JPH02194947A - Preparation of flexible metal clad laminated sheet - Google Patents

Preparation of flexible metal clad laminated sheet

Info

Publication number
JPH02194947A
JPH02194947A JP1491889A JP1491889A JPH02194947A JP H02194947 A JPH02194947 A JP H02194947A JP 1491889 A JP1491889 A JP 1491889A JP 1491889 A JP1491889 A JP 1491889A JP H02194947 A JPH02194947 A JP H02194947A
Authority
JP
Japan
Prior art keywords
layer
polyimide
metal foil
polyamic acid
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1491889A
Other languages
Japanese (ja)
Inventor
Junichi Imaizumi
純一 今泉
Koichi Nagao
長尾 孝一
Koichi Kawamata
川俣 耕一
Matsuo Kato
加藤 松生
Hiroshi Nomura
宏 野村
Eikichi Sato
英吉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1491889A priority Critical patent/JPH02194947A/en
Publication of JPH02194947A publication Critical patent/JPH02194947A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To prevent the curling of a polyimide film after a metal foil is removed by providing a polyimide layer easy to relieve stress between the metal foil and polyimide having a low coefficient of thermal expansion. CONSTITUTION:A solution of polyamide acid forming polyimide having a glass transition point of 320 deg.C or lower after the completion of imidating reaction is applied to a metal foil as the first layer and a solvent is removed to provide a polyamide acid layer. Subsequently, a solution of polyamide acid wherein the difference between the coefficient of thermal expansion of polyimide after the completion of imidating reaction and that of the metal foil becomes 1.5X10<-5>K<-1> or less is applied to the metal foil as the second layer and a solvent is removed to provide a polyamide acid layer. Thereafter, the imidating reactions of polyamide acids of the first and second layers are completed. That is, a solution containing 3-40wt.% of polyamide acid is emitted to the surface of the metal foil from a slit to be uniformly applied thereto. At this time, the width of the slit is adjusted so that the thickness of polyimide after the removal of a solvent and the completion of imidating reaction becomes 3-15mum to prepare the first layer. Next, the gap between a coater and the metal foil is adjusted so that the thickness of polyimide after the removal of a solvent and the completion of imidating reaction becomes 20-75mum to prepare the second layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフレキシブル金属張積層板の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a flexible metal-clad laminate.

〔従来の技術〕[Conventional technology]

フレキシブル金属張積層板は高分子絶縁フィルムの表面
に金属箔を形成した可撓性のある積層板であって、この
積層板の金属箔を回路加工したものがフレキシブルプリ
ント基板である。これは近年電子機器の小型化、高密度
を達成する手段として多用されている。なかでも絶縁フ
ィルムとして芳香族ポリイミドを用いたものが主流を占
めつつある。
A flexible metal-clad laminate is a flexible laminate in which a metal foil is formed on the surface of a polymeric insulating film, and a flexible printed circuit board is formed by processing the metal foil of this laminate into a circuit. In recent years, this has been widely used as a means to achieve miniaturization and high density of electronic devices. Among these, those using aromatic polyimide as an insulating film are becoming mainstream.

従来のフレキシブル金属張積層板はポリイミドフィルム
と銅箔を接着剤により接着する方法により製造されてい
る為に、この耐熱性、耐薬品性、難燃性、電気特性、あ
るいは密着性といった特性は使用する接着剤に支配され
てしまいポリイミドの優れた緒特性を充分にいかすこと
ができないものであった。
Conventional flexible metal-clad laminates are manufactured by bonding polyimide film and copper foil with adhesive, so properties such as heat resistance, chemical resistance, flame retardance, electrical properties, and adhesion are not used. However, the excellent adhesive properties of polyimide cannot be fully utilized.

この問題を解決する方法として金属箔上に金属箔と同程
度の熱膨張係数を有するポリイミドとなるポリアミド酸
(ポリイミドの前駆体)の溶液を直接流延塗布し、溶媒
除去後、イミド化を行うことによりフレキシブル金属張
積層板を製造する方法(以下ダイレクトコート法と称す
)が提案されている。
To solve this problem, a solution of polyamic acid (precursor of polyimide), which becomes polyimide with a coefficient of thermal expansion comparable to that of the metal foil, is directly cast onto the metal foil, and after the solvent is removed, imidization is performed. A method for manufacturing a flexible metal-clad laminate (hereinafter referred to as a direct coating method) has been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記のダイレクトコート法によれば、前述の接着剤によ
る特性低下が解決されるだけでなく、製造工程の大l】
な簡素化が可能となる。
According to the above-mentioned direct coating method, not only the above-mentioned property deterioration caused by the adhesive can be solved, but also the manufacturing process can be greatly improved.
This allows for simple simplification.

