JP7109946B2 - polyimide film - Google Patents

polyimide film Download PDF

Info

Publication number
JP7109946B2
JP7109946B2 JP2018049912A JP2018049912A JP7109946B2 JP 7109946 B2 JP7109946 B2 JP 7109946B2 JP 2018049912 A JP2018049912 A JP 2018049912A JP 2018049912 A JP2018049912 A JP 2018049912A JP 7109946 B2 JP7109946 B2 JP 7109946B2
Authority
JP
Japan
Prior art keywords
mol
polyimide film
film
double
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018049912A
Other languages
Japanese (ja)
Other versions
JP2018168358A (en
Inventor
幹弘 小倉
亮作 我妻
直比古 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Publication of JP2018168358A publication Critical patent/JP2018168358A/en
Application granted granted Critical
Publication of JP7109946B2 publication Critical patent/JP7109946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Description

本発明は、ポリイミドフィルムに関する。 The present invention relates to polyimide films.

電子機器の小型化、軽量化、高機能化に従ってIC、LSI等の電子部品を実装するプリント配線板は小さいスペースでより高密度の配線が要求される様になり、これに対応するため、ICをフレキシブル配線板に直接実装するCOF(Chip On Film)方式が開発され、実用化されてきた。
近年、その傾向は特に液晶テレビやノートパソコン、スマートフォン等のディスプレイを駆動するICの実装において顕著で、ディスプレイの高精細化、モバイル機器の薄型化、高機能化に伴い、更なる高密度実装を実現するための微細配線化や、配線を両面に施した両面COF等の実装方式の改良が進んでいる。
As electronic devices become smaller, lighter, and more functional, printed wiring boards on which electronic components such as ICs and LSIs are mounted are required to have higher density wiring in a smaller space. A COF (Chip On Film) method has been developed and put into practical use, in which a chip is directly mounted on a flexible wiring board.
In recent years, this trend has become particularly noticeable in the mounting of ICs that drive displays such as liquid crystal televisions, notebook computers, and smartphones. In order to achieve this, progress has been made in improving mounting methods such as finer wiring and double-sided COF in which wiring is provided on both sides.

COFに用いられる銅張り積層板には、配線の微細化への対応が可能な、ポリイミドフィルム上に銅層を直接形成し接着剤を用いない2層タイプが採用されている。これには、フィルム上にスパッタ・めっき法により銅層を形成させる方法、銅箔上にポリアミド酸をキャストした後イミド化させる方法があるが、銅層の薄膜化が容易で微細配線に有利なスパッタ・めっき法による2層銅張り積層板が主流となっている。 The copper-clad laminate used for COF employs a two-layer type in which a copper layer is directly formed on a polyimide film and no adhesive is used, which is capable of coping with miniaturization of wiring. There are two methods for this: a method of forming a copper layer on a film by sputtering and plating, and a method of casting polyamic acid on a copper foil and then imidizing it. A two-layer copper-clad laminate made by a sputtering/plating method has become mainstream.

COF用基板の微細配線の形成は、銅張り積層板の銅層の表面にフォトレジスト層を設け、このフォトレジスト層を露光・現像して所望のパターンを形成し、このパターンをマスキング材として、銅層を選択的にエッチングする方式(サブトラクティブ法)が用いられている。しかし、この方法では配線ピッチを小さく[例えば、25μm(例えば、ライン幅12μm、スペース幅13μm)より小さく]することが困難であり、一部最先端機種への対応が難しくなってきている。 The fine wiring of the COF substrate is formed by providing a photoresist layer on the surface of the copper layer of the copper-clad laminate, exposing and developing the photoresist layer to form a desired pattern, and using this pattern as a masking material, A method of selectively etching a copper layer (subtractive method) is used. However, with this method, it is difficult to reduce the wiring pitch [for example, smaller than 25 μm (for example, line width 12 μm, space width 13 μm)], and it is becoming difficult to deal with some state-of-the-art models.

近年、これに代わる方法として、絶縁基板の表面に基材金属層を形成し、この基材金属層の表面にフォトレジスト層を設け、このフォトレジスト層に所望のパターンを形成し、露出した基材金属層に導電性金属を電解析出させて配線パターンを形成する方式(セミアディティブ法)が着目されている。この方式によれば、小さい(例えば、20μm以下の)配線ピッチも形成でき、更なる高密度実装が可能となる。 In recent years, as an alternative method, a substrate metal layer is formed on the surface of an insulating substrate, a photoresist layer is provided on the surface of this substrate metal layer, a desired pattern is formed on the photoresist layer, and the exposed substrate is exposed. A method (semi-additive method) of forming a wiring pattern by electrolytically depositing a conductive metal on a material metal layer has attracted attention. According to this method, a small wiring pitch (for example, 20 μm or less) can be formed, and higher density mounting becomes possible.

これらの技術動向において、2層銅張り積層板に用いられるポリイミドフィルムに対する特性、品質の要求もますます高度化している。例えば、COFはICやパネルと実装後、コンパクトに折り曲げて電子機器に搭載されるが、配線が微細化することにより、配線に割れ(クラック)が生じ易くなるため、耐クラック性も要求されるようになった。
これらに対応するため、例えば、ポリイミドフィルムの表面に接着剤を介することなくニッケル合金からなる下地金属層と、前記下地金属層の表面に銅層を備える積層構造の配線をセミアディティブ法で形成するフレキシブル配線板の製造方法において、銅層の結晶配向を規定した提案がなされている(特許文献1)。
Along with these technical trends, the requirements for characteristics and quality of polyimide films used for two-layer copper-clad laminates are becoming more and more sophisticated. For example, after a COF is mounted on an IC or panel, it is folded compactly and mounted on an electronic device. It became so.
In order to cope with these problems, for example, a metal base layer made of a nickel alloy is formed on the surface of a polyimide film without an adhesive, and a wiring having a laminated structure including a copper layer on the surface of the metal base layer is formed by a semi-additive method. A proposal has been made to specify the crystal orientation of a copper layer in a method for manufacturing a flexible wiring board (Patent Document 1).

特開2014-159608号公報Japanese Unexamined Patent Application Publication No. 2014-159608

本発明の目的は、新規なポリイミドフィルムを提供することにある。 An object of the present invention is to provide a novel polyimide film.

前記のように、COFについて様々な検討がなされているが、本発明者によれば、さらなる検討・改善の余地があることがわかった。
例えば、両面に配線を施した両面COFにおいては、折り曲げ内面の配線は外面の配線よりも折り曲げ角度が小さくなり、配線の微細化と相まって、配線のクラックの問題が発生しやすくなった。これに対応するためには、特許文献1のように、銅層を改良すれば足りるものではなく、ポリイミドフィルムにおいても改善が必要であると考えられる。
As described above, various studies have been made on the COF, but the inventors have found that there is room for further study and improvement.
For example, in a double-sided COF in which wiring is provided on both sides, the wiring on the inner surface of the bend has a smaller bending angle than the wiring on the outer surface. In order to cope with this, it is not enough to improve the copper layer as in Patent Document 1, and it is considered that the polyimide film also needs to be improved.

