JPH0317235B2 - - Google Patents

Info

Publication number
JPH0317235B2
JPH0317235B2 JP59011843A JP1184384A JPH0317235B2 JP H0317235 B2 JPH0317235 B2 JP H0317235B2 JP 59011843 A JP59011843 A JP 59011843A JP 1184384 A JP1184384 A JP 1184384A JP H0317235 B2 JPH0317235 B2 JP H0317235B2
Authority
JP
Japan
Prior art keywords
formula
printed circuit
flexible printed
polyamic acid
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59011843A
Other languages
Japanese (ja)
Other versions
JPS60157286A (en
Inventor
Shunichi Numata
Koji Fujisaki
Shuichi Oohara
Tokuyuki Kaneshiro
Junichi Imaizumi
Yoshikatsu Mikami
Yoshuki Ikezoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1184384A priority Critical patent/JPS60157286A/en
Publication of JPS60157286A publication Critical patent/JPS60157286A/en
Publication of JPH0317235B2 publication Critical patent/JPH0317235B2/ja
Priority to JP1592392A priority patent/JPH0563322A/en
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Structure Of Printed Boards (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、温度変化に体しカール、ねじれ、反
り等がなく、かつ耐熱性、寸法安定性、接着性等
の優れたフレキシブルプリント基板の製造方法に
係るものである。 〔発明の背景〕 従来フレキシブルプリント基板あるいは、フラ
ツトケーブル(以後フレキシブルプリント板に含
める)は、一般に導体と有機ポリマーの絶縁材を
接着剤を介して接着していた。しかしこの際、熱
圧着などの熱履歴を加えると、冷間時に基板のカ
ール、ねじれ、反りなどを生じ、その後の導体パ
ターニング等が不可能となる欠点があつた。これ
らの諸問題は、導体と絶縁材の線膨張係数の差に
起因し、導体と同程度の線膨張係数をもつ有機ポ
リマーがあれば、解決されることが予想されるが
一般に有機ポリマーの線膨張係数は、導体に比べ
ると大きく3×10-5-1以下のものはほとんど見
出されていない。その為フレキシブルプリント基
板の導体と絶縁材の接着は、室温あるいは比較低
温で行なわなければならず、プリント基板の耐熱
性などの性能は、接着剤に支配され、絶縁材とし
て高耐熱性のポリイミドを用いてもその性能を全
く発揮できなかつた。また接着力も十分なもので
はなかつた。 絶縁材の線膨張係数を小さくする手段として、
フイラーやガラス繊維等を入れる方法もあるが、
この方法では、フイラー等を入れることにより絶
縁材がもろくなり、フレキシブルプリント基板に
必要不可欠なフレキシビリテイーを欠くことにな
る。また線膨張係数も沿層方向には、小さくなる
が、貫層方向には効果を示さずこれは特にプリン
ト基板のスルーホール部の信頼性に問題を生じ
る。 〔発明の目的〕 本発明の目的は、絶縁材の線膨張係数と導体の
それとの差が1.5×10-5-1以下のものを使用す
ることによつて導体と絶縁材に、熱履歴を加えて
もカール、ねじれ、反り等のないかつ十分な接着
力、耐熱性、寸法安定性等をもつ工業的に有用な
フレキシブルプリント基板の製造方法を提供する
ことにある。 〔発明の概要〕 本発明の特徴は、一般式〔〕 〔式中、R1
[Field of Application of the Invention] The present invention relates to a method for manufacturing a flexible printed circuit board that does not curl, twist, or warp due to temperature changes, and has excellent heat resistance, dimensional stability, adhesiveness, etc. [Background of the Invention] Conventionally, flexible printed circuit boards or flat cables (hereinafter referred to as flexible printed circuit boards) generally have a conductor and an organic polymer insulating material bonded together with an adhesive. However, in this case, if a thermal history such as thermocompression bonding is applied, the substrate will curl, twist, warp, etc. when it is cold, and subsequent patterning of conductors etc. will be impossible. These problems are caused by the difference in linear expansion coefficient between the conductor and the insulating material, and it is expected that they can be solved if there is an organic polymer with a linear expansion coefficient similar to that of the conductor, but in general, organic polymer linear The coefficient of expansion is larger than that of conductors, and hardly any material with an expansion coefficient of 3×10 -5 °C -1 or less has been found. Therefore, the conductor and insulating material of a flexible printed circuit board must be bonded at room temperature or a relatively low temperature, and the heat resistance and other performance of the printed circuit board is controlled by the adhesive, and highly heat-resistant polyimide is used as the insulating material. Even when used, it could not demonstrate its performance at all. Furthermore, the adhesive force was not sufficient. As a means of reducing the coefficient of linear expansion of insulation materials,
There are ways to add filler, glass fiber, etc.
In this method, the insulating material becomes brittle due to the inclusion of fillers and the like, resulting in a lack of flexibility, which is essential for flexible printed circuit boards. Furthermore, although the coefficient of linear expansion becomes smaller in the direction along the layer, it has no effect in the direction through the layers, which causes a problem particularly in the reliability of the through-hole portion of the printed circuit board. [Object of the Invention] The object of the present invention is to reduce the thermal history of the conductor and the insulating material by using an insulating material whose linear expansion coefficient differs from that of the conductor by 1.5×10 -5 °C -1 or less. It is an object of the present invention to provide a method for manufacturing an industrially useful flexible printed circuit board that does not curl, twist, warp, etc. even when the adhesive is added, and has sufficient adhesive strength, heat resistance, dimensional stability, etc. [Summary of the Invention] The present invention is characterized by the general formula [] [In the formula, R 1 is

