP1/PMDA0.7/BTDA0.3) was used. The coefficient of linear expansion of this film is 2.42
It was ×10 -5 K -1 . Example 4 A flexible copper clad board was obtained using the polyamic acid varnish obtained in Synthesis Example 5 in the same manner as in Comparative Example 2.
This copper clad board curls gently and its radius of curvature is
It was 106mm. However, this degree of curvature does not impede the etching operation. Synthesis example 6 DAQP37.92g, DAPP8.16g, PMDA28.92g
A polyimide film was obtained in the same manner as in Synthesis Example 2 except that (molar ratio DAQP0.85/DAPP/0.15/PMDA1) was used. The coefficient of linear expansion of this film is 1.86
It was ×10 -5 K -1 . Example 5 A flexible copper clad board was obtained using the polyamic acid varnish obtained in Synthesis Example 6 in the same manner as in Example 3.
No curls, warpage, etc. were observed in this copper clad board. [Effects of the Invention] As described above, the flexible printed circuit board of the present invention does not cause curling, twisting, warping, etc. even when heat history is applied between the conductor and the insulating material, so it is suitable for manufacturing fine patterns. If there is no need to use an adhesive, the manufacturing process can be simplified.

Claims (1)

【特許請求の範囲】 1 少なくとも導体と絶縁材を包含するフレキシ
ブルプリント基板の製造方法において、導体に、
下記一般式: 〔式中Ar1は式:【式】 【式】又は で示される基(式中Rは同一又は異なり、低級ア
ルキル基、低級アルコキシ基又はハロゲンを示
し、n,n′,n″,nは、0〜4の数を示す)で
あり、Ar2は【式】で示される基、 R1はH又は低級アルキル基である〕で表される
構造単位を含有するポリアミツク酸(但し、テト
ラカルボン酸成分としてピロメリツト酸成分が存
在する場合には、該ピロメリツト酸成分の割合は
50モル%未満である)のワニスを直接塗布し、そ
の後ポリイミド硬化させることを特徴とするフレ
キシブル基板の製造方法。
[Claims] 1. A method for manufacturing a flexible printed circuit board including at least a conductor and an insulating material, the conductor comprising:
General formula below: [In the formula, Ar 1 is the formula: [formula] [formula] or is a group represented by A polyamic acid containing a structural unit represented by the group represented by [Formula], R 1 is H or a lower alkyl group (however, if a pyromellitic acid component is present as a tetracarboxylic acid component, the pyromellitic acid component is The proportion of acid components is
A method for producing a flexible substrate, comprising directly applying a varnish containing less than 50 mol% of polyimide, and then curing the polyimide.
JP59098636A 1984-05-18 1984-05-18 Flexible printed base board and production thereof Granted JPS60243120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098636A JPS60243120A (en) 1984-05-18 1984-05-18 Flexible printed base board and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098636A JPS60243120A (en) 1984-05-18 1984-05-18 Flexible printed base board and production thereof

Publications (2)

Publication Number Publication Date
JPS60243120A JPS60243120A (en) 1985-12-03
JPH0354971B2 true JPH0354971B2 (en) 1991-08-21

Family

ID=14224988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098636A Granted JPS60243120A (en) 1984-05-18 1984-05-18 Flexible printed base board and production thereof

Country Status (1)