また、微細配線化が進むと、銅層表面の品位、ポリイミドフィルム表面の品位要求も高くなり、従来よりも微細な異物や欠陥が配線形成収率に影響を与えることになる。さらにセミアディティブ方式の配線形成に使用される銅張り積層板は、従来のサブトラクティブ方式に使用する銅張り積層板にくらべ、その銅層の厚みが3分の1以下(1~3μm)の積層板を用いることが多いため、ポリイミドフィルムの表面には、より高品位が求められる。 In addition, as the wiring becomes finer, the quality of the surface of the copper layer and the quality of the surface of the polyimide film are required to be higher. In addition, the copper-clad laminate used for wiring formation in the semi-additive method has a copper layer thickness less than one-third (1 to 3 μm) of the copper-clad laminate used in the conventional subtractive method. Since a plate is often used, higher quality is required for the surface of the polyimide film.

本発明者は、このような観点から、種々の検討を試みたが、十分な性能を充足させるには困難を極めた。例えば、ポリイミドフィルム表面を平滑にするなどを試みたものの、単純にこのような試みを行うだけでは、フィルム同士の滑り性が悪くなり、取り扱い性が低下するばかりでなく、フィルム搬送時や巻き取り時にキズやシワが発生し易くなり、フィルム表面品位を却って悪化する場合などがあった。 From this point of view, the inventors have attempted various studies, but have found it extremely difficult to achieve sufficient performance. For example, attempts have been made to smooth the surface of a polyimide film, but simply doing such an attempt will not only make the film less slippery, making it easier to handle, but also make it easier to transport and wind the film. Occasionally, scratches and wrinkles tend to occur, and in some cases, the surface quality of the film deteriorates.

このような中、本発明者は、鋭意研究を重ねた結果、無機粒子を含むポリイミドフィルムにおいて、フィルムの両面に着目し、両面における突起割合等を調整することで、取扱性に優れるポリイミドフィルムや、両面COF等に好適なポリイミドフィルムが得られることなどを見出し、さらなる検討を重ねて本発明を完成した。 Under such circumstances, the present inventors have made extensive research, and as a result, in a polyimide film containing inorganic particles, by focusing on both sides of the film and adjusting the protrusion ratio etc. on both sides, a polyimide film with excellent handleability and , and found that a polyimide film suitable for double-sided COF and the like can be obtained, and after repeated further studies, the present invention was completed.

すなわち、本発明は、以下の発明等に関する。
[1]
無機粒子を含有するポリイミドフィルムであって、フィルムの一方の面aにおける高さ0.8μm以上の突起の割合をA個/100cm、フィルムの他方の面bにおける高さ0.8μm以上の突起の割合をB個/100cmとするとき、A及びBがいずれも10個以下であるポリイミドフィルム(例えば、両面COF用ポリイミドフィルム)。
[2]
無機粒子を含有するポリイミドフィルムであって、フィルムの一方の面aにおける高さ0.8μm以上の突起の割合をA個/100cm、フィルムの他方の面bにおける高さ0.8μm以上の突起の割合をB個/100cmとするとき、AとBとの差の絶対値が2以上であるポリイミドフィルム(例えば、両面COF用ポリイミドフィルム)。
[3]
A及び/又はBが2個以上である[1]又は[2]に記載のポリイミドフィルム。
[4]
面a及び面bの両面において、表面粗さRaが0.01~0.05μm、表面粗さRzが0.05~0.6μmである[1]~[3]のいずれかに記載のポリイミドフィルム。
[5]
MD方向の熱膨張係数が4~10ppm/℃であり、TD方向の熱膨張係数が0~8ppm/℃である[1]~[4]のいずれかに記載のポリイミドフィルム。
[6]
引張弾性率5~10GPa及び/又はループスティフネス10~75mN/cmを充足する[1]~[5]のいずれかに記載のポリイミドフィルム。
[7]
パラフェニレンジアミンを含む芳香族ジアミン成分、及び酸無水物成分を重合成分とするポリイミドで構成されている[1]~[6]のいずれかに記載のポリイミドフィルム。
[8]
無機粒子の平均粒径が0.05~0.5μmである[1]~[7]のいずれかに記載のポリイミドフィルム。
[9]
[1]~[8]のいずれかに記載のポリイミドフィルムを用いた金属積層板(特に両面銅張り積層板)。
[10]
銅厚みが1~3μmである[9]記載の金属積層板(特に両面銅張り積層板)。
[11]
[9]又は[10]記載の金属積層板(特に両面銅張り積層板)を用いた両面COF用基板。
[12]
[9]又は[10]記載の金属積層板(特に両面銅張り積層板)を用いて、セミアディティブ法により両面COF用基板を製造する方法。
That is, the present invention relates to the following inventions and the like.
[1]
A polyimide film containing inorganic particles, wherein the ratio of projections with a height of 0.8 μm or more on one side a of the film is A/100 cm 2 , and the projections with a height of 0.8 μm or more on the other side b of the film A polyimide film in which both A and B are 10 or less (for example, polyimide film for double-sided COF), where B is the ratio of B per 100 cm 2 .
[2]
A polyimide film containing inorganic particles, wherein the ratio of projections with a height of 0.8 μm or more on one side a of the film is A/100 cm 2 , and the projections with a height of 0.8 μm or more on the other side b of the film A polyimide film in which the absolute value of the difference between A and B is 2 or more (for example, a polyimide film for double-sided COF), where the ratio of B is B/100 cm 2 .
[3]
The polyimide film according to [1] or [2], wherein A and/or B are two or more.
[4]
The polyimide according to any one of [1] to [3], which has a surface roughness Ra of 0.01 to 0.05 μm and a surface roughness Rz of 0.05 to 0.6 μm on both sides a and b. the film.
[5]
The polyimide film according to any one of [1] to [4], which has a coefficient of thermal expansion in the MD direction of 4 to 10 ppm/°C and a coefficient of thermal expansion in the TD direction of 0 to 8 ppm/°C.
[6]
The polyimide film according to any one of [1] to [5], which has a tensile modulus of elasticity of 5 to 10 GPa and/or a loop stiffness of 10 to 75 mN/cm.
[7]
The polyimide film according to any one of [1] to [6], comprising a polyimide containing an aromatic diamine component containing paraphenylenediamine and an acid anhydride component as a polymerization component.
[8]
The polyimide film according to any one of [1] to [7], wherein the inorganic particles have an average particle size of 0.05 to 0.5 μm.
[9]
A metal laminate (especially a double-sided copper-clad laminate) using the polyimide film according to any one of [1] to [8].
[10]
A metal laminate (especially a double-sided copper-clad laminate) according to [9], wherein the copper thickness is 1 to 3 μm.
[11]
A substrate for double-sided COF using the metal laminate (especially double-sided copper-clad laminate) according to [9] or [10].
[12]
A method for producing a double-sided COF substrate by a semi-additive method using the metal laminate (especially double-sided copper-clad laminate) according to [9] or [10].