【式】【formula】

【式】(R3 は低級アルキル基、含フツ素低級アルキル基のい
ずれかであり、mは1〜4の整数)、
[Formula] (R 3 is either a lower alkyl group or a fluorine-containing lower alkyl group, m is an integer of 1 to 4),

【式】から選ばれ、R2Selected from [formula], R 2 is

【式】【formula】

【式】【formula】

【式】から選ばれ、Rは水素ま たはエステル残基を表わす。〕で表わされるポリ
アミツク酸ワニスを導体箔に直接塗布・乾燥し、
加熱イミド化して積層体を得ることを特徴とする
フレキシブルプリント基板の製造方法を提供する
ことにある。 本発明者らは、導体と同程度又は、それ以下の
線膨張係数をもつ有機ポリマーについて鋭意研究
した結果、線膨張係数が従来の有機ポリマーに比
べ異常に小さい3×10-5-1以下の有機ポリマー
を発見し、フレキシブルプリント基板において導
体と絶縁材の線膨張係数の差が1.5×10-5-1
下であれば、カール、ねじれ、反りなどの諸問題
を解決できることを見出した。この発見により従
来不可能とされた導体への絶縁材、又はその前駆
体ワニスを直接塗布、乾燥、硬化を行ない、かつ
カール、ねじれ、反り等のないフレキシブルプリ
ント基板を極めて容易に得ることが可能となつ
た。 本発明者等はポリイミド前駆体ワニスとして、
一般式〔〕 〔式中、R1
selected from the formula, where R represents hydrogen or an ester residue. ] A polyamic acid varnish represented by is applied directly to the conductor foil and dried.
It is an object of the present invention to provide a method for manufacturing a flexible printed circuit board, which is characterized in that a laminate is obtained by heating imidization. As a result of intensive research into organic polymers with linear expansion coefficients comparable to or lower than those of conductors, the present inventors found that the linear expansion coefficient was 3×10 -5-1 or less, which is abnormally small compared to conventional organic polymers. discovered organic polymers and discovered that problems such as curling, twisting, and warping can be solved in flexible printed circuit boards as long as the difference in linear expansion coefficient between the conductor and the insulating material is 1.5×10 -5-1 or less. . With this discovery, it is now possible to directly apply an insulating material or its precursor varnish to a conductor, dry it, and harden it, which was previously impossible, and to extremely easily obtain a flexible printed circuit board that does not curl, twist, or warp. It became. As a polyimide precursor varnish, the present inventors
General formula [] [In the formula, R 1 is

【式】【formula】

【式】(R3 は低級アルキル基、含フツ素低級アルキル基のい
ずれかであり、mは1〜4の整数)、
[Formula] (R 3 is either a lower alkyl group or a fluorine-containing lower alkyl group, m is an integer from 1 to 4),

