JPH03123093A - Manufacture of copper plated laminated board - Google Patents

Manufacture of copper plated laminated board

Info

Publication number
JPH03123093A
JPH03123093A JP25833089A JP25833089A JPH03123093A JP H03123093 A JPH03123093 A JP H03123093A JP 25833089 A JP25833089 A JP 25833089A JP 25833089 A JP25833089 A JP 25833089A JP H03123093 A JPH03123093 A JP H03123093A
Authority
JP
Japan
Prior art keywords
linear expansion
conductor
resin
copper
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25833089A
Other languages
Japanese (ja)
Other versions
JP2738453B2 (en
Inventor
Takashi Watanabe
尚 渡辺
Seiji Sato
誠治 佐藤
Ichiro Higasayama
日笠山 伊知郎
Makoto Shirakawa
誠 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17318749&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03123093(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP1258330A priority Critical patent/JP2738453B2/en
Publication of JPH03123093A publication Critical patent/JPH03123093A/en
Application granted granted Critical
Publication of JP2738453B2 publication Critical patent/JP2738453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To prevent a film from curing and to improve it in reliability as to dimensional stability, adhesive force, and the like by a method wherein polymide resin layers different from each other in thermal linear expansion coefficient are applied onto a conductor making the resin layer of higher thermal expansion coefficient face outward, which is dried up to be set in a pressure reduced and/or a reducing atmosphere to form a multilayered insulator. CONSTITUTION:A copper plated laminated board is manufactured in such a method that at least two types of polyimide resin compositions or their precursor compositions different from each other in thermal linear expansion coefficient are applied onto a conductor making a resin layer of higher thermal expansion coefficient located outside, which is dried up to be set in a pressure reduced and/or a reducing atmosphere. It is preferable that the linear expansion coefficient difference between the high thermal linear expansion resin layer and the low thermal linear expansion resin layer is larger than 510(1/K) or above. It is also preferable that a resin applying method is carried out in such a manner that two more kinds of polyimide resin or their precursor solutions are applied onto a conductor at the same time using a multilayered die. By this setup, even if a heat hysteresis is given to a copper plated laminated board of this design, it is free from curling, torsion, warpage, and the like, can be secured enough in adhesion, flexibility, dimensional stability, and the like, and can be made small in curling after the etching of a conductor so as to be improved in workability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、回路形成後のカール、ねじれ、反り等がなく
、耐熱性、寸法安定性、接着性、耐折り曲げ性に優れた
フレキシブルプリント回路用銅張積層板の製造方法に関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a flexible printed circuit that is free from curling, twisting, warping, etc. after circuit formation, and has excellent heat resistance, dimensional stability, adhesiveness, and bending resistance. The present invention relates to a method for manufacturing copper-clad laminates for use in industrial applications.

[従来の技術] 従来、フレキシブルプリント回路用銅張積層板は、一般
に導体と有機ポリマーの絶縁体とをエポキシ樹脂あるい
はウレタン樹脂等の接着剤で接着して製造されていた。
[Prior Art] Conventionally, copper-clad laminates for flexible printed circuits have generally been manufactured by bonding a conductor and an organic polymer insulator with an adhesive such as epoxy resin or urethane resin.

しかし1、この際に熱圧着等の熱履歴を加えると、冷却
時に基板のカール、ねじれ、反り等を生じてその後の導
体バターニング等が不可能となる欠点があった。これら
の問題は導体と絶縁体の線膨張係数の差に起因する。ま
た、接着剤層のため難燃性が低下したり、使用するポリ
イミドフィルムが高価であるほか、貼り合わせに多大の
手間を要してフレキシブルプリント基板が高価格になる
等の問題があった。
However, 1. If a thermal history such as thermocompression bonding is added at this time, there is a drawback that curling, twisting, warping, etc. of the substrate occurs during cooling, making subsequent patterning of the conductor etc. impossible. These problems are caused by the difference in coefficient of linear expansion between conductors and insulators. Further, there were other problems such as the flame retardance being lowered due to the adhesive layer, the polyimide film used being expensive, and the flexible printed circuit board requiring a great deal of effort to bond together.

特開昭56−23.791号公報等においては、ポリア
ミドイミド溶液を金属箔に塗布し、乾燥後に線膨張係数
の差に基づいて生じたカールを後ゴニ稈で熱処理により
緩和する手法が提案されているか、この方法も製造に手
間のかかる点や線膨張係数が異なることからハンダ浴等
の再加熱時にカールするという点等については依然とし
て解決されておらず、満足し得るものではなかった。
JP-A-56-23-791 and other publications propose a method in which a polyamide-imide solution is applied to a metal foil, and after drying, the curl that occurs due to the difference in linear expansion coefficient is alleviated by heat treatment in a post-goni culm. However, this method is still unsatisfactory as it requires time and effort to manufacture and curls when reheated in a soldering bath due to different coefficients of linear expansion.

また、特開昭60−157.286号公報や特開昭60
−243120号公報においては、ポリアミドイミド溶
液を金属箔に塗布し、乾燥後に線膨張係数の差に基づい
て生じたカールを後]ニ程で熱処理により緩和する手法
が提案されているが、この方法も製造に手間のかかる点
や線膨張係数が異なることからハンダ浴等の再加熱時に
カールするという点等については依然として解決されて
おらず満足し得るものではなかった。
Also, JP-A-60-157.286 and JP-A-60
Publication No. 243120 proposes a method in which a polyamide-imide solution is applied to a metal foil, and after drying, curls that occur due to the difference in linear expansion coefficient are relaxed by heat treatment. However, problems such as the fact that manufacturing is time-consuming and the linear expansion coefficients are different, resulting in curling during reheating in a soldering bath, etc., have not yet been solved and have not been satisfactory.

また、特開昭60−157.286号公報や特開昭60
−243.120号公報においては、特定構造を有する
ポリイミドあるいはポリイミド前駆体溶液を導体上に塗
布して低熱膨張性の樹脂を得、カールの少ないフレキシ
ブルプリント基板を得る方法が提案されているが、接着
力が不十分であったり、また、導体を]−ツヂングして
回路を形成する際に導体と接触していた面を内側にして
フィルムが大きくカールし、その後の回路保護等の後作
業が困難になるという問題があった。
Also, JP-A-60-157.286 and JP-A-60
-243.120 proposes a method of applying polyimide having a specific structure or a polyimide precursor solution onto a conductor to obtain a low thermal expansion resin, thereby obtaining a flexible printed circuit board with less curl. The adhesive force may be insufficient, or when the conductor is bonded to form a circuit, the film may curl significantly with the side that was in contact with the conductor facing inward, making it difficult to perform subsequent work such as protecting the circuit. The problem was that it was difficult.