本発明では、新規なポリイミドフィルムを得ることができる。特に、本発明では、寸法安定性、折り曲げ特性、フィルム両面における表面平滑性などのバランスに優れるポリイミドフィルムを提供することもできる。 A novel polyimide film can be obtained in the present invention. In particular, the present invention can provide a polyimide film that is well balanced among dimensional stability, bending properties, and surface smoothness on both sides of the film.

このようなポリイミドフィルムは、例えば、COF(Chip On Film)用などに好適である。特に、高密度実装を目的に両面に配線を施した両面COFなどのファインピッチ回路基板や半導体パッケージに好適に用いることができる。 Such a polyimide film is suitable for COF (Chip On Film), for example. In particular, it can be suitably used for a fine-pitch circuit board such as a double-sided COF having wiring on both sides for the purpose of high-density mounting, and a semiconductor package.

ポリイミドフィルムを基材として用いた銅張積層体の断面図である。1 is a cross-sectional view of a copper-clad laminate using a polyimide film as a base material; FIG. ポリイミドフィルムに銅の配線回路パターンを形成した寸法評価用COF用基板の断面図及び表面図である。FIG. 2 is a cross-sectional view and a surface view of a COF substrate for dimension evaluation in which a copper wiring circuit pattern is formed on a polyimide film; 寸法評価用COF用基板を折り曲げ、元の状態にするサイクルを示す図である。FIG. 10 is a diagram showing a cycle of folding the COF substrate for dimension evaluation and returning it to its original state; 寸法評価用COF用基板にガラスを圧着後の断面図である。FIG. 4 is a cross-sectional view after the glass is pressure-bonded to the COF substrate for dimension evaluation.

[ポリイミドフィルム]
本発明のポリイミドフィルムでは、フィルムの両面において、特定の突起の割合が調整されている。
[Polyimide film]
In the polyimide film of the present invention, the ratio of specific projections is adjusted on both sides of the film.

まず、第1の態様では、ポリイミドフィルムにおいて、フィルムの一方の面aにおける高さ0.8μm以上の突起の割合をA個/100cm(100cmあたりA個)、フィルムの他方の面bにおける高さ0.8μm以上の突起の割合をB個/100cm(100cmあたりB個)とするとき、A及びBが、それぞれ、20個以下(例えば、18個以下)、好ましくは15個以下(例えば、12個以下)、さらに好ましくは10個以下(例えば、9個以下、8個以下)である。 First, in the first aspect, in the polyimide film, the ratio of protrusions with a height of 0.8 μm or more on one side a of the film is A/100 cm 2 (A per 100 cm 2 ), and on the other side b of the film When the ratio of protrusions with a height of 0.8 μm or more is B/100 cm 2 (B per 100 cm 2 ), each of A and B is 20 or less (for example, 18 or less), preferably 15 or less. (eg, 12 or less), more preferably 10 or less (eg, 9 or less, 8 or less).

なお、突起の割合A及びBの下限値は、特に限定されないが、例えば、それぞれ、0個であってもよく、有限値(1個、2個など)であってもよい。 Although the lower limit values of the projection ratios A and B are not particularly limited, they may each be 0 or a finite value (1, 2, etc.), for example.

このように、フィルム両面において、特定の突起の割合を抑えることで、ピンホールのような欠損を効率よく抑えやすい。そのため、このようなフィルムは、収率を向上させやすく、両面に銅のような金属層を設けるためのフィルムなどとして好適である。なお、本発明者の検討によれば、意外なことに、突起の中でも、0.8μm以上の突起とピンホールのような欠損との相関が高いようである。 In this way, by suppressing the ratio of specific protrusions on both sides of the film, defects such as pinholes can be efficiently suppressed. Therefore, such a film tends to improve the yield, and is suitable as a film or the like for providing a metal layer such as copper on both sides. According to the study of the present inventors, unexpectedly, among protrusions, there seems to be a high correlation between protrusions of 0.8 μm or more and defects such as pinholes.

本発明の第2の態様では、ポリイミドフィルムにおいて、前記Aと前記Bとの差の絶対値が1以上、好ましくは2以上(例えば、3以上)である。
なお、AとBとの差の絶対値の上限値は、特に限定されないが、例えば、30、25、20、18、16、14、12、10、9、8、7、6などであってもよい。
In the second aspect of the present invention, in the polyimide film, the absolute value of the difference between A and B is 1 or more, preferably 2 or more (for example, 3 or more).
The upper limit of the absolute value of the difference between A and B is not particularly limited, but is, for example, 30, 25, 20, 18, 16, 14, 12, 10, 9, 8, 7, 6, etc. good too.

このように、フィルム両面における特定の突起の割合に偏りを持たせることで、フィルムの面aと面bの間での十分な滑り性を担保しやすいためか、フィルム製造時にロール状に巻き取る場合などにおいて、優れた取扱性のフィルムを効率よく得やすい。また、このような優れた取扱性にも関連してか、フィルムにキズやシワなどが生じにくく、フィルムに配線を効率よく形成しやすい(高収率で配線を形成しやすい)。 In this way, by biasing the ratio of specific protrusions on both sides of the film, it is easy to ensure sufficient slipperiness between the surface a and the surface b of the film. In some cases, it is easy to efficiently obtain a film with excellent handleability. In addition, perhaps in connection with such excellent handleability, the film is less likely to be scratched or wrinkled, and wiring can be efficiently formed on the film (facilitating the formation of wiring at a high yield).

本発明のポリイミドフィルムは、第1の態様及び第2の態様の少なくとも1つの態様を充足すればよく、より好ましくは両態様を充足してもよい。 The polyimide film of the present invention may satisfy at least one aspect of the first aspect and the second aspect, more preferably both aspects.