しかしながらこの方法により得られたフレキシブル金属
張積層板は、イミド化後不要導体を除去し回路形成を行
う際にポリイミドフィルムが導体箔側にカールしてしま
い以後の作業に支障をきたしていた。
However, in the flexible metal-clad laminate obtained by this method, when unnecessary conductors are removed after imidization and circuit formation is performed, the polyimide film curls toward the conductor foil side, which hinders subsequent work.

本発明者らは、先にこのカールの原因が、溶媒除去、イ
ミド化(硬化)の際にポリイミドフィルムの体積収縮に
伴う応力によることを見出した。
The present inventors have previously discovered that the cause of this curl is stress accompanying volumetric shrinkage of the polyimide film during solvent removal and imidization (curing).

この応力の大部分についてはフレキシブル金属張積層板
の縦、横方向を固定して行う硬化と得られたポリイミド
にガラス転移点以上の熱履歴を与えることにより緩和さ
れる。しかしながら、特に金属箔と同程度の熱膨張係数
をもつ低熱膨張性ポリイミドを用いた場合には、金属箔
とポリイミドフィルムとの接着界面についてはポリイミ
ドの分子鎖が流れにくいために応力緩和しにくく、結果
としてポリイミドフィルム層の金属箔界面側に残留応力
層が生成して回路形成の際に不要導体が除去されると、
その部分にポリイミドフィルムの応力解放が起きて金属
箔側にカールが発生する。
Most of this stress can be alleviated by curing the flexible metal-clad laminate while fixing it in both the vertical and horizontal directions and by subjecting the resulting polyimide to a thermal history above its glass transition point. However, especially when using a low thermal expansion polyimide that has a coefficient of thermal expansion similar to that of metal foil, it is difficult for the polyimide molecular chains to flow at the adhesive interface between the metal foil and the polyimide film, making stress relaxation difficult. As a result, a residual stress layer is generated on the metal foil interface side of the polyimide film layer, and when unnecessary conductors are removed during circuit formation,
Stress in the polyimide film is released at that point, causing curling on the metal foil side.

本発明は、金属箔除去後においてもポリイミドフィルム
のカールが少ないフレキシブル金属積層板を作業性に優
れたダイレクトコート法による製造する方法を提供する
ものである。
The present invention provides a method for producing a flexible metal laminate in which the polyimide film is less curled even after the metal foil is removed, by a direct coating method with excellent workability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前述した金属箔除去後のポリイミドフィ
ルムのカールを防止する方法について鋭意検討を行った
結果、金属箔と低熱膨張性ポリイミドとの間に、ガラス
転移点が320″C以下の応力緩和し易いポリイミド層
を設けることによりカールが防げることを見出し、本発
明を完成するに至った。
The present inventors have conducted intensive studies on a method for preventing curling of the polyimide film after removing the metal foil mentioned above, and have found that a material with a glass transition point of 320"C or less is used between the metal foil and the low thermal expansion polyimide. It was discovered that curling could be prevented by providing a polyimide layer that easily relaxes stress, and the present invention was completed.

すなわち、本発明は、金属箔にポリアミド酸の溶液を直
接塗布し、次いで溶媒除去後、イミド化反応を完結させ
ることにより得られるダイレクトコートフレキシブル金
属張積層板の製造方法において、金属箔上第一層目にイ
ミド化反応完結後のポリイミドのガラス転移点が320
℃以下となるポリアミド酸の溶液を塗布し溶媒を除去し
てポリアミド酸層を設け、次いで二層目にイミド化反応
完結後のポリイミドの金属箔との熱膨張張係数の差力1
.5 X 10〜5に一1以下となるポリアミド酸の溶
液を塗布し溶媒を除去してポリアミド酸層を設け、その
後、第一層と第二層のポリアミド酸のイミド化反応を完
結させることを特徴とする。
That is, the present invention provides a method for producing a direct-coated flexible metal-clad laminate obtained by directly applying a polyamic acid solution to a metal foil, and then completing an imidization reaction after removing the solvent. The glass transition point of polyimide after completing the imidization reaction in the layer is 320.
A polyamic acid layer is formed by applying a solution of polyamic acid at a temperature below ℃ and removing the solvent.Then, the second layer is coated with a difference in thermal expansion coefficient of 1 between the polyimide and the metal foil after the imidization reaction is completed.
.. A solution of polyamic acid having a concentration of 11 or less is applied to 5 x 10 to 5, the solvent is removed to form a polyamic acid layer, and then the imidization reaction of the polyamic acid of the first layer and the second layer is completed. Features.