また、従来の接着層を用いたタイプでは、その接着層に
硬さ、引き裂き強度等のポリイミドフィルムに不足する
物性を保持させていたが、反面、この接着層が存在する
ために、例えば耐熱性、打扱き加工性等の種々の点で問
題があった。
In addition, in conventional types using an adhesive layer, the adhesive layer maintains physical properties that polyimide films lack, such as hardness and tear strength. However, there were problems in various aspects such as the workability of hammering and handling.

[発明が解決しようとする課題] 従って、本発明の目的は、熱履歴を加えてもカール、ね
じれ、反り等がなく、及び十分な接着力、耐折り曲げ性
、寸法安定性等を有し、しかも、導体をエツチングした
後のカールが小さくて作業性に侵れた工業的に有用なフ
レキシブルプリン1〜基板を提供することにあった。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to have a material that does not curl, twist, warp, etc. even when subjected to heat history, and has sufficient adhesive strength, bending resistance, dimensional stability, etc. Moreover, it was an object of the present invention to provide an industrially useful flexible printed circuit board 1 which has a small curl after etching a conductor and which impairs workability.

[課題を解決するための手段1 本発明者は、かかる観点に鑑みて鋭意研究を重ねた結果
、絶縁体を互いにその線膨張係数の異なる複数のポリイ
ミド系樹脂層を高熱膨張性の樹脂層を外側として導体上
に塗工し、減圧下及び/又は還元性気体雰囲気下に乾燥
硬化し、多層化することにより、導体をエツチングした
後のフィルムのカールを防止し、温度変化に対しての1
法安定性、接着力等において信頼性に優れたフレキシブ
ルプリント基板を得ることができることを見出し、本発
明を完成した。
[Means for Solving the Problems 1] As a result of extensive research in view of the above, the present inventor has developed an insulator with a plurality of polyimide resin layers having different linear expansion coefficients, and a high thermal expansion resin layer. By coating the conductor as the outside and drying and curing under reduced pressure and/or a reducing gas atmosphere to form a multilayer film, it prevents the film from curling after etching the conductor and provides excellent resistance to temperature changes.
The inventors have discovered that it is possible to obtain a flexible printed circuit board with excellent reliability in terms of legal stability, adhesive strength, etc., and have completed the present invention.

すなわち、本発明は、導体上にポリイミド系樹脂を直接
塗工して形成づるフレキシブルプリント回路用銅張積層
板の製造方法において、線膨張係数の異なる少なくとも
2種のポリイミド系樹脂組成物又はその前駆体組成物を
、線膨張係数の高い樹脂層が外側となるように導体上に
塗工した後乾燥し、減圧下及び/又は還元性気体雰囲気
下に硬化を行うことを特徴とする銅張積層板の製造方法
である。
That is, the present invention provides a method for manufacturing a copper-clad laminate for a flexible printed circuit, which is formed by directly coating a polyimide resin on a conductor, in which at least two types of polyimide resin compositions or precursors thereof having different coefficients of linear expansion are used. A copper-clad laminate characterized in that a body composition is coated on a conductor so that the resin layer with a high coefficient of linear expansion is on the outside, and then dried and cured under reduced pressure and/or in a reducing gas atmosphere. This is a method of manufacturing a board.

本発明において、直接塗工により形成されるフレキシブ
ルプリント回路用銅張積層板とは、導体上に樹脂溶液を
あるいはその前駆体樹脂溶液を直接塗布し、乾燥し、さ
らに硬化させ、導体と絶縁体との複合材を形成してなる
可撓性配線体用基板又はその材料である。
In the present invention, a copper-clad laminate for flexible printed circuits formed by direct coating refers to a method in which a resin solution or its precursor resin solution is directly applied onto a conductor, dried, and further cured. A substrate for a flexible wiring body or its material formed by forming a composite material with.

また、本発明でいうポリイミド系樹脂とは、ポリイミド
、ポリアミド、ポリベンズイミダゾール、ポリイミドエ
ステル等の耐熱性樹脂である。
Moreover, the polyimide resin referred to in the present invention is a heat-resistant resin such as polyimide, polyamide, polybenzimidazole, and polyimide ester.

本発明では、互いにその線膨張係数の異なる高熱膨張性
樹脂層と低熱膨張性樹脂層とを複合化して絶縁体を形成
するものであるが、その高熱膨張性樹脂層の厚み(tl
)と低熱膨張性樹脂層の厚み(tl)の比率(t2/l
l)  (但し、tl及びtlはそれぞれの樹脂層の厚
みの和である)については、0゜01〜20,000、
好ましくは2〜100.より好ましくは3〜25の条イ
′↑を満たす必要がある。
In the present invention, an insulator is formed by combining a high thermal expansion resin layer and a low thermal expansion resin layer with different linear expansion coefficients, and the thickness of the high thermal expansion resin layer (tl
) and the thickness (tl) of the low thermal expansion resin layer (t2/l
l) (However, tl and tl are the sum of the thicknesses of each resin layer), 0°01 to 20,000,
Preferably 2-100. More preferably, it is necessary to satisfy 3 to 25 rows A'↑.

ここで、高熱膨張性樹脂層及び低熱膨張性樹脂層とは、
多層構造を形成する絶縁体の各構成樹脂層が有する線熱
膨張係数の単純平均値を基準にしてそれより高い値の線
膨張係数を有する樹脂層を高熱膨張性樹脂層といい、ま
た、それより低い線膨張係数を有する樹脂層を低熱膨張
性樹脂層という。
Here, the high thermal expansion resin layer and the low thermal expansion resin layer are:
A resin layer having a linear thermal expansion coefficient higher than the simple average value of the linear thermal expansion coefficients of each component resin layer of an insulator forming a multilayer structure is called a high thermal expansion resin layer. A resin layer having a lower coefficient of linear expansion is referred to as a low thermal expansion resin layer.

厚みの比率(t2/11)の値が小さすぎると絶縁体全
体としての線膨張係数が大ぎくなり、導体との線膨張係
数の差により基板が絶縁体を内側にしてカールし、回路
形成作業が困難になったり、導体のエツチング時に歪み
が解除されて寸法が大ぎく変化する。反対に、厚みの比
率(t2/ll>の値が大きすぎると本発明の目的であ
る導体エツチング後のフィルムのカール防止が困難にな
る。
If the value of the thickness ratio (t2/11) is too small, the linear expansion coefficient of the insulator as a whole will become large, and the difference in linear expansion coefficient with the conductor will cause the board to curl with the insulator inside, making it difficult to form circuits. When etching the conductor, the distortion may be released and the dimensions may change significantly. On the other hand, if the value of the thickness ratio (t2/ll>) is too large, it becomes difficult to prevent the film from curling after conductor etching, which is the object of the present invention.