なお、第1の態様及び/又は第2の態様において、A及びBの少なくとも一方(A及び/又はB)が、有限値[例えば、1個以上、好ましくは2個以上(例えば、2~10個、2~8個、3~7個)など]であってもよい。あえて少なくともいずれかの面に突起を形成することで、良好な配線形成や取扱性などのバランスに優れたフィルムを得やすい。 In the first aspect and/or the second aspect, at least one of A and B (A and/or B) is a finite value [eg, 1 or more, preferably 2 or more (eg, 2 to 10 , 2 to 8, 3 to 7, etc.]. By intentionally forming protrusions on at least one of the surfaces, it is easy to obtain a film having an excellent balance between good wiring formation and handleability.

本発明のポリイミドフィルムは、所定の表面粗度を有していてもよい。例えば、ポリイミドフィルムのRa(中心線平均粗さ)は、例えば、0.01~0.05μm、0.01~0.04μm程度であってもよい。また、ポリイミドフィルムのRz(10点平均粗さ)は、0.05~0.6μm、好ましくは0.1~0.5μmであってもよい。 The polyimide film of the present invention may have a predetermined surface roughness. For example, Ra (center line average roughness) of the polyimide film may be, for example, about 0.01 to 0.05 μm, 0.01 to 0.04 μm. Further, Rz (10-point average roughness) of the polyimide film may be 0.05 to 0.6 μm, preferably 0.1 to 0.5 μm.

なお、このような表面粗度は、フィルムの面a及び面bのいずれか一方において充足してもよく、面a及び面bにおいて充足してもよい。 In addition, such surface roughness may be satisfied on either one of the surfaces a and b of the film, or may be satisfied on the surfaces a and b.

このような表面粗度を有するポリイミドフィルム(特に、このような表面粗度と前記第1及び/又は第2の態様とを組み合わせて充足するポリイミドフィルム)によれば、銅層などの抜け(ピンホール)が発生しにくくなり、収率を向上させやすい。また、フィルムの加工や銅張り積層板の作成などの際に、十分なフィルムの滑り性を担保しやすいためか、搬送不良が発生したり、フィルム表面に収率を低下させるキズの発生を極力おさえやすいようであり、良好なフィルムを得やすい。 According to a polyimide film having such a surface roughness (especially a polyimide film that satisfies the combination of such surface roughness and the first and / or second aspect), the copper layer etc. come off (pin Holes) are less likely to occur, making it easier to improve the yield. In addition, during film processing and production of copper-clad laminates, it is easy to ensure sufficient film slipperiness. It seems to be easy to hold down, and it is easy to obtain a good film.

本発明のポリイミドフィルムは、特定の熱膨張係数を有していてもよい。例えば、ポリイミドフィルムの熱膨張係数は、MD方向(機械搬送方向、縦方向、流れ方向)において、4~10ppm/℃、好ましくは3.5~9ppm/℃、さらに好ましくは3~8ppm/℃程度であってもよく、TD方向(幅方向、横方向、直角方向)において、0~8ppm/℃、好ましくは0~6ppm/℃、さらに好ましくは0.5~5ppm/℃程度であってもよい。 The polyimide film of the present invention may have a specific coefficient of thermal expansion. For example, the coefficient of thermal expansion of the polyimide film is about 4 to 10 ppm/°C, preferably 3.5 to 9 ppm/°C, more preferably about 3 to 8 ppm/°C in the MD direction (machine direction, machine direction, machine direction). and may be about 0 to 8 ppm/°C, preferably 0 to 6 ppm/°C, more preferably 0.5 to 5 ppm/°C in the TD direction (width direction, lateral direction, perpendicular direction). .

熱膨張係数をこのような範囲とすることで、半導体やガラスパネルとの実装時に接合不良が発生しにくくなり、ファインピッチ回路基板や半導体パッケージ用途等においてより好適なフィルムとしやすい。 By setting the coefficient of thermal expansion to such a range, poor bonding is less likely to occur when mounted on a semiconductor or glass panel, and the film is more suitable for use in fine-pitch circuit boards, semiconductor packages, and the like.

本発明のポリイミドフィルムの引張弾性率は、5GPa以上(例えば、5~10GPa)であることが好ましく、MDが6~8GPa、TDが7~10GPaであればなお好ましい。このような引張弾性率は、フィルムのMD方向及び/又はTD方向において充足してもよく、特にMD方向及びTD方向の両方において充足してもよい。 The polyimide film of the present invention preferably has a tensile modulus of 5 GPa or more (eg, 5 to 10 GPa), more preferably 6 to 8 GPa in MD and 7 to 10 GPa in TD. Such tensile modulus may be sufficient in the MD and/or TD of the film, particularly in both MD and TD.

本発明のポリイミドフィルムのループスティフネスは、10~75mN/cmであることが好ましく、更には、10~65mN/cmであることがより好ましい。 The loop stiffness of the polyimide film of the present invention is preferably 10 to 75 mN/cm, more preferably 10 to 65 mN/cm.

本発明のポリイミドフィルムは、通常、無機粒子(又はフィラー)を含む。このような無機粒子としては特に限定されず、例えば、酸化チタン、シリカ、炭酸カルシウム、リン酸カルシウム、リン酸水素カルシウムなどが挙げられる。 The polyimide film of the present invention usually contains inorganic particles (or fillers). Such inorganic particles are not particularly limited, and examples thereof include titanium oxide, silica, calcium carbonate, calcium phosphate, and calcium hydrogen phosphate.

無機粒子の平均粒径は、例えば、0.01~5μm、好ましくは0.02~2μm(例えば、0.03~1μm)、さらに好ましくは0.05~0.5μm程度であってもよい。
なお、無機粒子の平均粒径は、例えば、DMAc(N,N-ジメチルアセトアミド)中に分散させたスラリー状態において、堀場製作所製レーザー回折/錯乱式粒子径分布測定装置LA-920にて測定した粒度分布において、メジアン径を平均粒径として定義される。
The average particle size of the inorganic particles may be, for example, 0.01 to 5 μm, preferably 0.02 to 2 μm (eg, 0.03 to 1 μm), and more preferably about 0.05 to 0.5 μm.
The average particle size of the inorganic particles was measured with a laser diffraction/scattering particle size distribution analyzer LA-920 manufactured by Horiba, Ltd. in a slurry state dispersed in DMAc (N,N-dimethylacetamide). In the particle size distribution, the median diameter is defined as the average particle diameter.

無機粒子の含有量は、本発明の効果を妨げない限り特に限定されないが、例えば、ポリイミドフィルムに対して、0.05質量%以上、好ましくは0.1~1.5質量%、さらに好ましくは0.3~1.0質量%であってもよい。 The content of the inorganic particles is not particularly limited as long as it does not interfere with the effects of the present invention. It may be 0.3 to 1.0% by mass.