以下本発明の詳細な説明するや 金属箔上に最終的に形成されるポリイミドは下記の一般
式で表される反復単位を有する重合体(ここでしは芳香
族ジアミン、芳香族ジイソシアナートのアミノ基、シア
ナート基を除いた残基であり、hは芳香族テトラカルボ
ン酸誘導体のカルボン酸誘導体部を除いた残基である。
The present invention will be described in detail below. The polyimide that is finally formed on the metal foil is a polymer having repeating units represented by the following general formula (in this case, aromatic diamine, aromatic diisocyanate). It is a residue excluding an amino group or a cyanate group, and h is a residue excluding a carboxylic acid derivative portion of an aromatic tetracarboxylic acid derivative.

)R,を有するジアミン、ジイソシアナートとしてはp
、m、o−フェニレンジアミン、2.5−ジアミノトル
エン、ジアミノジュレン、ベンジジン、4.4′−ジア
ミノターフェニル、4.4′−ジアミノジフェニルメタ
ン、4.4′−ジアミノジフェニルエーテル、ジアミノ
ジフェニルスルホン、2.2−ビス(p−アミノフェニ
ル)プロパン、3.3′−ジメチルベンジジン、3,3
′−ジメトキシベンジジン、3.3′−ジメチル−4,
4−ジアミノジフェニルエーテル、3.3’−ジメチル
−4,4′−ジアミノジフェニルメタン、1.4−ビス
(p−アミノフェノキシ)ベンゼン、4.4′−ビス(
p−アミノフェノキシ)ビフェニル、2.2−ビス(4
−(p−アミノフェノキシ)フェニル)プロパン、ビス
(4−(4−アミノフェノキシ)フェニル)スルホン、
又は(Rsは一価の有機基、R4は二価の有機基、pは
1以上の整数)で示されるジアミノシロキサンなどのジ
アミン類並びにこれらのジアミンとホスゲンなどの反応
によって得られるジイソシアナート例えばトリレンジイ
ソシアナート、ジフェニルメタンジイソシアナート、ナ
フタレンジイソシアナート、ジフェニルエーテルジイソ
シアナート、フェニレン−1,3−ジイソシアナートな
どの芳香族ジイソシアナート類がある。
) R, as a diamine, diisocyanate is p
, m, o-phenylenediamine, 2.5-diaminotoluene, diaminodurene, benzidine, 4.4'-diaminoterphenyl, 4.4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, diaminodiphenyl sulfone, 2.2-bis(p-aminophenyl)propane, 3.3'-dimethylbenzidine, 3,3
'-dimethoxybenzidine, 3.3'-dimethyl-4,
4-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 1,4-bis(p-aminophenoxy)benzene, 4,4'-bis(
p-aminophenoxy)biphenyl, 2,2-bis(4
-(p-aminophenoxy)phenyl)propane, bis(4-(4-aminophenoxy)phenyl)sulfone,
or (Rs is a monovalent organic group, R4 is a divalent organic group, p is an integer of 1 or more) such as diamines such as diaminosiloxane, and diisocyanates obtained by reaction of these diamines with phosgene, etc. Aromatic diisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, diphenyl ether diisocyanate, and phenylene-1,3-diisocyanate.

また、R2を有するテトラカルボン酸並びにその誘導体
としては次のようなものが挙げられる。ここではテトラ
カルボン酸として例示するが、これのエステル化物、酸
無水物、酸塩化物ももちろん使用できる。例えば、ピロ
メリット酸、2,3゜3’、4’−テトラカルボキシジ
フェニル、3゜3’、4.4’−テトラカルボキシジフ
ェニル、3.3’、4.4’−テトラカルボキシベンゾ
フェノン、2,3.3’、4’ −テトラカルボキシベ
ンゾフェノンなどがある。
Further, examples of the tetracarboxylic acid having R2 and its derivatives include the following. Although the tetracarboxylic acid is exemplified here, its esters, acid anhydrides, and acid chlorides can of course also be used. For example, pyromellitic acid, 2,3゜3',4'-tetracarboxydiphenyl, 3゜3',4,4'-tetracarboxydiphenyl, 3.3',4.4'-tetracarboxybenzophenone, 2, 3.3',4'-tetracarboxybenzophenone and the like.

ここで金属箔上−層目に応力緩和層として設けるポリイ
ミドに必要なことは、イミド化反応完結後のガラス転移
点が320℃以下の系を分子設計することが重要である
。ガラス転移点が約320℃を境にこれ以上のガラス転
移点をもつポリイミドの応力緩和は起こりにくくなり応
力緩和層としての目的を達成できず、その結果カールを
防げなくなるためである。
Here, what is necessary for the polyimide to be provided as a stress relaxation layer on the upper layer of the metal foil is to molecularly design a system whose glass transition point after completion of the imidization reaction is 320° C. or lower. This is because stress relaxation of polyimide having a glass transition point higher than about 320° C. becomes difficult to occur, and the purpose of the layer as a stress relaxation layer cannot be achieved, and as a result, curling cannot be prevented.