本発明において、絶縁体の全体の厚み(tl+t2>は
、通常5〜100μs、好ましくは10〜50虜である
。また、この絶縁体を構成する高熱膨張性樹脂層の線膨
張係数は30X 1O−6(1/K)以上、好ましくは
(40〜100)X 1O−6(1/K)であり、低熱
膨張性樹脂層の線膨張係数は30X 10’(1/K)
未満、好ましくは(0〜25) xlO’(1/K)で
あって、これら高熱膨張性樹脂層と低熱膨張性樹脂層と
の間にはその線膨張係数において5 X 10’(1/
K)以上、好ましくはIOX 10’(1/K)以上の
差があることが望ましい。5 x 10−6(1/K)
未満であれば、エツチング後のフィルムカール防止が困
難である。
In the present invention, the total thickness (tl+t2>) of the insulator is usually 5 to 100 μs, preferably 10 to 50 μs. Also, the linear expansion coefficient of the high thermal expansion resin layer constituting this insulator is 30×1O− 6 (1/K) or more, preferably (40 to 100) x 1O-6 (1/K), and the linear expansion coefficient of the low thermal expansion resin layer is 30 x 10' (1/K).
less than (0 to 25) xlO' (1/K), and the linear expansion coefficient between the high thermal expansion resin layer and the low thermal expansion resin layer is 5 x 10' (1/K).
It is desirable that there is a difference of at least IOX K), preferably at least IOX 10' (1/K). 5 x 10-6 (1/K)
If it is less than that, it will be difficult to prevent the film from curling after etching.

フィルムカールを防止するためには、高熱膨張性の樹脂
層を外層に設けることが必要である。
In order to prevent film curl, it is necessary to provide a high thermal expansion resin layer as the outer layer.

本製造方法においては、そのような熱膨張係数の異なる
少なくとも2層のポリイミド系樹脂層を設けることが必
要であるが、さらに導体との密着性向上やフィルム物性
のコントロールを目的として、その仙の樹脂層を設けて
も差し支えない。
In this manufacturing method, it is necessary to provide at least two polyimide resin layers with different coefficients of thermal expansion. There is no problem even if a resin layer is provided.

高熱膨張性樹脂としてはどのようなポリイミド系樹脂で
あってもよいが、好ましくは耐熱性の点から下記一般式
で示される構成単位を有するポリアミドイミド樹脂又は
ポリイミド樹脂を主成分とするものである。
The high thermal expansion resin may be any polyimide resin, but from the viewpoint of heat resistance, it is preferably one whose main component is a polyamide-imide resin or a polyimide resin having a structural unit represented by the following general formula. .

等を挙げることができ、また、上記Ar2としては、例
えば、 (但し、上記各一般式において、Ar1は炭素数12以
上の2価の芳香族基であり、Ar2は4価の芳香族基で
ある) ここで、上記Ar1としては、例えば、oOo、oSo
、0S02−0−1 等を挙げることができるが、安価である点及び優れた可
撓性の点等により、好ましくは このような構造を有するポリイミド系樹脂は、通常その
線膨張係数が30x 1O−6(1ハ0以上と比較的高
い値を示す。
In addition, as the above Ar2, for example, (However, in each of the above general formulas, Ar1 is a divalent aromatic group having 12 or more carbon atoms, and Ar2 is a tetravalent aromatic group. Here, the above Ar1 is, for example, oOo, oSo
, 0S02-0-1, etc. However, due to its low cost and excellent flexibility, polyimide resins preferably having such a structure usually have a linear expansion coefficient of 30x 1O. -6 (1ha shows a relatively high value of 0 or more.

特に、下記一般式(I[I) F3 Go−G−G−oG 、GOGO(O−で示される構成
単位を有するポリイミドは、熱可0 塑性を有し、最外層に設けることにより回路1111工
時に熱圧着による多層化に適している。
In particular, polyimide having a structural unit represented by the following general formula (I [I) F3 Go-G-G-oG, GOGO (O-) has thermoplasticity, and when provided in the outermost layer, the circuit 1111 construction It is sometimes suitable for multi-layering by thermocompression bonding.

また、低熱膨張性樹脂としては、線膨張係数か低いポリ
イミド系樹脂であれば格別な制限はないが、下記一般式
(i)又、は(TI)で示される構成単位を有するポリ
イミド系樹脂が好ましい。
In addition, there are no particular restrictions on the low thermal expansion resin as long as it is a polyimide resin with a low coefficient of linear expansion, but polyimide resins having a structural unit represented by the following general formula (i) or (TI) may be used. preferable.

一般式(i) (但し、式中酊は4価の芳香族基を示し、旧及びR2は
互いに同じであっても異なっていてもよい低級アルキル
基、低級アルコキシ基又はハロゲンのいずれかを示し、
β及び…はO〜4の整数であり、少なくとも1つの低級
アルコキシ基を有する)で示される構成単位、好ましく
は下記]14成単成金含むポリアミドイミド樹脂。
General formula (i) (However, in the formula, ``Nuki'' represents a tetravalent aromatic group, and ``R2'' and ``R2'' represent either a lower alkyl group, a lower alkoxy group, or a halogen, which may be the same or different from each other. ,
[beta] and ... are integers of O to 4 and have at least one lower alkoxy group) A polyamide-imide resin containing a structural unit represented by [beta], preferably the following]14 monomer.

1 一般式(If) で示される構成単位を含むポリイミド樹脂。1 General formula (If) A polyimide resin containing the structural unit shown below.

これらポリイミド系樹脂の合成は、−船釣にはN−メチ
ルピロリドン(NHP)、ジメチルホルムアミド(DH
F)、ジメチルアセトアミド(Dト1へc)、ジメチル
スルフ汁キサイド(囲SO)、硫酸ジメチル、スルホラ
ン、ブチロラクトン、クレゾール、フェノール、ハロゲ
ン化フェノール、シクロヘキサノン、ジオキーリン、テ
トラヒドロフラン、ダイグライム等の溶媒中で、上記各
一般式に対応するジアミン化合物及び酸無水物化合物を
ほぼ等モルの割合で混合し、反応温度O〜’200℃、
好ましくは0〜100℃の範囲で反応させることにより
、ポリイミド系樹脂の前駆体溶液が得られ、さらに、こ
れらの樹脂溶液を導体上に塗工し、乾燥づる操作を繰返
すか、あるいは、多層ダイ、ナイフコート等により同時
に多層塗工し、乾燥することによ2 す、導体上に多層構造のポリイミド系樹脂層若しくはポ
リイミド系前駆体樹脂層を形成せしめ、験体樹脂層の場
合にはこれを200 ’C以上、好ましくは300 ’
C以上の加熱処理してイミド化反応を行う。
These polyimide resins are synthesized using N-methylpyrrolidone (NHP) and dimethylformamide (DH) for boat fishing.
F), dimethyl acetamide (D to 1 to c), dimethyl sulfur oxide (SO), dimethyl sulfate, sulfolane, butyrolactone, cresol, phenol, halogenated phenol, cyclohexanone, diochirin, tetrahydrofuran, diglyme, etc. in a solvent such as the above. A diamine compound and an acid anhydride compound corresponding to each general formula are mixed in approximately equimolar ratios, and the reaction temperature is O~'200°C.
Preferably, by reacting in the range of 0 to 100°C, a polyimide resin precursor solution is obtained, and the resin solution is further coated onto a conductor and the drying process is repeated, or a multilayer die is formed. A polyimide resin layer or a polyimide precursor resin layer with a multilayer structure is formed on the conductor by simultaneously applying multiple layers using a knife coat, etc., and drying. 200'C or more, preferably 300'
The imidization reaction is performed by heat treatment at a temperature of C or higher.