(ポリイミド及びポリイミドフィルムの製造方法)
ポリイミドフィルム(又はポリイミドフィルムを構成するポリイミド、又はポリアミック酸)は、通常、芳香族ジアミン成分と酸無水物成分(テトラカルボン酸成分)とを重合成分とする。なお、重合成分は、芳香族ジアミン成分と酸無水物成分を主成分とする限り、他の重合成分を含んでいてもよい。
ポリイミドフィルムを製造するに際しては、特に限定されないが、まず、芳香族ジアミン成分と酸無水物成分とを有機溶媒中で重合させることにより、ポリアミック酸(ポリアミド酸)溶液を得る。
(Method for producing polyimide and polyimide film)
A polyimide film (or a polyimide or polyamic acid constituting a polyimide film) usually has an aromatic diamine component and an acid anhydride component (tetracarboxylic acid component) as polymerization components. The polymerized component may contain other polymerized components as long as the main components are the aromatic diamine component and the acid anhydride component.
The production of the polyimide film is not particularly limited, but first, an aromatic diamine component and an acid anhydride component are polymerized in an organic solvent to obtain a polyamic acid (polyamic acid) solution.

本発明のポリイミドフィルムは、芳香族ジアミン成分として、特に、パラフェニレンジアミンを好適に含んでいてもよい。このようにパラフェニレンジアミンを含む芳香族ジアミン成分を使用することで、前記のような特性・物性を有するポリイミドフィルムを効率よく得やすい。
芳香族ジアミン成分は、パラフェニレンジアミン以外のものを含んでいてもよい。このようなパラフェニレンジアミン以外の前記芳香族ジアミン成分の具体例としては、メタフェニレンジアミン、ベンジジン、パラキシリレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、1,5-ジアミノナフタレン、3,3’-ジメトキシベンジジン、1,4-ビス(3-メチル-5-アミノフェニル)ベンゼン及びこれらのアミド形成性誘導体が挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。
芳香族ジアミン成分としては、パラフェニレンジアミンと、4,4’-ジアミノジフェニルエーテル及び/又は3,4’-ジアミノジフェニルエーテルとの組み合わせが好ましい。この中でフィルムの引張弾性率を高くする効果のあるパラフェニレンジアミン、3,4’-ジアミノジフェニルエーテルのジアミン成分の量を調整し、得られるポリイミドフィルムの引張弾性率を5GPa以上にすることが、搬送性も良くなるので好ましい。
The polyimide film of the present invention may suitably contain paraphenylenediamine as an aromatic diamine component. By using an aromatic diamine component containing paraphenylenediamine in this way, it is easy to efficiently obtain a polyimide film having the properties and physical properties described above.
The aromatic diamine component may contain things other than paraphenylenediamine. Specific examples of the aromatic diamine component other than paraphenylenediamine include metaphenylenediamine, benzidine, paraxylylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, and 4,4′. -diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 1,5-diaminonaphthalene, 3,3'-dimethoxybenzidine, 1,4-bis(3 -methyl-5-aminophenyl)benzene and their amide-forming derivatives. These may be used individually by 1 type, and may be used in mixture of 2 or more types.
As the aromatic diamine component, a combination of paraphenylenediamine and 4,4'-diaminodiphenyl ether and/or 3,4'-diaminodiphenyl ether is preferred. Among these, paraphenylenediamine and 3,4'-diaminodiphenyl ether, which have the effect of increasing the tensile modulus of the film, are adjusted to adjust the amount of the diamine component so that the resulting polyimide film has a tensile modulus of 5 GPa or more. It is preferable because the transportability is also improved.

前記酸無水物成分の具体例としては、ピロメリット酸、3,3’,4,4’-ジフェニルテトラカルボン酸、2,3’,3,4’-ジフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)エーテル、ピリジン-2,3,5,6-テトラカルボン酸及びこれらのアミド形成性誘導体等の芳香族テトラカルボン酸無水物成分が挙げられ、ピロメリット酸二無水物、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物が好ましい。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。 Specific examples of the acid anhydride component include pyromellitic acid, 3,3′,4,4′-diphenyltetracarboxylic acid, 2,3′,3,4′-diphenyltetracarboxylic acid, 3,3′, 4,4'-benzophenonetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 2,2-bis(3,4-dicarboxyphenyl) ether, pyridine-2,3,5,6-tetra Aromatic tetracarboxylic anhydride components such as carboxylic acids and amide-forming derivatives thereof can be mentioned, and pyromellitic dianhydride and 3,3′,4,4′-diphenyltetracarboxylic dianhydride are preferred. These may be used individually by 1 type, and may be used in mixture of 2 or more types.

この中でも、特に好適な、芳香族ジアミン成分及び酸無水物成分の組み合わせとしては、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテル及び3,4’-ジアミノジフェニルエーテルからなる群から選ばれる1種以上の芳香族ジアミン成分と、ピロメリット酸二無水物及び3,3’,4,4’-ジフェニルテトラカルボン酸二無水物からなる群から選ばれる1種以上の酸無水物成分との組み合わせが挙げられる。 Among these, a particularly suitable combination of the aromatic diamine component and the acid anhydride component is one or more selected from the group consisting of paraphenylenediamine, 4,4'-diaminodiphenyl ether and 3,4'-diaminodiphenyl ether. A combination of an aromatic diamine component and one or more acid anhydride components selected from the group consisting of pyromellitic dianhydride and 3,3',4,4'-diphenyltetracarboxylic dianhydride. .