【式】から選ばれ、R2Selected from [formula], R 2 is

【式】【formula】

【式】【formula】

〔発明の実施例〕[Embodiments of the invention]

合成例 1 温度計、塩化カルシウム管、撹拌棒、窒素吹込
口を取付けた500mlの4つ口フラスコに毎分約100
mlの窒素を流しながら、4,4′−ジアミノジフエ
ニルエーテル(以下DDEと略記する)35.9grとN
−メチル−2−ピロリドン(以下NMPと略記す
る)425grを入れ撹拌しDDEを溶解した。この溶
液を水冷浴で10℃以下に冷却しながら、ピロメリ
ツト酸二無水物(以下PMDAと略記する)
39.1grを徐々に加え縮重合して、ねんちようなポ
リアミツク酸を得、さらに以後の塗膜作業性を良
くするためにこのワニスの回転粘度が約50ポアズ
になるまで85℃でクツキングを行なつた。 上述のようにして得られたポリアミツク酸ワニ
スを、ガラス板上にアプリケータを用いて均一に
塗布し100℃の強制通風炉中に1時間放置し予備
乾燥を行ないポリアミツク酸フイルムを得、次い
でこのポリアミツク酸フイルムを鉄わくに固定し
200℃、300℃でそれぞれ1時間保持後、琥珀色の
ポリイミドフイルムを得た。 比較例 1 合成例1で得たポリイミドの線膨張係数は、
5.59×10-5-1で約35μmの厚みをもつこのフイ
ルムにポスチツクジヤパン製H2766エポキシ−ゴ
ム系接着剤(以下H2766と略記する)を約20μm
塗布し、片面ニツケルメツキ処理した厚さ35μm
圧延銅箔と張合わせ、これに油圧式プレス機で40
Kg/cm2の圧力と150℃の熱をかけて30分間保持し
た。室温でこのフレキシブル銅張板は大きく湾曲
してしまつた。 本発明において使用する線膨張係数とは、特に
ことわりがない限りガラス状態におけるもので測
定は、フイルム状の資料をサーモメカニカルアナ
ライザー(以下TMAと略記する)を用いて行な
い、その結果ガラス転移点以下で最大傾きをもつ
直線部から算出したものである。この際注意しな
ければいけないのは、試料のイミド化が完結して
いなかつたり、残留応力、吸湿水分等があると、
測定途中に資料の収縮が起こり真の線膨張係数を
求めることができないので、資料は、予じめその
ガラス転移温度以上に加熱し除冷したものを用い
なければならないことである。 合成例 2 パラフエニレンジアミン(以下p−PDAと略
記する)20.16grと3,3′,4,4′−ビフエニルテ
トラカルボン酸二無水物(以下s−BPDAと略
記する)54.84grを用いイミド化の最終の加熱温
度を400℃とした他は、合成例1と同様にしてポ
リイミドフイルムを得た。 実施例 1 合成例2で得たポリイミドフイルムの線膨張係
数は、1.1×10-5で比較例1と同様にしてフレキ
シブル銅張板を得た。このフレキシブル銅張板
は、カール、ねじれ、反りなどは、みられなかつ
た。 比較例 2 合成例1で合成したポリアミツク酸ワニスを片
面粗化処理した厚さ35μmの圧延銅箔にアプリケ
ーターを用いて均一に塗布し、強制通風中に
100℃で1時間乾燥後鉄わくに固定し200℃、400
℃でそれぞれ1時間、30分保持した。室温まで冷
却後、鉄わくをはずすと約35μmのポリイミド層
をもつフレキシブル銅張板は、ポリイミド層を内
側に大きくカールし、このカールの湾曲半径は
11.4mmで厚さ10mmの真鍮板をのせて一昼夜放置し
ても直らなかつた。 実施例 2 合成例2で合成したポリアミツク酸ワニスを用
いた他は比較例2と同様にしてフレキシブル銅張
板を得た。このフレキシブル銅張板は、比較例2
の場合とは逆に銅箔を内側にエツチング作業には
影響を及ぼさない程度にカールし、この湾曲半径
は、92.0mmであつた。 合成例 3 100mlの4つ口フラスコを用い、1,4−ジア
ミノデユレン5.37g、s−BPDA9.63g、
NMP85gを用いた他は、合成例1と同様にして
ポリアミツク酸ワニスを得た。さらにポリイミド
フイルムを得ようとしたが、もろくフイルム状に
はならなかつた。 実施例 3 合成例3で合成したポリアミツク酸ワニスを用
いて比較例2と同様の操作を行なつた。得られた
フレキシブル銅張板は冷間時には絶縁材がもろか
つたが反りは全くなかつた。 合成例 4 1,5−ジアミノナフタレン5.25g、s−
BPDA9.76gを用いた他は、合成例3と同様にし
てポリアミツク酸ワニスを得た。さらにポリイミ
ドフイルムを得ようとしたが、もろくフイルム状
にすることはできなかつた。 実施例 4 合成例4で合成したポリアミツク酸ワニスを用
いて比較例2と同様の操作を得なかつた。得られ
たフレキシブル銅張板は、冷間時には絶縁材がも
ろかつたが、銅箔を内側に湾曲しその湾曲半径は
126mmであつた。 合成例 5〜10 第1表に示される様にDDE、p−PDA、s−
BPDAを配合し、NMPの量を85grにして合成例
2と同様の操作をしてそれぞれのポリアミツク酸
ワニス及びポリイミドフイルムを得た。
Synthesis Example 1 Approximately 100% per minute in a 500ml four-necked flask equipped with a thermometer, calcium chloride tube, stirring rod, and nitrogen inlet.
35.9gr of 4,4'-diaminodiphenyl ether (hereinafter abbreviated as DDE) and N while flowing ml of nitrogen.
-Methyl-2-pyrrolidone (hereinafter abbreviated as NMP) (425g) was added and stirred to dissolve DDE. While cooling this solution to below 10°C in a water cooling bath, add pyromellitic dianhydride (hereinafter abbreviated as PMDA).
39.1gr was gradually added and condensed to obtain a neutral polyamic acid.Furthermore, in order to improve the workability of subsequent coatings, the varnish was heated at 85°C until the rotational viscosity of the varnish reached approximately 50 poise. Summer. The polyamic acid varnish obtained as described above was applied uniformly onto a glass plate using an applicator and left in a forced draft oven at 100°C for 1 hour to pre-dry to obtain a polyamic acid film. Fixing polyamic acid film to iron frame
After holding at 200°C and 300°C for 1 hour, an amber polyimide film was obtained. Comparative Example 1 The linear expansion coefficient of the polyimide obtained in Synthesis Example 1 is
This film, which has a thickness of about 35 μm at 5.59 × 10 -5 °C -1, was coated with H2766 epoxy-rubber adhesive (hereinafter abbreviated as H2766) made by Postic Japan Co., Ltd. to a thickness of about 20 μm.
Coated and treated with nickel plating on one side, thickness 35μm
Laminated with rolled copper foil, then pressed with a hydraulic press for 40