;」、た、テトラカルボン酸並びにその誘導体としては
次のようなものが挙げられる。なお、ここではテトラカ
ルボン酸として例示するが、これらのエステル化物、酸
無水物、酸塩化物も使用できることは勿論である。ピロ
メリット酸、3.3’、4.4ビフエニルテトラカルボ
ン酸、3,3°、4,4−ベンゾフェノンテトラカルボ
ン酸、3,3°、4.4’−ジフェニルスルホンテトラ
カルボン酸、2,3,3°、4°−ジフェニルエーテル
テトラカルボン ゾフェノンテトラカルボン酸、2,3,6.7−ナフタ
レンテトラカルボン酸、1,4,5.7−ナフタレンテ
トラカルボン酸、1,2,5.6−ナフタレンテトラカ
ルボン酸、3,3°,4,4°−シフ1ニルメタンテト
ラカルボン酸、2,2−ビス(3,4−ジカルボキシフ
ェニル)プロパン、2,2−ヒス(3,4−ジカルボキ
シフェニル3 キサフルオロプロパン、3,4,9.10−テトラカル
ボキシペリレン、2,2−ビス[4−(3.4−ジカル
ボキシフェノキシ)フェニル]プロパン、2.2−ビス
[4(3,4−ジカルボキシフェノキシ)フェニル]ヘ
キサフルオロプロパン、ブタンテトラカルボン酸、シク
ロペンタンテトラカルボン酸等がある。また、トリメリ
ット酸及びその誘導体も挙げることができる。
Examples of tetracarboxylic acids and derivatives thereof include the following. Although tetracarboxylic acids are exemplified here, esterified products, acid anhydrides, and acid chlorides thereof can of course also be used. Pyromellitic acid, 3.3', 4.4 biphenyltetracarboxylic acid, 3,3°, 4,4-benzophenonetetracarboxylic acid, 3,3°, 4.4'-diphenylsulfonetetracarboxylic acid, 2, 3,3°,4°-diphenyl ethertetracarboxylenetetracarboxylic acid, 2,3,6.7-naphthalenetetracarboxylic acid, 1,4,5.7-naphthalenetetracarboxylic acid, 1,2,5.6 -naphthalenetetracarboxylic acid, 3,3°,4,4°-Schiff1nylmethanetetracarboxylic acid, 2,2-bis(3,4-dicarboxyphenyl)propane, 2,2-his(3,4- Dicarboxyphenyl 3 Hexafluoropropane, 3,4,9.10-tetracarboxyperylene, 2,2-bis[4-(3.4-dicarboxyphenoxy)phenyl]propane, 2.2-bis[4(3 , 4-dicarboxyphenoxy)phenyl]hexafluoropropane, butanetetracarboxylic acid, cyclopentanetetracarboxylic acid, etc. Also, trimellitic acid and its derivatives can be mentioned.

さらに、反応性官能基を有する化合物で変性し、架橋構
造やラダー構造を導入することもできる。
Furthermore, it is also possible to introduce a crosslinked structure or ladder structure by modifying with a compound having a reactive functional group.

例えば、次のような方法がある。For example, there are the following methods.

■ 下記一般式で表される化合物で変性することによっ
て、ピロロン環やイソインドロキナゾリンジオン環等を
導入する。
(2) By modifying with a compound represented by the following general formula, a pyrrolone ring, isoindoquinazolinedione ring, etc. are introduced.

〔但し、式中R7は2+z価(2は1又は2である)の
芳香族有機基を示し、8は一Nl+2基、−CONII
2基又はーS02N112基から選択された置換基であ
ってアミノ基に対しオルト位である〕 4 ■ 重合性不飽和結合を有するアミン、ジアミン、ジカ
ルボン酸、トリカルボン酸、テトラカルボン酸の誘導体
で変性して、硬化時に橋かけ構造を形成する。不飽和化
合物としては、マレイン酸、ナジック酸、テトラヒドロ
フタル酸、エヂニルアニリン等が使用できる。
[However, in the formula, R7 represents an aromatic organic group with a valence of 2+z (2 is 1 or 2), 8 is a 1Nl+2 group, -CONII
A substituent selected from 2 groups or -S02N112 groups, which is ortho to the amino group] 4. Modified with a derivative of amine, diamine, dicarboxylic acid, tricarboxylic acid, or tetracarboxylic acid having a polymerizable unsaturated bond. to form a cross-linked structure upon curing. As the unsaturated compound, maleic acid, nadic acid, tetrahydrophthalic acid, edinylaniline, etc. can be used.

■ フェノール性水酸基あるいはカルボン酸を有する芳
香族アミンで変性し、この水酸基又はカルボキシル基と
反応し得る橋か【プ剤を用いて網目構造を形成する。
(2) Modify with an aromatic amine having a phenolic hydroxyl group or carboxylic acid, and form a network structure using a bridging agent that can react with the hydroxyl group or carboxyl group.

本発明の低熱膨張性樹脂は、このような前記各成分を用
いて変性することにより、その線膨張係数を調整するこ
とができる。すなわち、一般式(I)又は(l[>の構
造のみからなるポリイミド系樹脂は、面内に1X10−
5(に−1)以下の線膨張係数を有する絶縁体を形成可
能であるが、これを前記各成分を使用して変性すること
により、線膨張係数を任意に大ぎくすることができる。
The linear expansion coefficient of the low thermal expansion resin of the present invention can be adjusted by modifying it using each of the above-mentioned components. That is, a polyimide resin consisting only of the structure of general formula (I) or (l[>) has 1X10-
Although it is possible to form an insulator having a linear expansion coefficient of 5 (to -1) or less, the linear expansion coefficient can be increased arbitrarily by modifying the insulator using each of the above-mentioned components.