前記した芳香族ジアミン成分におけるパラフェニレンジアミンの配合割合は、前記範囲の熱膨張係数を得るとともに、フィルムに適切な強度を与え、走行性不良を防ぐ等の点から、芳香族ジアミン成分全量に対して、15モル%以上(例えば、18モル%以上)の範囲から選択してもよく、通常20モル%以上(例えば、25モル%以上)、好ましくは30モル%以上(例えば、31モル%以上、32モル%以上)であり、33モル%以上が好ましく、35モル%以上がより好ましい。
芳香族ジアミン成分におけるパラフェニレンジアミンの割合の上限値は、例えば、100モル%であってもよく、特に100モル%未満[例えば、99モル%、95モル%、90モル%、80モル%、70モル%、60モル%以下(例えば、60モル%、55モル%、52モル%、50モル%、48モル%、45モル%など)など]であってもよい。
代表的には、芳香族ジアミン成分におけるパラフェニレンジアミン成分の割合は、芳香族ジアミン成分全量に対して、15~80モル%(例えば、18~75モル%)、20~75モル%(例えば、25~70モル%)、30~65モル%(例えば、32~60モル%、30~55モル%(例えば、32~50モル%)などであってもよい。
また、芳香族ジアミン成分が、4,4’-ジアミノジフェニルエーテル及び/又は3,4’-ジアミノジフェニルエーテル(特に4,4’-ジアミノジフェニルエーテル)を含む場合、芳香族ジアミン成分における4,4’-ジアミノジフェニルエーテル及び/又は3,4’-ジアミノジフェニルエーテルの割合は、芳香族ジアミン成分全量に対して、例えば、85モル%以下(例えば、82モル%以下)の範囲から選択してもよく、好ましくは80モル%以下(例えば、78モル%以下)、さらに好ましくは75モル%以下(例えば、73モル%以下)であり、70モル%以下(例えば、68モル%以下、65モル%以下)であってもよい。
芳香族ジアミン成分における4,4’-ジアミノジフェニルエーテル及び/又は3,4’-ジアミノジフェニルエーテル(特に4,4’-ジアミノジフェニルエーテル)の割合の下限値は、特に限定されず、例えば、1モル%、5モル%、10モル%、15モル%、20モル%、30モル%、40モル%、45モル%、50モル%、52モル%、55モル%、60モル%などであってもよい。
代表的には、芳香族ジアミン成分における4,4’-ジアミノジフェニルエーテル及び/又は3,4’-ジアミノジフェニルエーテル(特に4,4’-ジアミノジフェニルエーテル)の割合は、芳香族ジアミン成分全量に対して、20~85モル%(例えば、22~82モル%)、25~80モル%(例えば、30~78モル%)、35~75モル%(例えば、38~72モル%)、40~70モル%(例えば、45~70モル%)、50~68モル%などであってもよい。
前記した酸無水物成分における配合割合(モル比)としては、本発明の効果を妨げない限り特に限定されないが、例えば、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物を含む場合、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物の含有量は、酸無水物成分全量に対して、15モル%以上(例えば、18モル%以上)が好ましく、20モル%以上がより好ましく、25モル%以上がさらに好ましい。
酸無水物成分における3,3’,4,4’-ジフェニルテトラカルボン酸二無水物の割合の上限値は、100モル%であってもよく、特に100モル%未満(例えば、99モル%、95モル%、90モル%、85モル%、80モル%、70モル%、60モル%、50モル%、45モル%、42モル%、40モル%、38モル%、35モル%、33モル%など)であってもよい。
代表的には、酸無水物成分における3,3’,4,4’-ジフェニルテトラカルボン酸二無水物の割合は、酸無水物成分全量に対して、15~85モル%(例えば、18~70モル%)、18~60モル%(例えば、18~50モル%)、20~40モル%であってもよい。
酸無水物成分がピロメリット酸二無水物を含む場合、ピロメリット酸二無水物の割合は、例えば、酸無水物成分全体に対して、15モル%以上(例えば、20モル%以上)、好ましくは25モル%以上(例えば、30モル%以上)、さらに好ましくは35モル%以上(例えば、40モル%以上)程度であってもよく、45モル%以上(例えば、48モル%以上、50モル%以上、55モル%以上、58モル%以上、60モル%以上、62モル%以上など)であってもよい。
酸無水物成分におけるピロメリット酸二無水物の割合の上限値は、特に限定されず、例えば、100モル%であってもよく、特に100モル%未満(例えば、95モル%、90モル%、85モル%、80モル%、82モル%、75モル%、72モル%など)であってもよい。
代表的には、酸無水物成分におけるピロメリット酸二無水物の割合は、酸無水物成分全量に対して、10~95モル%(例えば、12~90モル%)、15~85モル%(例えば、20~82モル%)、30~85モル%(例えば、40~82モル%)、50~80モル%(例えば、60~80モル%)などであってもよい。
このような芳香族ジアミン成分と酸無水物成分とで構成されたポリアミック酸をポリイミドフィルムの原料(前駆体)とすることで、ポリイミドフィルムの熱膨張係数を、フィルムの機械搬送方向(MD)、幅方向(TD)共に前記範囲に容易に調整することができるため、好ましい。
The blending ratio of paraphenylenediamine in the aromatic diamine component is to obtain the thermal expansion coefficient in the above range, to give the film an appropriate strength, to prevent poor running performance, etc., relative to the total amount of the aromatic diamine component. may be selected from the range of 15 mol% or more (e.g., 18 mol% or more), usually 20 mol% or more (e.g., 25 mol% or more), preferably 30 mol% or more (e.g., 31 mol% or more) , 32 mol % or more), preferably 33 mol % or more, more preferably 35 mol % or more.
The upper limit of the proportion of paraphenylenediamine in the aromatic diamine component may be, for example, 100 mol %, especially less than 100 mol % [for example, 99 mol %, 95 mol %, 90 mol %, 80 mol %, 70 mol %, 60 mol % or less (eg, 60 mol %, 55 mol %, 52 mol %, 50 mol %, 48 mol %, 45 mol %, etc.)].
Typically, the ratio of the paraphenylenediamine component in the aromatic diamine component is 15 to 80 mol% (eg, 18 to 75 mol%), 20 to 75 mol% (eg, 25 to 70 mol %), 30 to 65 mol % (eg, 32 to 60 mol %, 30 to 55 mol % (eg, 32 to 50 mol %)).
Further, when the aromatic diamine component contains 4,4'-diaminodiphenyl ether and/or 3,4'-diaminodiphenyl ether (especially 4,4'-diaminodiphenyl ether), 4,4'-diamino in the aromatic diamine component The ratio of diphenyl ether and/or 3,4'-diaminodiphenyl ether may be selected from the range of, for example, 85 mol% or less (eg, 82 mol% or less), preferably 80%, based on the total amount of the aromatic diamine component. mol% or less (e.g., 78 mol% or less), more preferably 75 mol% or less (e.g., 73 mol% or less), and 70 mol% or less (e.g., 68 mol% or less, 65 mol% or less) good too.
The lower limit of the ratio of 4,4'-diaminodiphenyl ether and/or 3,4'-diaminodiphenyl ether (particularly 4,4'-diaminodiphenyl ether) in the aromatic diamine component is not particularly limited, and is, for example, 1 mol%, It may be 5 mol %, 10 mol %, 15 mol %, 20 mol %, 30 mol %, 40 mol %, 45 mol %, 50 mol %, 52 mol %, 55 mol %, 60 mol % and the like.
Typically, the ratio of 4,4'-diaminodiphenyl ether and/or 3,4'-diaminodiphenyl ether (especially 4,4'-diaminodiphenyl ether) in the aromatic diamine component is 20-85 mol% (eg, 22-82 mol%), 25-80 mol% (eg, 30-78 mol%), 35-75 mol% (eg, 38-72 mol%), 40-70 mol% (eg, 45 to 70 mol %), 50 to 68 mol %, and the like.
The blending ratio (molar ratio) in the acid anhydride component is not particularly limited as long as it does not interfere with the effects of the present invention. Examples include 3,3',4,4'-diphenyltetracarboxylic dianhydride. In this case, the content of 3,3′,4,4′-diphenyltetracarboxylic dianhydride is preferably 15 mol % or more (eg, 18 mol % or more) relative to the total amount of the acid anhydride component, and 20 mol. % or more is more preferable, and 25 mol % or more is even more preferable.
The upper limit of the ratio of 3,3',4,4'-diphenyltetracarboxylic dianhydride in the acid anhydride component may be 100 mol%, particularly less than 100 mol% (e.g., 99 mol%, 95 mol%, 90 mol%, 85 mol%, 80 mol%, 70 mol%, 60 mol%, 50 mol%, 45 mol%, 42 mol%, 40 mol%, 38 mol%, 35 mol%, 33 mol %, etc.).
Typically, the proportion of 3,3',4,4'-diphenyltetracarboxylic dianhydride in the acid anhydride component is 15 to 85 mol% (for example, 18 to 70 mol %), 18 to 60 mol % (eg, 18 to 50 mol %), 20 to 40 mol %.
When the acid anhydride component contains pyromellitic dianhydride, the proportion of pyromellitic dianhydride is, for example, 15 mol% or more (e.g., 20 mol% or more) relative to the total acid anhydride component, preferably may be about 25 mol% or more (e.g., 30 mol% or more), more preferably about 35 mol% or more (e.g., 40 mol% or more), and may be about 45 mol% or more (e.g., 48 mol% or more, 50 mol% % or more, 55 mol % or more, 58 mol % or more, 60 mol % or more, 62 mol % or more, etc.).
The upper limit of the proportion of pyromellitic dianhydride in the acid anhydride component is not particularly limited, and may be, for example, 100 mol%, particularly less than 100 mol% (e.g., 95 mol%, 90 mol%, 85 mol %, 80 mol %, 82 mol %, 75 mol %, 72 mol %, etc.).
Typically, the proportion of pyromellitic dianhydride in the acid anhydride component is 10 to 95 mol% (for example, 12 to 90 mol%), 15 to 85 mol% ( 20 to 82 mol %), 30 to 85 mol % (eg, 40 to 82 mol %), 50 to 80 mol % (eg, 60 to 80 mol %).
By using such a polyamic acid composed of an aromatic diamine component and an acid anhydride component as a raw material (precursor) for a polyimide film, the thermal expansion coefficient of the polyimide film is changed to the machine conveying direction (MD) of the film, It is preferable because it can be easily adjusted within the above range in both the width direction (TD).