一方二層目のポリイミドに重要なことは、ポリマーの熱
膨張係数を概略金属箔と合わせることである。例えば金
属箔にw4箔を用いる場合、基板のカールを防ぐために
ポリイミドの50℃〜250℃の平均熱膨張係数を2 
X 10−5K−’前後に分子設計し、金属箔との熱膨
張係数の差を1.5 X 10−sK−1以下とする。
On the other hand, what is important for the second layer of polyimide is to roughly match the thermal expansion coefficient of the polymer to that of the metal foil. For example, when using W4 foil as the metal foil, the average coefficient of thermal expansion of polyimide between 50°C and 250°C is set to 2 to prevent the board from curling.
The molecule is designed around X 10-5 K-', and the difference in thermal expansion coefficient with the metal foil is set to 1.5 X 10-sK-1 or less.

ポリアミド酸の合成反応は、N−メチル−2−ピロリド
ン(NMP) 、N、N−ジメチルホルムアミド(DM
F)、N、N−ジメチルアセトアミド(DMAc)、ジ
メチルスルホキサイド(DMSO)、硫酸ジメチル、ス
ルホラン、T−ブチロラクトン、クレゾール、フェノー
ル、ハロゲン化フェノール、ジクロヘキサノン、ジオキ
サンなどの溶液中で0〜200℃の範囲で行われる。
The synthesis reaction of polyamic acid involves N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DM
F), 0-200 in solutions such as N,N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), dimethyl sulfate, sulfolane, T-butyrolactone, cresol, phenol, halogenated phenol, dichlorohexanone, dioxane, etc. It is carried out in the range of °C.

本発明における金属箔として用いられるものには、銅、
アルミニウム、鉄、金、銀、ニッケル、パラジウム、ク
ロム、モリブテンなど又はそれらの合金が挙げられる。
The metal foil used in the present invention includes copper,
Examples include aluminum, iron, gold, silver, nickel, palladium, chromium, molybdenum, and alloys thereof.

これら金属の熱膨張係数はおおむね1.6〜2.5 X
 10−5K−’である。またポリイミドとの接着力を
高めるためにコロナ放電、サンディング、メツキ、アル
ミニウムアルコラード、アルミニウムキレート、シラン
カップリング剤などによって機械的、化学的処理をして
もよい。
The coefficient of thermal expansion of these metals is approximately 1.6 to 2.5
10-5K-'. In order to increase the adhesive strength with polyimide, mechanical or chemical treatment may be performed using corona discharge, sanding, plating, aluminum alcoholade, aluminum chelate, silane coupling agent, etc.

本発明において金属箔上にポリイミドフィルム層を形成
させる方法は、まず第一層目に応力緩和を目的とする層
を形成する。この際重要なことは、二層目に形成される
ポリマーと相溶せず且つ層間剥離しない様にすることで
ある。例えば溶媒を50%以上含む様な層であると二層
目のポリマーと相溶してしまい目的を達成できな(なっ
てしまう。
In the method of forming a polyimide film layer on metal foil in the present invention, first, a layer intended for stress relaxation is formed as a first layer. What is important here is to ensure that the polymer is not compatible with the polymer formed in the second layer and that the layers do not peel off. For example, if the layer contains 50% or more of a solvent, it will be miscible with the polymer in the second layer, making it impossible to achieve the purpose.

また、ポリアミド酸溶液を使用して溶媒除去及びイミド
化反応を進めすぎると二層目のポリマーと眉間剥離を生
じてしまう。溶液を用いた方が好ましい。
Furthermore, if the solvent removal and imidization reaction are carried out too much using a polyamic acid solution, peeling from the second layer polymer will occur. It is preferable to use a solution.

具体的には、金属箔表面にポリアミド酸を3〜40重量
%含む溶液を、スリ・ントから吐出させて均一に塗布す
る。この時スリット巾は溶媒除去、イミド化反応完結後
のポリイミドの厚みが3〜15μm1好ましくは5〜1
0μmになる様に調整する。この塗工方法としてはコン
マコータ、ナイフコータ、ファウンテンコーター等が挙
げられるが、何らこれらに限定されるものではない。次
いでポリマーの溶媒を60〜200℃で乾燥し、揮発分
を10〜40重景%、好ましくは20〜30重量%調整
する。これよりも低かったり高かったりすると二層目の
ポリマーとの眉間剥離や相溶の原因となる。
Specifically, a solution containing 3 to 40% by weight of polyamic acid is uniformly applied onto the surface of the metal foil by discharging it from a slint. At this time, the slit width is 3 to 15 μm, preferably 5 to 1 μm, and the thickness of polyimide after solvent removal and imidization reaction is completed.
Adjust so that it becomes 0 μm. Examples of this coating method include comma coater, knife coater, fountain coater, etc., but are not limited to these. Next, the polymer solvent is dried at 60 to 200°C, and the volatile content is adjusted to 10 to 40% by weight, preferably 20 to 30% by weight. If it is lower or higher than this, it may cause separation between the eyebrows or compatibility with the second layer polymer.