また、般式(I>又は(II>の構成単位を含むポリイ
ミド系樹脂であっても、上記の各成分を使用して変5 性することにより、高熱膨張性樹脂とすることもできる
Furthermore, even a polyimide resin containing a structural unit of general formula (I> or (II>) can be made into a high thermal expansion resin by modifying it using each of the above components.

塗工方法は、多層塗工を行う任意の塗工方法が可能であ
るが、好ましくは塗工精度の点により以下の3方法が好
ましい。
Any coating method that performs multilayer coating can be used as the coating method, but the following three methods are preferred from the viewpoint of coating accuracy.

■多層ダイにより2種以上のポリイミド系樹脂又はその
前駆体溶液を同時に導体上に塗工する。
(2) Coating two or more polyimide resins or their precursor solutions onto the conductor at the same time using a multilayer die.

■任意の方法で塗工後その未乾燥塗工面上にナイフコー
ト方式によりさらに塗工する。
■After coating by any method, further coat by knife coating method on the undried coated surface.

■任意の方法で塗工乾燥後、さらにその乾燥塗工面上に
任意の方法で塗工する。
■ After coating by any method and drying, further coat by any method on the dried coated surface.

ここでいうナイフコート方式とは、バー、スキージ、ナ
イフ等により樹脂溶液をならして塗工する方法である。
The knife coating method referred to herein is a method in which a resin solution is leveled and applied using a bar, squeegee, knife, or the like.

乾燥硬化方法としては、任意の方法が使用可能であるが
、作業の効率化、歩留り等を考慮して、ポリイミド系樹
脂を塗工した後予備乾燥したものを、ロール状に巻き取
り、さらに高温で乾燥及び硬化するバッチ処理方式が好
ましい。このとき、導体の酸化を防ぐことを目的として
、高温(206 0℃以上)での熱処理を、減圧下及び/又は還元性気体
雰囲気下に行うことが好ましい。
Any method can be used for drying and curing, but in consideration of work efficiency, yield, etc., the polyimide resin is coated and pre-dried, then wound into a roll and then heated at a high temperature. A batch processing method in which drying and curing is performed is preferred. At this time, in order to prevent oxidation of the conductor, it is preferable to perform heat treatment at a high temperature (2060° C. or higher) under reduced pressure and/or in a reducing gas atmosphere.

本発明のフレキシブルプリン1〜基板用銅仮積層板は、
少なくとも導体と絶縁体を有するものであるが、導体と
しては、銅、アルミニウム、鉄、銀、パラジウム、ニッ
ケル、クロム、モリブデン、タングステン又はそれらの
合金等を挙げることができ、好ましくは銅である。
Flexible print 1 of the present invention - copper temporary laminate for substrates includes:
It has at least a conductor and an insulator, and examples of the conductor include copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, and alloys thereof, and copper is preferable.

また、これらの導体についてはその表面に、接着力の向
上を目的として、サイデイング、ニッケルメッキ、銅−
亜鉛合金メツキ、又は、アルミニウムアルコラード、ア
ルミニウムキレート、シランカップリング剤等によって
化学的あるいは機械的な表面処理を施してもよい。
In addition, the surface of these conductors is coated with siding, nickel plating, and copper-plating to improve adhesion.
Chemical or mechanical surface treatment may be performed using zinc alloy plating, aluminum alcoholade, aluminum chelate, silane coupling agent, or the like.

絶縁層も接着方向上等を目的として、トリメトキシシリ
ルアニリン等のカップリング剤等により修飾することが
可能である。
The insulating layer can also be modified with a coupling agent such as trimethoxysilylaniline to improve the adhesion direction.

U実施例] 以下、実施例及び比較例に基づいて、本発明を具体的に
説明するが、本発明はこれに限定されな7 いことは勿論である。
U Examples] Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but it goes without saying that the present invention is not limited thereto.

線膨張係数は、イミド化反応が十分終了した試料を用い
、サーモメカニカルアナライザー(TMA)を用いて、
250’Cに昇温後に10℃/min、テ冷却して24
0″Cから100℃までの平均の線膨張率を算出して求
めた。
The coefficient of linear expansion is determined using a thermomechanical analyzer (TMA) using a sample that has undergone sufficient imidization reaction.
After heating to 250'C, cool at 10°C/min for 24 hours.
The average coefficient of linear expansion from 0''C to 100°C was calculated.

エツチング後のフィルムのカールは、導体を塩化第二鉄
水溶液で全面エツチングした後、縦10cm×横10c
m×厚さ25纏の大きさのフィルムを100’Cで10
分間乾燥し後、発生したカールの曲率半径を求めて数値
化した。
The curl of the film after etching is determined by etching the entire surface of the conductor with a ferric chloride aqueous solution,
A film with a size of 25 mm x thickness was heated at 100'C for 10 minutes.
After drying for a minute, the radius of curvature of the curls generated was determined and quantified.

エツチング後のフィルムの強度及び弾性率は、JIS 
Z−1702、ASTHD−882−87に準じて測定
した。
The strength and elastic modulus of the film after etching are JIS
Measured according to Z-1702 and ASTHD-882-87.

なお、各側における略号は以下のとおりである。The abbreviations on each side are as follows.

PMDA :ピロメリット酸二無水物 BPDA : 3.3°、4,4°−ビフェニルテトラ
カルボン酸二無水物 BTDA : 3.3°、4,4°−ベンゾフェノンテ
トラカルボン酸二無水物 DDE:  4,4’−ジアミノジフェニルエーテル8 )IABA:  2°−メチル−4,4′−ジアミノベ
ンズアニリドPPD :パラフエニレンジアミン DO3:  3.3°−ジアミノジフェニルスルフォン
BAPP : 2.2−ビス(4−(4−アミノフェノ
キシ)フェル]プロパン DD)f:4,4°−ジアミノジフェニルメタンDHA
c ニジメチルアセトアミド N)IP : N−メチル−2−ピロリドン合成例1 温度計、塩化カルシウム管、攪拌機及び窒素吸込口を取
付けた500mffの4つロフラスコに200d/mi
nの速度で窒素を流しながら、0.1=EルのD叶及び
300威のDMAcを加えて攪拌し溶解した後、この溶
液を水冷浴中で10°C以下に冷却しながら0.10モ
ルのBTDAを徐々に加えた。反応混合物は発熱しなが
ら重合し、粘稠なポリアミック酸くポリイミド前駆体溶
液)が得られた。
PMDA: Pyromellitic dianhydride BPDA: 3.3°, 4,4°-biphenyltetracarboxylic dianhydride BTDA: 3.3°, 4,4°-benzophenonetetracarboxylic dianhydride DDE: 4, 4'-diaminodiphenyl ether 8) IABA: 2°-methyl-4,4'-diaminobenzanilide PPD: paraphenylenediamine DO3: 3.3°-diaminodiphenylsulfone BAPP: 2.2-bis(4-(4 -aminophenoxy)fer]propane DD) f:4,4°-diaminodiphenylmethane DHA
c Nidimethylacetamide N) IP: N-methyl-2-pyrrolidone Synthesis Example 1 200 d/mi in a 500 mff four-loop flask equipped with a thermometer, calcium chloride tube, stirrer and nitrogen inlet
While flowing nitrogen at a rate of n, 0.1 = Ele and 300 °C of DMAc were added, stirred and dissolved, and the solution was cooled to 10 °C or less in a water cooling bath while 0.10 °C was added. Moles of BTDA were added slowly. The reaction mixture was polymerized while generating heat, and a viscous polyamic acid (polyimide precursor solution) was obtained.