A pressure of Kg/cm 2 and heat of 150°C was applied and maintained for 30 minutes. At room temperature, this flexible copper clad board was severely bent. Unless otherwise specified, the linear expansion coefficient used in the present invention is in a glass state.Measurements are made using a thermomechanical analyzer (hereinafter abbreviated as TMA) on a film-like material, and the results are below the glass transition point. This is calculated from the straight line section with the maximum slope. At this time, you must be careful if the imidization of the sample is not completed, or if there is residual stress, hygroscopic moisture, etc.
Since the sample shrinks during the measurement and the true coefficient of linear expansion cannot be determined, the sample must be heated above its glass transition temperature and slowly cooled beforehand. Synthesis Example 2 Using 20.16gr of paraphenylenediamine (hereinafter abbreviated as p-PDA) and 54.84gr of 3,3',4,4'-biphenyltetracarboxylic dianhydride (hereinafter abbreviated as s-BPDA) A polyimide film was obtained in the same manner as in Synthesis Example 1, except that the final heating temperature for imidization was 400°C. Example 1 The linear expansion coefficient of the polyimide film obtained in Synthesis Example 2 was 1.1×10 −5 , and a flexible copper-clad board was obtained in the same manner as in Comparative Example 1. This flexible copper clad board showed no curls, twists, or warps. Comparative Example 2 The polyamic acid varnish synthesized in Synthesis Example 1 was applied uniformly using an applicator to a rolled copper foil with a thickness of 35 μm that had been roughened on one side, and was then heated under forced ventilation.
After drying at 100℃ for 1 hour, fix it on an iron frame and heat it at 200℃ and 400℃.
It was kept at ℃ for 1 hour and 30 minutes, respectively. After cooling to room temperature and removing the iron frame, the flexible copper clad board with a polyimide layer of approximately 35 μm will curl the polyimide layer inward, and the radius of curvature of this curl will be
Even after placing a 11.4mm and 10mm thick brass plate on it and leaving it for a day and night, it still didn't fix it. Example 2 A flexible copper clad board was obtained in the same manner as Comparative Example 2 except that the polyamic acid varnish synthesized in Synthesis Example 2 was used. This flexible copper clad board is Comparative Example 2
Contrary to the case of , the copper foil was curled inside to the extent that it did not affect the etching process, and the radius of curvature was 92.0 mm. Synthesis Example 3 Using a 100ml four-necked flask, 5.37g of 1,4-diaminodurene, 9.63g of s-BPDA,
A polyamic acid varnish was obtained in the same manner as in Synthesis Example 1, except that 85 g of NMP was used. Furthermore, an attempt was made to obtain a polyimide film, but it was brittle and did not form into a film. Example 3 The same operation as in Comparative Example 2 was carried out using the polyamic acid varnish synthesized in Synthesis Example 3. The insulation material of the obtained flexible copper-clad board was brittle when cold, but it did not warp at all. Synthesis example 4 1,5-diaminonaphthalene 5.25g, s-
A polyamic acid varnish was obtained in the same manner as in Synthesis Example 3, except that 9.76 g of BPDA was used. Furthermore, an attempt was made to obtain a polyimide film, but it was too brittle to form into a film. Example 4 Using the polyamic acid varnish synthesized in Synthesis Example 4, the same operation as in Comparative Example 2 was not obtained. In the resulting flexible copper-clad board, the insulation material was brittle when cold, but by curving the copper foil inward, the radius of curvature increased.
It was 126mm. Synthesis Examples 5 to 10 As shown in Table 1, DDE, p-PDA, s-
A polyamic acid varnish and a polyimide film were obtained by blending BPDA and changing the amount of NMP to 85 gr, and carrying out the same operation as in Synthesis Example 2.