Country Link
JP (1) JPS60243120A (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883718A (en) * 1985-02-12 1989-11-28 Mitsui Toatsu Chemicals, Inc. Flexible copper-clad circuit substrate
US5278276A (en) * 1985-08-27 1994-01-11 Mitsui Toatsu Chemicals, Incorporated Polyimide and high-temperature adhesive of polyimide
EP0235294B1 (en) * 1985-08-27 1997-11-12 MITSUI TOATSU CHEMICALS, Inc. Polyimides and heat-resistant adhesives comprising the same
JPS62171185A (en) * 1986-01-23 1987-07-28 日立化成工業株式会社 Manufacture of flexible printed circuit
AU599325B2 (en) * 1986-06-30 1990-07-19 Mitsui Toatsu Chemicals Inc. Flexible copper-clad circuit substrate
US4847353A (en) * 1986-11-20 1989-07-11 Nippon Steel Chemical Co., Ltd. Resins of low thermal expansivity
JP2680816B2 (en) * 1987-07-15 1997-11-19 鐘淵化学工業株式会社 Flexible printed circuit board
JPH01138787A (en) * 1987-11-25 1989-05-31 Sumitomo Electric Ind Ltd Flexible wiring substrate
JPH01245064A (en) * 1988-03-28 1989-09-29 Nippon Steel Chem Co Ltd Coating composition and usage thereof
US4937133A (en) * 1988-03-28 1990-06-26 Nippon Steel Chemical Co., Ltd. Flexible base materials for printed circuits
JP3523952B2 (en) * 1995-12-26 2004-04-26 日東電工株式会社 Polyimide-metal foil composite film
JP3541697B2 (en) 1998-11-20 2004-07-14 ソニーケミカル株式会社 Manufacturing method of flexible wiring board
JP3405242B2 (en) 1998-12-21 2003-05-12 ソニーケミカル株式会社 Flexible board
JP3565069B2 (en) 1998-12-28 2004-09-15 ソニーケミカル株式会社 Method for manufacturing double-sided flexible printed circuit board
JP4062803B2 (en) 1998-12-28 2008-03-19 ソニーケミカル&インフォメーションデバイス株式会社 Manufacturing method of suspension for magnetic head
DE60040927D1 (en) 1999-10-21 2009-01-08 Nippon Steel Chemical Co LAMINATE AND METHOD FOR THE PRODUCTION THEREOF
TWI300744B (en) 2001-04-19 2008-09-11 Nippon Steel Chemical Co
JP2005112891A (en) * 2003-10-03 2005-04-28 Toyobo Co Ltd Film substrate for packaging semiconductor
JP4544588B2 (en) 2005-03-14 2010-09-15 株式会社エー・エム・ティー・研究所 Laminated body
TWI454375B (en) * 2008-03-06 2014-10-01 Nippon Steel & Sumikin Chem Co Laminates for flexible substrates and wireless conductive polyimide films
JP6790756B2 (en) * 2016-11-18 2020-11-25 宇部興産株式会社 Polyimide, polyimide precursor, and polyimide film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129862A (en) * 1973-04-20 1974-12-12
JPS56118204A (en) * 1980-02-25 1981-09-17 Ube Industries Polyimide insulating member
JPS57114258A (en) * 1981-01-07 1982-07-16 Hitachi Ltd Semiconductor device
JPS57188853A (en) * 1981-05-18 1982-11-19 Hitachi Ltd Plastic molded type semiconductor device
JPS58157190A (en) * 1982-03-12 1983-09-19 日立化成工業株式会社 Method of producing substrate for flexible printed circuit
JPS60221427A (en) * 1984-04-17 1985-11-06 Hitachi Chem Co Ltd Manufacture of composite material
JPS60221426A (en) * 1984-04-17 1985-11-06 Hitachi Chem Co Ltd Production of polyimide composite

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129862A (en) * 1973-04-20 1974-12-12
JPS56118204A (en) * 1980-02-25 1981-09-17 Ube Industries Polyimide insulating member
JPS57114258A (en) * 1981-01-07 1982-07-16 Hitachi Ltd Semiconductor device
JPS57188853A (en) * 1981-05-18 1982-11-19 Hitachi Ltd Plastic molded type semiconductor device
JPS58157190A (en) * 1982-03-12 1983-09-19 日立化成工業株式会社 Method of producing substrate for flexible printed circuit
JPS60221427A (en) * 1984-04-17 1985-11-06 Hitachi Chem Co Ltd Manufacture of composite material
JPS60221426A (en) * 1984-04-17 1985-11-06 Hitachi Chem Co Ltd Production of polyimide composite

Also Published As

Publication number Publication date
JPS60243120A (en) 1985-12-03

Similar Documents

Publication Publication Date Title
JPH0354971B2 (en)
US4937133A (en) Flexible base materials for printed circuits
JP5180814B2 (en) Laminated body for flexible wiring board
JP2005150728A (en) Multilayer substrate having at least two dissimilar polyimide layers and conductive layer, useful for electronics-type applications, and compositions relating thereto
JPH0522399B2 (en)
JP2746555B2 (en) Flexible printed circuit board
TWI405792B (en) A polyimide film having a high adhesion property and a method for producing the same
JPH0317235B2 (en)
US4939039A (en) Flexible base materials for printed circuits and method of making same
JP2738453B2 (en) Manufacturing method of copper clad laminate
WO2004018545A1 (en) Novel polyimide copolymer and metal laminate comprising the same
JPS6384188A (en) Manufacture of flexible printed circuit substrate
JPS63245988A (en) Flexible printed circuit and manufacture of the same
JPH0796618B2 (en) Low thermal expansion resin
JP2729063B2 (en) Method of manufacturing flexible metal foil laminate
JPS61111182A (en) Manufacture of polyimide-metallic foil composite film
US5167985A (en) Process for producing flexible printed circuit board
JPH046431B2 (en)
JP3493363B2 (en) Novel copolymer and its production method
JPH0955567A (en) Production of flexible printed wiring board
KR20090013921A (en) Polyimide film for electronic device component
JP3587291B2 (en) TAB tape
JPS61287736A (en) Polyimide metallic-foll composite film
JPS61245868A (en) Preparation of flexible printed circuit board
KR100822840B1 (en) Flexible Copper-Clad Laminate