このポリアミック酸溶液を、ステンレス枠上に固定した
市販の厚さ35IUの電解銅箔(日本鉱業■製)の粗面
上にアプリケータを用いてフィルム9 厚みが約25庫になるようにコーティングし、130℃
及び150°Cの熱風オーブン中で順次10分間放置し
て乾燥させ、次いで15分間かけて360’Cまで昇温
させ、イミド化反応を行った。
This polyamic acid solution was coated with an applicator onto the rough surface of a commercially available 35 IU electrolytic copper foil (manufactured by Nippon Mining Co., Ltd.) fixed on a stainless steel frame to a film thickness of approximately 25 IU. , 130℃
Then, the mixture was left in a hot air oven at 150°C for 10 minutes to dry, and then the temperature was raised to 360°C over 15 minutes to perform an imidization reaction.

得られた銅張品は、樹脂を内側に大きくカールした。The resulting copper-clad product had the resin largely curled inward.

この銅張品を塩化第二鉄水溶液でエツチングし、得られ
たフィルムの線膨張性係数を測定したところ、55X 
10’(1/K)であった。
When this copper-clad product was etched with an aqueous ferric chloride solution and the linear expansion coefficient of the obtained film was measured, it was found to be 55X.
It was 10' (1/K).

合成例2〜6 合成例1と同様にして、種々のジアミン化合物と酸無水
物を用いて重合反応を行い、高熱膨張性ポリイミド前駆
体溶液を調製し、合成例1と同様に銅箔上にコーティン
グし、厚さ25虜のフィルムを得た。合成例1と同様に
その線膨張係数を測定した。結果を第1表に示す。
Synthesis Examples 2 to 6 In the same manner as in Synthesis Example 1, a polymerization reaction was carried out using various diamine compounds and acid anhydrides to prepare a high thermal expansion polyimide precursor solution. A film with a thickness of 25 mm was obtained by coating. The linear expansion coefficient was measured in the same manner as in Synthesis Example 1. The results are shown in Table 1.

0 第1表 合成例7 合成例1と同様にして、0.055モルの)IABA及
び0.045モルのDDEを300dのDHAcに溶解
した後、0.10モルのPMOAを加えて反応させ、粘
稠なポリアミック酸を得た。
0 Table 1 Synthesis Example 7 In the same manner as in Synthesis Example 1, 0.055 mol of IABA and 0.045 mol of DDE were dissolved in 300 d of DHAc, and then 0.10 mol of PMOA was added and reacted. A viscous polyamic acid was obtained.

このポリアミック酸を用いて得られたポリアミドイミド
フィルムの線膨張係数は13x 1O−6(1/K)で
あった。また、カールは顕著であった。
The linear expansion coefficient of the polyamideimide film obtained using this polyamic acid was 13x 1O-6 (1/K). Also, the curl was noticeable.

合成例8 合成例1と同様にして、0.090モルのPPD及び0
.010モルのD叶を300威のDHAcに溶1 解した後、o、ioモルのBPDAを加えて反応させ、
粘稠なポリアミック酸を得た。
Synthesis Example 8 In the same manner as in Synthesis Example 1, 0.090 mol of PPD and 0
.. After dissolving 0.10 moles of D-leaf in 300 moles of DHAc, o,io moles of BPDA were added and reacted.
A viscous polyamic acid was obtained.

このポリアミック酸を用いて得られたポリイミドフィル
ムの線膨張係数はIOX 1O−6(1/K)であった
。また、カールは顕著であった。
The linear expansion coefficient of the polyimide film obtained using this polyamic acid was IOX 1O-6 (1/K). Also, the curl was noticeable.

実施例1〜6 合成例7で得られた樹脂溶液を金属枠に固定した厚さ3
5μsの電解銅箔上にフィルム厚みが23μsになるよ
うにバーにて塗工し130°Cで5分間乾燥した後、合
成例1〜6で得られた樹脂溶液を最終のフィルム厚みが
25庫になるようにバーにより塗工し、130’Cで1
0分間乾燥した後、15分かけて360℃まで昇温させ
、イミド化反応を行った。
Examples 1 to 6 Thickness 3 in which the resin solution obtained in Synthesis Example 7 was fixed to a metal frame
The resin solution obtained in Synthesis Examples 1 to 6 was coated with a bar to a film thickness of 23 μs on electrolytic copper foil for 5 μs and dried at 130°C for 5 minutes. Coat with a bar so that
After drying for 0 minutes, the temperature was raised to 360° C. over 15 minutes to perform an imidization reaction.

得られた銅張品は、はぼ平らで、銅を塩化第二鉄水溶液
でエツチングして得られたフィルムも平らであった。
The resulting copper-clad product was flat, and the film obtained by etching copper with an aqueous ferric chloride solution was also flat.

実施例7〜12 実施例1〜6と同様にして、合成例8の樹脂溶液及び合
成例1〜6の樹脂溶液を用いて銅張品を2 得た。銅張品及びフィルムのカールもなく、充分使用可
能なものであった。
Examples 7 to 12 Two copper-clad products were obtained in the same manner as Examples 1 to 6 using the resin solution of Synthesis Example 8 and the resin solution of Synthesis Examples 1 to 6. There was no curling of the copper-clad product or the film, and it was fully usable.

比較例1〜6 合成例1〜6で得られた樹脂溶液のみを用い、実施例1
〜6と同様にして銅張品を得た。
Comparative Examples 1 to 6 Using only the resin solutions obtained in Synthesis Examples 1 to 6, Example 1
A copper-clad product was obtained in the same manner as in steps 6 to 6.

銅張品のカールが大ぎく、また、銅をエツチング後のフ
ィルムのカールも大ぎく約20mの曲率半径を示し、使
用に耐えないものであった。
The curl of the copper-clad product was too large, and the curl of the film after etching the copper was so large that it had a radius of curvature of about 20 m, making it unusable.