【表】 ポリイミドフイルムにおけるDDEとp−PDA
の比と線膨張係数を関数を第1図に示す。 実施例 5〜10 合成例3〜8で得られたポリアミツク酸を用い
て実施例2と同様にして各共重合体のフレキシブ
ル銅張板を作成し、そのカールの度合について検
討した。第2表及び第2図にその結果を示す。
[Table] DDE and p-PDA in polyimide film
Figure 1 shows the ratio of the linear expansion coefficient and the linear expansion coefficient. Examples 5 to 10 Flexible copper-clad boards of each copolymer were prepared in the same manner as in Example 2 using the polyamic acids obtained in Synthesis Examples 3 to 8, and the degree of curl was examined. The results are shown in Table 2 and Figure 2.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明のフレキシブルプリン
ト基板は、導体と絶縁材との間に熱履歴を加えて
もカール、ねじれ、反り等を生じず、しかも充分
な接着力を有するという効果があり、またその製
造においてはフイラーやガラス繊維等の異物混入
を不要としかつ直接コートできるという効果を奏
する。
As described above, the flexible printed circuit board of the present invention has the effect that it does not curl, twist, warp, etc. even when heat history is applied between the conductor and the insulating material, and has sufficient adhesive strength. In its production, there is no need to mix in foreign substances such as fillers or glass fibers, and the coating can be directly coated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はポリイミドフイルムの成分比率と線膨
張係数との関係を示す特性図、第2図は導体と絶
縁材との線膨張係数差とフレキシブルプリント板
の湾曲度との関係を示す特性図である。
Figure 1 is a characteristic diagram showing the relationship between the component ratio and linear expansion coefficient of polyimide film, and Figure 2 is a characteristic diagram showing the relationship between the linear expansion coefficient difference between the conductor and the insulating material and the degree of curvature of the flexible printed board. be.