次に一層目と同様にして第二層目を塗布する。Next, apply the second layer in the same manner as the first layer.

その方法はコータと金属導体箔とのギャップを溶媒除去
、イミド化反応完結後のポリイミドの厚みを20〜75
μmにする様調整する以外は一層目と同様である。
The method involves removing the solvent from the gap between the coater and the metal conductor foil, and reducing the thickness of polyimide from 20 to 75 mm after the imidization reaction is completed.
It is the same as the first layer except that it is adjusted to µm.

最後にこのクラツド材を300〜450℃に加熱してイ
ミド化反応を完結させる。
Finally, this clad material is heated to 300 to 450°C to complete the imidization reaction.

この時最終温度は重要である。即ち二層目に金属箔とほ
ぼ同じ熱膨張係数をもつポリイミドを形成しても加熱途
中の溶媒蒸発やイミド化反応に伴う応力が発生し、この
応力により積層板のそりやねじれが生じるからである。
The final temperature is important here. In other words, even if polyimide is formed as the second layer with a coefficient of thermal expansion that is almost the same as that of the metal foil, stress will occur due to solvent evaporation and imidization reaction during heating, and this stress will cause the laminate to warp or twist. be.

これらの応力は最終加熱温度をポリマーのガラス転移温
度以上にすれば大部分を緩和することができる。このよ
うにして金属箔上に23〜90μmのポリイミドフィル
ム層が形成される。
Most of these stresses can be alleviated by setting the final heating temperature to a temperature higher than the glass transition temperature of the polymer. In this way, a 23-90 μm polyimide film layer is formed on the metal foil.

また、この工程は、導体回路の酸化腐食及びポリイミド
の劣化を防ぐために、不活性気体雰囲気中で行った方が
好ましい。不活性気体としては、ヘリウム、ネオン、ア
ルゴン、窒素、金属光輝焼鈍気体やこれらの混合気体が
挙げられる。また、水素などの還元性気体を添加するこ
とも可能である。
Further, this step is preferably performed in an inert gas atmosphere in order to prevent oxidative corrosion of the conductor circuit and deterioration of the polyimide. Examples of the inert gas include helium, neon, argon, nitrogen, metal bright annealing gas, and mixed gases thereof. It is also possible to add a reducing gas such as hydrogen.

このようにして応力緩和層を設けることにより、従来ポ
リイミドと金属導体箔との間に発生していた残留応力の
発生を防ぎカールを除去することができる。
By providing the stress relaxation layer in this manner, it is possible to prevent the generation of residual stress that has conventionally occurred between the polyimide and the metal conductor foil, and to remove curls.

〔実施例〕〔Example〕

次に本発明を実施例に基づき更に説明する。 Next, the present invention will be further explained based on examples.

本発明はこれらに限定されるものではない。The present invention is not limited to these.

合成例1 熱電対、攪拌機、窒素吹込口を取り付けた30!ステン
レス製反応釜に毎分的3001dの乾燥窒素を流しなが
らp−フェニレンジアミン(以下P−PDA略記する)
614.1gと、4.4′−ジアミノジフェニルエーテ
ル(以下DDEと略記する)280.4g及びN−メチ
ル−2−ピロリドン(以下NMPと略記する)を17k
g入れ攪拌しP−PDAとDDEを溶解した。この溶液
をウォータージャケットで20℃以下に冷却しながら、
3゜3’、4.4’−ビフェニルテトラカルボン酸二無
水物(以下BPDAと略記する)2105.4gを徐々
に加え重合反応させ粘ちょうなポリアミド酸ワニスを得
た。以後の塗膜作業性を良くするためにこのワニスの回
転粘度が約500ポアズになるまで85℃でクツキング
を行った。このポリアミド酸を通常の方法でポリイミド
フィルム化した。
Synthesis Example 1 30 with thermocouple, stirrer, and nitrogen inlet installed! p-phenylenediamine (hereinafter abbreviated as P-PDA) was introduced into a stainless steel reaction vessel while flowing dry nitrogen at a rate of 3001 d/min.
614.1g, 280.4g of 4,4'-diaminodiphenyl ether (hereinafter abbreviated as DDE) and 17k of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP).
g and stirred to dissolve P-PDA and DDE. While cooling this solution to below 20°C with a water jacket,
2105.4 g of 3°3',4,4'-biphenyltetracarboxylic dianhydride (hereinafter abbreviated as BPDA) was gradually added and polymerized to obtain a viscous polyamic acid varnish. In order to improve the workability of subsequent coatings, the varnish was cured at 85° C. until the rotational viscosity of the varnish reached approximately 500 poise. This polyamic acid was formed into a polyimide film by a conventional method.