比較例7〜8 合成例7〜8で得られた樹脂溶液のみを用い、実施例7
〜8と同様にしで銅張品を得た。
Comparative Examples 7-8 Using only the resin solutions obtained in Synthesis Examples 7-8, Example 7
A copper-clad product was obtained in the same manner as in 8.

銅張品のカールはなかったが、得られたフィルムは曲率
半径10mの曲率半径を示し、使用に耐えないものであ
った。
Although there was no curling in the copper-clad product, the obtained film had a radius of curvature of 10 m and was unusable.

実施例13 実施例1と同様にして、合成例7の樹脂溶液を塗工後、
未乾燥塗工面上に合成例1の樹脂溶液をバーにより塗]
ニし、同様の熱処理を行った。
Example 13 After applying the resin solution of Synthesis Example 7 in the same manner as Example 1,
Apply the resin solution of Synthesis Example 1 on the undried coated surface using a bar]
Then, the same heat treatment was performed.

銅張晶及びフィルムのカールもなく、良好であった。There were no copper-clad crystals or curling of the film, and the result was good.

3 実施例14 ライン長7mのドライヤ一部を有する塗工装置において
、多層ダイを用い、合成例1の樹脂溶液及び合成例7の
樹脂溶液を同時にカーテン状に押出し、銅箔面上に最終
樹脂厚みが各々23虜、2μsになるように塗工し、ラ
インスピード0.2m/minで130℃から360℃
まで連続的に昇温させて熱処理した。
3 Example 14 Using a multilayer die, the resin solution of Synthesis Example 1 and the resin solution of Synthesis Example 7 were simultaneously extruded in a curtain shape in a coating device having a part of a dryer with a line length of 7 m, and the final resin was applied onto the copper foil surface. Coating was carried out so that the thickness was 23 μs and 2 μs, respectively, and the line speed was 0.2 m/min from 130°C to 360°C.
Heat treatment was performed by continuously raising the temperature to .

得られた銅張品はカールもなく、エツチング後のフィル
ムも平らであり、十分使用可能なものであった。
The resulting copper-clad product had no curls, the film after etching was flat, and it was fully usable.

実施例15 実施例1と同様に、合成例7及び合成例1の樹脂溶液を
塗工した後、130℃で乾燥し、ざらに真空乾燥機中Q
、2torrの雰囲気で、130℃から徐々に昇温し、
10時間かけて360℃まで熱処理した。冷却後得られ
た銅張品は銅箔の酸化がなく、しかも銅張品及びフィル
ムのカールもなかった。
Example 15 In the same manner as in Example 1, the resin solutions of Synthesis Examples 7 and 1 were applied, dried at 130°C, and dried in a vacuum dryer.
, the temperature was gradually raised from 130°C in an atmosphere of 2 torr,
Heat treatment was carried out to 360°C over 10 hours. In the copper-clad product obtained after cooling, there was no oxidation of the copper foil, and there was no curling of the copper-clad product or film.

実施例16 4 実施例15と同様にして、未硬化の銅張品を窒素ガス雰
囲気のイナートオーブン中で360℃まで熱処理した。
Example 16 4 In the same manner as in Example 15, an uncured copper-clad product was heat-treated to 360° C. in an inert oven in a nitrogen gas atmosphere.

得られた銅張晶は、実施例15と同様に、銅箔の酸化及
び銅張品カール、フィルムカールともなく有用なもので
あった。
The obtained copper clad crystal was useful as in Example 15, free from oxidation of the copper foil, copper clad product curl, and film curl.

[発明の効果] 本発明の製造方法は、工業的に有用なフレキシブルプリ
ント回路用銅張積層板を製造覆る上で極めて有用なもの
である。
[Effects of the Invention] The manufacturing method of the present invention is extremely useful for manufacturing industrially useful copper-clad laminates for flexible printed circuits.

Claims (4)

【特許請求の範囲】[Claims] (1)導体上にポリイミド系樹脂を直接塗工して形成す
るフレキシブルプリント回路用銅張積層板の製造方法に
おいて、線膨張係数の異なる少なくとも2種のポリイミ
ド系樹脂組成物又はその前駆体組成物を、線膨張係数の
高い樹脂層が外側となるように導体上に塗工した後乾燥
し、減圧下及び/又は還元性気体雰囲気下に硬化を行う
ことを特徴とする銅張積層板の製造方法。
(1) In a method for manufacturing a copper-clad laminate for a flexible printed circuit, which is formed by directly coating a polyimide resin on a conductor, at least two types of polyimide resin compositions or precursor compositions thereof having different coefficients of linear expansion are used. is coated on a conductor so that the resin layer with a high coefficient of linear expansion is on the outside, and then dried and cured under reduced pressure and/or a reducing gas atmosphere. Method.
(2)線膨張係数の差が5×10^−^6(1/K)以
上の少なくとも2層のポリイミド層を形成する請求項1
記載の銅張積層板の製造方法。
(2) Claim 1 in which at least two polyimide layers having a difference in linear expansion coefficient of 5×10^-^6 (1/K) or more are formed.
The method for manufacturing the copper-clad laminate described above.
(3)多層ダイにより線膨張係数の異なる少なくとも2
種のポリイミド系樹脂組成物又はその前駆体組成物を同
時に導体上に塗工する請求項1記載の銅張積層板の製造
方法。
(3) At least two different coefficients of linear expansion depending on the multilayer die
2. The method for producing a copper-clad laminate according to claim 1, wherein the polyimide resin composition or its precursor composition is simultaneously coated onto the conductor.
(4)線膨張係数の高いポリイミド系樹脂の少なくとも
1種が下記一般式(III) ▲数式、化学式、表等があります▼ で示される構成単位を含むポリイミド樹脂である請求項
1記載の銅張積層板の製造方法。
(4) The copper clad according to claim 1, wherein at least one polyimide resin having a high coefficient of linear expansion is a polyimide resin containing a constituent unit represented by the following general formula (III) ▲ Numerical formula, chemical formula, table, etc. ▼ Method of manufacturing laminates.
JP1258330A 1989-10-03 1989-10-03 Manufacturing method of copper clad laminate Expired - Lifetime JP2738453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1258330A JP2738453B2 (en) 1989-10-03 1989-10-03 Manufacturing method of copper clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1258330A JP2738453B2 (en) 1989-10-03 1989-10-03 Manufacturing method of copper clad laminate

Publications (2)

Publication Number Publication Date
JPH03123093A true JPH03123093A (en) 1991-05-24
JP2738453B2 JP2738453B2 (en) 1998-04-08

Family

ID=17318749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1258330A Expired - Lifetime JP2738453B2 (en) 1989-10-03 1989-10-03 Manufacturing method of copper clad laminate

Country Status (1)