Claims (1)

【特許請求の範囲】 1 一般式〔〕 〔式中、R1は【式】【式】(R3 は低級アルキル基、含フツ素低級アルキル基のい
ずれかであり、mは1〜4の整数)、
【式】から選ばれ、R2は 【式】【式】 【式】から選ばれ、Rは水素ま たはエステル残基を表わす。〕で表わされるポリ
アミツク酸ワニスを導体箔に直接塗布・乾燥し、
加熱イミド化して積層体を得ることを特徴とする
フレキシブルプリント基板の製造方法。 2 加熱イミド化温度が、得られるポリイミドの
Tg以上であることを特徴とする特許請求の範囲
第1項記載のフレキシブルプリント基板の製造方
法。 3 導体箔に予めカツプリング剤を塗布する工
程、または/及びカツプリング剤をポリアミツク
酸ワニスに配合してなることを特徴とする特許請
求の範囲第1項記載のフレキシブルプリント基板
の製造方法。
[Claims] 1. General formula [] [wherein R 1 is [formula] [formula] (R 3 is either a lower alkyl group or a fluorine-containing lower alkyl group, m is an integer of 1 to 4),
[Formula], R 2 is selected from [Formula] [Formula] [Formula], and R represents hydrogen or an ester residue. ] A polyamic acid varnish represented by is applied directly to the conductor foil and dried.
A method for producing a flexible printed circuit board, characterized by obtaining a laminate by heating imidization. 2 The heating imidization temperature of the resulting polyimide
The method for manufacturing a flexible printed circuit board according to claim 1, characterized in that Tg or higher. 3. The method for manufacturing a flexible printed circuit board according to claim 1, which comprises a step of applying a coupling agent to the conductive foil in advance, and/or blending the coupling agent into the polyamic acid varnish.
JP1184384A 1984-01-27 1984-01-27 Flexible printed board and method of producing same Granted JPS60157286A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1184384A JPS60157286A (en) 1984-01-27 1984-01-27 Flexible printed board and method of producing same
JP1592392A JPH0563322A (en) 1984-01-27 1992-01-31 Manufacture of flexible printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1184384A JPS60157286A (en) 1984-01-27 1984-01-27 Flexible printed board and method of producing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1592392A Division JPH0563322A (en) 1984-01-27 1992-01-31 Manufacture of flexible printed board

Publications (2)

Publication Number Publication Date
JPS60157286A JPS60157286A (en) 1985-08-17
JPH0317235B2 true JPH0317235B2 (en) 1991-03-07

Family

ID=11789002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1184384A Granted JPS60157286A (en) 1984-01-27 1984-01-27 Flexible printed board and method of producing same

Country Status (1)

Country Link
JP (1) JPS60157286A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188514B1 (en) * 2020-11-10 2020-12-09 주식회사 휴젝트 Smart cane