そのガラス転移点は約420℃150℃〜250℃の平
均熱膨張係数は2. I X 10−5K−’だった。
Its glass transition point is about 420℃, and the average coefficient of thermal expansion from 150℃ to 250℃ is 2. It was I x 10-5K-'.

合成例2 ジアミン成分としてDDE1437.0gとテトラカル
ボン酸二無水物としてピロメリット酸二無水物(以下P
MDAと略記する)1563.0gを用いた他は合成例
1と同様にしてポリアミド酸ワニスを得た。このポリア
ミド酸を加熱して得られるポリイミドフィルムのガラス
転移点は390 ’Cだった。
Synthesis Example 2 1437.0 g of DDE as a diamine component and pyromellitic dianhydride (hereinafter referred to as P) as a tetracarboxylic dianhydride.
A polyamic acid varnish was obtained in the same manner as in Synthesis Example 1 except that 1563.0 g of MDA (abbreviated as MDA) was used. The glass transition point of the polyimide film obtained by heating this polyamic acid was 390'C.

合成例3 ジアミン成分として2.2−ビス(4−(4−アミノフ
ェノキシ)フェニル)プロパン(以下DAPPと略記す
る)1959.0gとテトラカルボン酸二無水物として
PMDA1041.Ogを用いた他は合成例1と同様に
してポリアミド酸ワニスを得た。このポリアミド酸を加
熱して得られるポリイミドフィルムのガラス転移点は3
55℃だった。
Synthesis Example 3 1959.0 g of 2,2-bis(4-(4-aminophenoxy)phenyl)propane (hereinafter abbreviated as DAPP) as a diamine component and 1041.0 g of PMDA as a tetracarboxylic dianhydride. A polyamic acid varnish was obtained in the same manner as in Synthesis Example 1 except that Og was used. The glass transition point of the polyimide film obtained by heating this polyamic acid is 3.
It was 55℃.

合成例4 DDE1214.9gとBPDA1785.1gを用い
た他は合成例1と同様にしてポリアミド酸ワニスを得た
。このポリアミド酸を力q熱して得られるポリイミドフ
ィルムのガラス転移点は285℃だった。
Synthesis Example 4 A polyamic acid varnish was obtained in the same manner as in Synthesis Example 1 except that 1214.9 g of DDE and 1785.1 g of BPDA were used. The glass transition point of a polyimide film obtained by heating this polyamic acid with force was 285°C.

合成例5 ジアミン成分としてDAPP1680.7gとテトラカ
ルボン酸としてベンゾフェノンテトラカルボン酸二無水
物(以下BTDAと略記する)1319、3 gを用い
た他は実施例1と同様にしてポリアミド酸ワニスを得た
。このポリアミド酸を加熱して得られるポリイミドフィ
ルムのガラス転移点は245℃だった。
Synthesis Example 5 A polyamic acid varnish was obtained in the same manner as in Example 1, except that 1680.7 g of DAPP was used as the diamine component and 1319.3 g of benzophenone tetracarboxylic dianhydride (hereinafter abbreviated as BTDA) was used as the tetracarboxylic acid. . The glass transition point of the polyimide film obtained by heating this polyamic acid was 245°C.

実施例1 35μmの電解w4箔(熱膨張係数1.68X10−5
 K −1)に合成例4で得られたポリアミド酸ワニス
を塗工機を用いて最終厚みが10μmになる様に均一に
塗工し、160℃で乾燥した。揮発分は22.4%だっ
た。次いでこの上に合成例1で得られたポリアミド酸ワ
ニスを最終厚みが15μmになる様に塗布し、乾燥した
。次いでこのクラツド材を窒素雰囲気の連続硬化炉で最
終温度400℃で加熱し、ポリアミド酸をポリイミドに
転化し、フレキシブル金属張積N板(以下MCFと略記
する)を得た。このMCFの銅箔を全面エツチングした
ところ、ポリイミドフィルムにカールは観察されなかっ
た。
Example 1 35μm electrolytic W4 foil (thermal expansion coefficient 1.68X10-5
K-1) was uniformly coated with the polyamic acid varnish obtained in Synthesis Example 4 using a coating machine to a final thickness of 10 μm, and dried at 160°C. The volatile content was 22.4%. Next, the polyamic acid varnish obtained in Synthesis Example 1 was applied thereon to a final thickness of 15 μm and dried. Next, this cladding material was heated in a continuous hardening furnace in a nitrogen atmosphere at a final temperature of 400° C. to convert the polyamic acid into polyimide to obtain a flexible metal clad N plate (hereinafter abbreviated as MCF). When the entire copper foil of this MCF was etched, no curl was observed in the polyimide film.