Country Link
JP (1) JP2738453B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533198A3 (en) * 1991-09-19 1995-11-02 Nitto Denko Corp Flexible printed substrate
WO1998008216A1 (en) * 1996-08-19 1998-02-26 Nippon Steel Chemical Co., Ltd. Laminate for hdd suspension and its manufacture
EP1014766A2 (en) * 1998-12-21 2000-06-28 Sony Chemicals Corporation Flexible board
US6197222B1 (en) 1994-11-15 2001-03-06 International Business Machines Corporation Lead free conductive composites for electrical interconnections
US6344308B1 (en) 1998-11-20 2002-02-05 Sony Chemicals Corp. Method of manufacturing a flexible circuit board
JP2003080630A (en) * 2001-09-11 2003-03-19 Mitsui Chemicals Inc Polyimide metallic foil laminate
US6658722B1 (en) 1998-12-28 2003-12-09 Sony Chemicals Corporation Process for producing magnetic head suspension
US6705007B1 (en) 1998-12-28 2004-03-16 Sony Chemicals Corp. Method for manufacturing double-sided flexible printed board
US6770380B2 (en) * 1998-08-11 2004-08-03 Nikko Materials Usa, Inc. Resin/copper/metal laminate and method of producing same
US6998455B1 (en) 1999-10-21 2006-02-14 Nippon Steel Chemical Co., Ltd. Laminate and process for producing the same
JP2007152835A (en) * 2005-12-07 2007-06-21 Kaneka Corp Highly bendable and flexible metal-clad laminate
JP4841103B2 (en) * 2000-06-16 2011-12-21 ユニチカ株式会社 Manufacturing method of flexible printed wiring board substrate and flexible printed wiring board substrate
JP2013119258A (en) * 2011-12-07 2013-06-17 Sk Innovation Co Ltd Method of manufacturing soft metal laminate of multi-layered polyimide structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122697A (en) * 1988-11-01 1990-05-10 Mitsui Toatsu Chem Inc Flexible metal foil lamination board and manufacture thereof
JPH02194947A (en) * 1989-01-24 1990-08-01 Hitachi Chem Co Ltd Preparation of flexible metal clad laminated sheet
JPH02219641A (en) * 1989-02-20 1990-09-03 Sumitomo Electric Ind Ltd Flexible wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122697A (en) * 1988-11-01 1990-05-10 Mitsui Toatsu Chem Inc Flexible metal foil lamination board and manufacture thereof
JPH02194947A (en) * 1989-01-24 1990-08-01 Hitachi Chem Co Ltd Preparation of flexible metal clad laminated sheet
JPH02219641A (en) * 1989-02-20 1990-09-03 Sumitomo Electric Ind Ltd Flexible wiring board

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533198A3 (en) * 1991-09-19 1995-11-02 Nitto Denko Corp Flexible printed substrate
US6197222B1 (en) 1994-11-15 2001-03-06 International Business Machines Corporation Lead free conductive composites for electrical interconnections
WO1998008216A1 (en) * 1996-08-19 1998-02-26 Nippon Steel Chemical Co., Ltd. Laminate for hdd suspension and its manufacture
US6203918B1 (en) 1996-08-19 2001-03-20 Nippon Steel Chemical Co., Ltd. Laminate for HDD suspension and its manufacture
US6770380B2 (en) * 1998-08-11 2004-08-03 Nikko Materials Usa, Inc. Resin/copper/metal laminate and method of producing same
US6344308B1 (en) 1998-11-20 2002-02-05 Sony Chemicals Corp. Method of manufacturing a flexible circuit board
EP1014766A2 (en) * 1998-12-21 2000-06-28 Sony Chemicals Corporation Flexible board
US6346298B1 (en) 1998-12-21 2002-02-12 Sony Chemicals Corp. Flexible board
EP1014766A3 (en) * 1998-12-21 2003-02-05 Sony Chemicals Corporation Flexible board
US7213334B2 (en) 1998-12-28 2007-05-08 Sony Corporation Method for manufacturing double-sided flexible printed board
US6658722B1 (en) 1998-12-28 2003-12-09 Sony Chemicals Corporation Process for producing magnetic head suspension
US6705007B1 (en) 1998-12-28 2004-03-16 Sony Chemicals Corp. Method for manufacturing double-sided flexible printed board
US6998455B1 (en) 1999-10-21 2006-02-14 Nippon Steel Chemical Co., Ltd. Laminate and process for producing the same
JP4841103B2 (en) * 2000-06-16 2011-12-21 ユニチカ株式会社 Manufacturing method of flexible printed wiring board substrate and flexible printed wiring board substrate
JP2003080630A (en) * 2001-09-11 2003-03-19 Mitsui Chemicals Inc Polyimide metallic foil laminate
JP4667675B2 (en) * 2001-09-11 2011-04-13 三井化学株式会社 Polyimide metal foil laminate
JP2007152835A (en) * 2005-12-07 2007-06-21 Kaneka Corp Highly bendable and flexible metal-clad laminate
JP2013119258A (en) * 2011-12-07 2013-06-17 Sk Innovation Co Ltd Method of manufacturing soft metal laminate of multi-layered polyimide structure

Also Published As

Publication number Publication date
JP2738453B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
JP7469383B2 (en) Metal-clad laminates and circuit boards
US7285321B2 (en) Multilayer substrates having at least two dissimilar polyimide layers, useful for electronics-type applications, and compositions relating thereto
JP2907598B2 (en) Flexible multilayer polyimide film laminates and methods for their manufacture
JP4755264B2 (en) Polyimide film and method for producing the same
JPH0522399B2 (en)
JP2746555B2 (en) Flexible printed circuit board
JP7212515B2 (en) Metal-clad laminates and circuit boards
JP2007204714A (en) Polyamideimide resin, film, flexible metal-clad laminate and flexible printed board
JPH03123093A (en) Manufacture of copper plated laminated board
JPH0354971B2 (en)
US4939039A (en) Flexible base materials for printed circuits and method of making same
KR20240049536A (en) Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board
JP5532069B2 (en) Method for producing flexible metal laminate
JP4571043B2 (en) Laminated body and method for producing the same
US20030108748A1 (en) Method for preparing substrate for flexible print wiring board, and substrate for flexible print wiring board
JPH03164241A (en) Preparation of metal foil-laminated continuous length
JP5240204B2 (en) Metal laminate
JP4615401B2 (en) Laminated body
JP4183765B2 (en) Manufacturing method of flexible printed wiring board
JP4257587B2 (en) Flexible metal foil laminate
JPS63264632A (en) Low-thermal expansion resin
JPS63245988A (en) Flexible printed circuit and manufacture of the same
JPS6384188A (en) Manufacture of flexible printed circuit substrate
JP2023006387A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit board
JP4684601B2 (en) Manufacturing method of flexible laminated substrate