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563322A (en) * 1984-01-27 1993-03-12 Hitachi Ltd Manufacture of flexible printed board
JPS60206639A (en) * 1984-03-31 1985-10-18 日東電工株式会社 Manufacture of polyimide-metallic foil composite film
JPS62184025A (en) * 1986-02-07 1987-08-12 Hitachi Ltd Low thermal expansion polyimide and electrical device using same
US4886573A (en) * 1986-08-27 1989-12-12 Hitachi, Ltd. Process for forming wiring on substrate
JP3170174B2 (en) 1995-04-18 2001-05-28 日本ゼオン株式会社 Polyimide resin composition
JP3523952B2 (en) * 1995-12-26 2004-04-26 日東電工株式会社 Polyimide-metal foil composite film
KR100465047B1 (en) * 1996-08-19 2005-01-13 신닛테츠가가쿠 가부시키가이샤 Laminate for HDD Suspension and Its Manufacture
JP3541697B2 (en) 1998-11-20 2004-07-14 ソニーケミカル株式会社 Manufacturing method of flexible wiring board
US6355357B1 (en) 1998-12-21 2002-03-12 Sony Chemicals Corp. Flexible printed board, polyamic acid and polyamic acid varnish containing same
JP3405242B2 (en) 1998-12-21 2003-05-12 ソニーケミカル株式会社 Flexible board
JP4062803B2 (en) 1998-12-28 2008-03-19 ソニーケミカル&インフォメーションデバイス株式会社 Manufacturing method of suspension for magnetic head
JP3565069B2 (en) 1998-12-28 2004-09-15 ソニーケミカル株式会社 Method for manufacturing double-sided flexible printed circuit board
JP3494098B2 (en) 1999-12-20 2004-02-03 ソニーケミカル株式会社 Flexible printed circuit board
JP4360956B2 (en) * 2004-03-24 2009-11-11 新日鐵化学株式会社 Manufacturing method of substrate for flexible printed wiring board
JP2006159411A (en) * 2004-12-02 2006-06-22 Toray Ind Inc Flexible substrate and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3288754A (en) * 1963-12-12 1966-11-29 Dow Corning Silicon modified polyamide-polyimide polymers
JPS5431480A (en) * 1977-08-12 1979-03-08 Kanegafuchi Chem Ind Co Ltd Manufacture of composite sheet
JPS5438383A (en) * 1977-08-31 1979-03-22 Kanegafuchi Chem Ind Co Ltd Composite made from metallic foil and polyimide
JPS54108272A (en) * 1978-02-13 1979-08-24 Kanegafuchi Chemical Ind Flexible printed circuit board
JPS557805A (en) * 1978-06-30 1980-01-21 Ube Ind Ltd Preparation of polyimide molded articles
JPS576757A (en) * 1980-06-17 1982-01-13 Dainippon Printing Co Ltd Manufacture of composite material with no curl consisting of polyimide and metallic foil
JPS58190093A (en) * 1982-04-30 1983-11-05 宇部興産株式会社 Method of producing flexible circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3288754A (en) * 1963-12-12 1966-11-29 Dow Corning Silicon modified polyamide-polyimide polymers
JPS5431480A (en) * 1977-08-12 1979-03-08 Kanegafuchi Chem Ind Co Ltd Manufacture of composite sheet
JPS5438383A (en) * 1977-08-31 1979-03-22 Kanegafuchi Chem Ind Co Ltd Composite made from metallic foil and polyimide
JPS54108272A (en) * 1978-02-13 1979-08-24 Kanegafuchi Chemical Ind Flexible printed circuit board
JPS557805A (en) * 1978-06-30 1980-01-21 Ube Ind Ltd Preparation of polyimide molded articles
JPS576757A (en) * 1980-06-17 1982-01-13 Dainippon Printing Co Ltd Manufacture of composite material with no curl consisting of polyimide and metallic foil
JPS58190093A (en) * 1982-04-30 1983-11-05 宇部興産株式会社 Method of producing flexible circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188514B1 (en) * 2020-11-10 2020-12-09 주식회사 휴젝트 Smart cane

Also Published As

Publication number Publication date
JPS60157286A (en) 1985-08-17

Similar Documents

Publication Publication Date Title
JPH0317235B2 (en)
US4937133A (en) Flexible base materials for printed circuits
JPH0354971B2 (en)
JP4528093B2 (en) Multilayer substrate having at least two dissimilar polyamide layers and a conductive layer and useful for electronics-type applications, and compositions related thereto
US4522880A (en) Thick polyimide-metal laminates with high peel strength
JPS6333314B2 (en)
JPH01245586A (en) Flexible printed board
US4939039A (en) Flexible base materials for printed circuits and method of making same
JPH08250860A (en) Flexible printed board
KR100573514B1 (en) Novel polyimide copolymer and metal laminate comprising the same
JPH03123093A (en) Manufacture of copper plated laminated board
JP3067128B2 (en) Manufacturing method of metal foil laminated polyimide film
JPH0649185B2 (en) Flexible printed wiring board manufacturing method
JP4183765B2 (en) Manufacturing method of flexible printed wiring board
JPS6384188A (en) Manufacture of flexible printed circuit substrate
JP2002234040A (en) Polyimide film, manufacturing method therefor and use applications thereof
US5167985A (en) Process for producing flexible printed circuit board
JPS63245988A (en) Flexible printed circuit and manufacture of the same
JPH04188792A (en) Flexible printed board and its manufacture
JP2006013419A (en) Flexible printed circuit board and manufacturing method therefor
JPH02180679A (en) Preparation of flexible printed wiring board
JP2018126886A (en) Method for producing multilayered polyimide film
KR100822840B1 (en) Flexible Copper-Clad Laminate
JPH0463486A (en) Flexible printed board
JPH0360181A (en) Flexible printed wiring board