比較例1 一層目に塗布したポリアミド酸の乾燥温度を100℃で
行った。このポリアミド酸の揮発分は46.5%だった
。この他は実施例1と同様にしてMCFを得た。得られ
たMCFは一層目と二層目のポリアミド酸が相溶してし
まい、得られたポリイミド層は茶褐色に変色してしまっ
た。またこのポリイミドフィルムは銅箔とクラッドして
いた側に激しくカールしてしまった。その曲率はsxi
Comparative Example 1 The polyamic acid coated on the first layer was dried at a temperature of 100°C. The volatile content of this polyamic acid was 46.5%. Other than this, MCF was obtained in the same manner as in Example 1. In the obtained MCF, the polyamic acids of the first layer and the second layer were dissolved, and the obtained polyimide layer turned brown. Moreover, this polyimide film curled violently on the side that was clad with the copper foil. Its curvature is sxi
.

−”C’ll+−’だった。It was -”C’ll+-’.

比較例2 実施例1と同様の樹脂を用い、−層目に塗布したポリア
ミド酸の最終乾燥温度を300℃とした他は実施例1と
同様にしてMCFを得た。二層目のポリアミド酸を塗布
する前の一層目の揮発分は5.4%でイミド化反応の約
70%は完結していた。
Comparative Example 2 An MCF was obtained in the same manner as in Example 1 except that the same resin as in Example 1 was used and the final drying temperature of the polyamic acid coated on the - layer was 300°C. The volatile content of the first layer before coating the second layer of polyamic acid was 5.4%, and about 70% of the imidization reaction was completed.

得られたMCFは一層目と二層目の間で眉間剥離が発生
しMCFとして使用することはできなかった。
The obtained MCF could not be used as an MCF because glabellar peeling occurred between the first and second layers.

比較例3 一層目に合成例2で合成したポリアミド酸を用いた他は
実施例1と同様にしてMCFを得た。銅全面エッチアウ
ト後のポリイミドフィルムは激しくカールしてしまいそ
の曲率は11 X 10−”clll−’だった。
Comparative Example 3 An MCF was obtained in the same manner as in Example 1, except that the polyamic acid synthesized in Synthesis Example 2 was used for the first layer. After etching out the entire surface of the copper, the polyimide film was severely curled and its curvature was 11 x 10-"clll-'.

は激しくカールしてしまった。その曲率は9×】Q −
t cm −+だった・ 実施例2 一層目のポリアミド酸として合成例5で合成したワニス
を用いた他は実施例1と同様にしてMCFを得た。この
MCFの銅箔を全面エッチアウトした後のポリイミドフ
ィルムにカールは観察されなかった。
curled violently. Its curvature is 9×】Q −
t cm −+. Example 2 An MCF was obtained in the same manner as in Example 1, except that the varnish synthesized in Synthesis Example 5 was used as the first layer polyamic acid. No curl was observed in the polyimide film after the entire copper foil of this MCF was etched out.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、回路加工後もポリイミドフィルムにカ
ールの発生しないフレキシブル金属張積層板を容易に製
造することができ、その工業的価値は極めて大である。
According to the present invention, it is possible to easily produce a flexible metal-clad laminate in which the polyimide film does not curl even after circuit processing, and its industrial value is extremely large.

比較例4Comparative example 4

Claims (1)

【特許請求の範囲】[Claims] 1、金属箔にポリアミド酸の溶液を直接塗布し、次いで
溶媒除去後、イミド化反応を完結させることにより得ら
れるダイレクトコートフレキシブル金属張積層板の製造
方法において、金属箔上第一層目にイミド化反応完結後
のポリイミドのガラス転移点が320℃以下となるポリ
アミド酸の溶液を塗布し溶媒を除去してポリアミド酸層
を設け、次いで二層目にイミド化反応完結後のポリイミ
ドの金属箔との熱膨張張係数の差が1.5×10^−^
5K^−^1以下となるポリアミド酸の溶液を塗布し溶
媒を除去してポリアミド酸層を設け、その後、第一層と
第二層のポリアミド酸のイミド化反応を完結させること
を特徴とするフレキシブル金属張積層板の製造方法。
1. In the method for producing a direct-coated flexible metal-clad laminate obtained by directly applying a solution of polyamic acid to metal foil, then completing the imidization reaction after removing the solvent, imide is added to the first layer on the metal foil. After the imidization reaction is completed, a solution of polyamic acid whose glass transition point is 320°C or lower is applied, the solvent is removed, and a polyamic acid layer is provided.Then, the second layer is a metal foil of the polyimide after the imidization reaction is completed. The difference in thermal expansion coefficient is 1.5×10^-^
It is characterized by applying a solution of polyamic acid having a concentration of 5K^-^1 or less, removing the solvent to form a polyamic acid layer, and then completing the imidization reaction of the polyamic acid of the first layer and the second layer. Method for manufacturing flexible metal clad laminates.
JP1491889A 1989-01-24 1989-01-24 Preparation of flexible metal clad laminated sheet Pending JPH02194947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1491889A JPH02194947A (en) 1989-01-24 1989-01-24 Preparation of flexible metal clad laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1491889A JPH02194947A (en) 1989-01-24 1989-01-24 Preparation of flexible metal clad laminated sheet