また、本発明において、ポリアミック酸溶液の形成に使用される有機溶媒の具体例としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶媒、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド等のホルムアミド系溶媒、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド等のアセトアミド系溶媒、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン等のピロリドン系溶媒、フェノール、o-,m-,又はp-クレゾール、キシレノール、ハロゲン化フェノール、カテコール等のフェノール系溶媒又はヘキサメチルホスホルアミド、γ-ブチロラクトン等の非プロトン性極性溶媒を挙げることができ、これらを単独又は2種以上を使用した混合物として用いるのが望ましいが、さらにはキシレン、トルエン等の芳香族炭化水素の使用も可能である。 Further, in the present invention, specific examples of the organic solvent used for forming the polyamic acid solution include sulfoxide solvents such as dimethylsulfoxide and diethylsulfoxide, N,N-dimethylformamide, N,N-diethylformamide, and the like. formamide solvents, N,N-dimethylacetamide, acetamide solvents such as N,N-diethylacetamide, pyrrolidone solvents such as N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, phenol, o-, Examples include phenolic solvents such as m- or p-cresol, xylenol, halogenated phenols and catechol, and aprotic polar solvents such as hexamethylphosphoramide and γ-butyrolactone, which may be used alone or in combination of two or more. is preferably used as a mixture, but aromatic hydrocarbons such as xylene and toluene can also be used.

重合方法は、公知のいずれの方法で行ってもよく、例えば
(1)先に芳香族ジアミン成分全量を溶媒中に入れ、その後、酸無水物成分を芳香族ジアミン成分全量と当量(等モル)になるように加えて重合する方法。
(2)先に酸無水物成分全量を溶媒中に入れ、その後、芳香族ジアミン成分を酸無水物成分と当量になるように加えて重合する方法。
(3)一方の芳香族ジアミン成分(a1)を溶媒中に入れた後、反応成分に対して一方の酸無水物成分(b1)が95~105モル%となる比率で反応に必要な時間混合した後、もう一方の芳香族ジアミン成分(a2)を添加し、続いて、もう一方の酸無水物成分(b2)を全芳香族ジアミン成分と全酸無水物成分とがほぼ当量になるように添加して重合する方法。
(4)一方の酸無水物成分(b1)を溶媒中に入れた後、反応成分に対して一方の芳香族ジアミン成分(a1)が95~105モル%となる比率で反応に必要な時間混合した後、もう一方の酸無水物成分(b2)を添加し、続いてもう一方の芳香族ジアミン成分(a2)を全芳香族ジアミン成分と全酸無水物成分とがほぼ当量になるように添加して重合する方法。
(5)溶媒中で一方の芳香族ジアミン成分と酸無水物成分をどちらかが過剰になるよう反応させてポリアミック酸溶液(A)を調整し、別の溶媒中でもう一方の芳香族ジアミン成分と酸無水物成分をどちらかが過剰になるよう反応させてポリアミック酸溶液(B)を調整する。こうして得られた各ポリアミック酸溶液(A)と(B)を混合し、重合を完結する方法。この時ポリアミック酸溶液(A)を調整するに際し芳香族ジアミン成分が過剰の場合、ポリアミック酸溶液(B)では酸無水物成分を過剰に、またポリアミック酸溶液(A)で酸無水物成分が過剰の場合、ポリアミック酸溶液(B)では芳香族ジアミン成分を過剰にし、ポリアミック酸溶液(A)と(B)を混ぜ合わせこれら反応に使用される全芳香族ジアミン成分と全酸無水物成分とがほぼ当量になるように調整する。なお、重合方法はこれらに限定されることはなく、その他公知の方法を用いてもよい。
The polymerization method may be carried out by any known method. For example, (1) the total amount of the aromatic diamine component is first placed in a solvent, and then the acid anhydride component is added in an amount equivalent (equimolar) to the total amount of the aromatic diamine component. A method of polymerizing in addition to
(2) A method in which the entire amount of the acid anhydride component is first put into a solvent, and then the aromatic diamine component is added so as to be equivalent to the acid anhydride component for polymerization.
(3) One aromatic diamine component (a1) is put into a solvent, and then one acid anhydride component (b1) is mixed at a ratio of 95 to 105 mol % with respect to the reaction components for the time required for the reaction. After that, the other aromatic diamine component (a2) is added, and then the other acid anhydride component (b2) is added so that the total aromatic diamine component and the total acid anhydride component are approximately equivalent. A method of adding and polymerizing.
(4) After putting one acid anhydride component (b1) into a solvent, one aromatic diamine component (a1) is mixed at a ratio of 95 to 105 mol% with respect to the reaction components for the time required for the reaction. After that, the other acid anhydride component (b2) is added, and then the other aromatic diamine component (a2) is added so that the total aromatic diamine component and the total acid anhydride component are approximately equivalent. to polymerize.
(5) One aromatic diamine component and an acid anhydride component are reacted in a solvent so that one of them is excessive to prepare a polyamic acid solution (A), and the other aromatic diamine component is reacted in another solvent. and an acid anhydride component are reacted so that one of them becomes excessive to prepare a polyamic acid solution (B). A method in which the polyamic acid solutions (A) and (B) thus obtained are mixed to complete the polymerization. At this time, when the aromatic diamine component is excessive when preparing the polyamic acid solution (A), the acid anhydride component is excessive in the polyamic acid solution (B), and the acid anhydride component is excessive in the polyamic acid solution (A). In the case of , the polyamic acid solution (B) contains an excess amount of the aromatic diamine component, the polyamic acid solutions (A) and (B) are mixed, and the total aromatic diamine component and the total acid anhydride component used in these reactions are Adjust so that it is approximately equal. The polymerization method is not limited to these, and other known methods may be used.