Publications (1)

Publication Number Publication Date
JPH02194947A true JPH02194947A (en) 1990-08-01

Family

ID=11874345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1491889A Pending JPH02194947A (en) 1989-01-24 1989-01-24 Preparation of flexible metal clad laminated sheet

Country Status (1)

Country Link
JP (1) JPH02194947A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123093A (en) * 1989-10-03 1991-05-24 Nippon Steel Chem Co Ltd Manufacture of copper plated laminated board
WO1992004811A1 (en) * 1990-09-04 1992-03-19 Chisso Corporation Flexible printed circuit board and its manufacturing
EP0533198A3 (en) * 1991-09-19 1995-11-02 Nitto Denko Corp Flexible printed substrate
JP2006123425A (en) * 2004-10-29 2006-05-18 Dowa Mining Co Ltd Metal-clad substrate and its manufacturing process
JP2008238572A (en) * 2007-03-27 2008-10-09 Nippon Steel Chem Co Ltd Method of manufacturing flexible laminate plate
CN102922819A (en) * 2012-11-16 2013-02-13 江苏科技大学 Preparation method of non-adhesive double-sided copper-clad foil with high smoothness
KR20190127379A (en) * 2018-05-04 2019-11-13 주식회사 엘지화학 Polyamide film laminate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123093A (en) * 1989-10-03 1991-05-24 Nippon Steel Chem Co Ltd Manufacture of copper plated laminated board
WO1992004811A1 (en) * 1990-09-04 1992-03-19 Chisso Corporation Flexible printed circuit board and its manufacturing
US5300364A (en) * 1990-09-04 1994-04-05 Chisso Corporation Metal-clad laminates and method for producing same
EP0533198A3 (en) * 1991-09-19 1995-11-02 Nitto Denko Corp Flexible printed substrate
JP2006123425A (en) * 2004-10-29 2006-05-18 Dowa Mining Co Ltd Metal-clad substrate and its manufacturing process
JP4548828B2 (en) * 2004-10-29 2010-09-22 Dowaホールディングス株式会社 Method for manufacturing metal-coated substrate
JP2008238572A (en) * 2007-03-27 2008-10-09 Nippon Steel Chem Co Ltd Method of manufacturing flexible laminate plate
CN102922819A (en) * 2012-11-16 2013-02-13 江苏科技大学 Preparation method of non-adhesive double-sided copper-clad foil with high smoothness
KR20190127379A (en) * 2018-05-04 2019-11-13 주식회사 엘지화학 Polyamide film laminate

Similar Documents

Publication Publication Date Title
JP7109946B2 (en) polyimide film
JPS6330143B2 (en)
TWI403408B (en) Novel polyimine film and use thereof
JPS60243120A (en) Flexible printed base board and production thereof
JP3102622B2 (en) Metal foil laminated polyimide film
JPH08250860A (en) Flexible printed board
JPS60157286A (en) Flexible printed board and method of producing same
JP2004322441A (en) Method for producing polyimide film
JPS646556B2 (en)
WO1988002591A1 (en) Flexible printed circuit board and process for its production
JP2001270034A (en) Flexible metal foil laminate
JPH02115265A (en) Heat-resistant film and its laminate
JPH0292535A (en) Composite molding of metal and polyimide
JPH02194947A (en) Preparation of flexible metal clad laminated sheet
KR20030007571A (en) Method for preparing substrate for flexible print wiring board and substrate for flexible print wiring board
JPS6374635A (en) Manufacture of flexible printed substrate
JP2001105530A (en) Flexible metal laminate and production method therefor
JPS61111181A (en) Manufacture of polyimide-metallic foil composite film
JPS63264632A (en) Low-thermal expansion resin
JPH0361352B2 (en)
JPH0543314B2 (en)
JPS61111182A (en) Manufacture of polyimide-metallic foil composite film
JPS6369634A (en) Manufacture of flexible printed substrate
JP4251947B2 (en) Polyimide film and metal laminate using the polyimide film
JPS61245868A (en) Preparation of flexible printed circuit board