こうして得られるポリアミック酸溶液は、通常5~40重量%の固形分を含有し、好ましくは10~30重量%の固形分を含有する。また、その粘度は、ブルックフィールド粘度計による測定値で通常10~2000Pa・sであり、安定した送液のために、好ましくは100~1000Pa・sである。また、有機溶媒溶液中のポリアミック酸は部分的にイミド化されていてもよい。 The polyamic acid solution thus obtained usually contains 5 to 40% by weight of solids, preferably 10 to 30% by weight of solids. Further, the viscosity is usually 10 to 2000 Pa·s as measured by a Brookfield viscometer, and preferably 100 to 1000 Pa·s for stable liquid transfer. Also, the polyamic acid in the organic solvent solution may be partially imidized.

次に、ポリイミドフィルムの製造方法について説明する。ポリイミドフィルムを製膜する方法としては、ポリアミック酸溶液をフィルム状にキャストし熱的に脱環化脱溶媒させてポリイミドフィルムを得る方法、及びポリアミック酸溶液に環化触媒及び脱水剤を混合し化学的に脱環化させてゲルフィルムを作製し、これを加熱脱溶媒することによりポリイミドフィルムを得る方法が挙げられるが、後者の方が得られるポリイミドフィルムの熱膨張係数を低く抑えることができるので好ましい。 Next, a method for producing a polyimide film will be described. As a method for forming a polyimide film, a method of casting a polyamic acid solution into a film and thermally decyclizing and desolvating it to obtain a polyimide film, and a method of mixing a cyclization catalyst and a dehydrating agent with a polyamic acid solution and chemically There is a method of obtaining a polyimide film by decyclization to form a gel film and removing the solvent by heating to obtain a polyimide film. preferable.

化学的に脱環化させる方法においては、まず前記ポリアミック酸溶液を調製する。なお、本発明においては、通常、このポリアミック酸溶液に、前記のような無機粒子を含有させてもよい。 In the chemical decyclization method, first, the polyamic acid solution is prepared. In the present invention, the polyamic acid solution may generally contain inorganic particles as described above.

ここで使用するポリアミック酸溶液は、予め重合したポリアミック酸溶液であっても、また無機粒子を含有させる際に順次重合したものであってもよい。 The polyamic acid solution used here may be a prepolymerized polyamic acid solution, or may be a polyamic acid solution that is sequentially polymerized when adding inorganic particles.

前記ポリアミック酸溶液は、環化触媒(イミド化触媒)、脱水剤、ゲル化遅延剤等を含有することができる。 The polyamic acid solution may contain a cyclization catalyst (imidization catalyst), a dehydrating agent, a gelling retardant, and the like.

環化触媒としては、アミン類、例えば、脂肪族第3級アミン(トリメチルアミン、トリエチレンジアミンなど)、芳香族第3級アミン(ジメチルアニリンなど)、複素環第3級アミン(例えば、イソキノリン、ピリジン、β-ピコリンなど)などが挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。 Cyclization catalysts include amines such as aliphatic tertiary amines (trimethylamine, triethylenediamine, etc.), aromatic tertiary amines (dimethylaniline, etc.), heterocyclic tertiary amines (e.g., isoquinoline, pyridine, β-picoline, etc.). These may be used individually by 1 type, and may be used in mixture of 2 or more types.

脱水剤としては、酸無水物、例えば、脂肪族カルボン酸無水物(例えば、無水酢酸、無水プロピオン酸、無水酪酸など)、芳香族カルボン酸無水物(例えば、無水安息香酸など)などが挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。
ゲル化遅延剤としては、特に限定されず、アセチルアセトン等を使用することができる。
Dehydrating agents include acid anhydrides such as aliphatic carboxylic anhydrides (eg, acetic anhydride, propionic anhydride, butyric anhydride, etc.), aromatic carboxylic anhydrides (eg, benzoic anhydride, etc.), and the like. . These may be used individually by 1 type, and may be used in mixture of 2 or more types.
The gelation retardant is not particularly limited, and acetylacetone or the like can be used.

ポリアミック酸溶液からポリイミドフィルムを製造する方法としては、ポリアミック酸溶液(特に、環化触媒及び脱水剤を含有させたポリアミック酸溶液)を、支持体上に流延してフィルム状に成型し、支持体上でイミド化を一部進行させて自己支持性を有するゲルフィルムとした後、支持体より剥離し、加熱乾燥/イミド化し、熱処理を行う方法が挙げられる。 As a method for producing a polyimide film from a polyamic acid solution, a polyamic acid solution (in particular, a polyamic acid solution containing a cyclization catalyst and a dehydrating agent) is cast on a support to form a film, and the support is There is a method in which imidization is partially progressed on the body to form a self-supporting gel film, then the film is peeled off from the support, dried by heating/imidized, and heat-treated.

前記支持体とは、金属製の回転ドラムやエンドレスベルトが一例として上げられるが、均一な材質で表面粗度が制御、管理できるものであれば特に限定されない。 Examples of the support include a rotating drum and an endless belt made of metal, but there is no particular limitation as long as the material is uniform and the surface roughness can be controlled and managed.

前記ゲルフィルムは、支持体からの受熱及び/又は熱風や電気ヒーター等の熱源からの受熱により通常20~200℃、好ましくは40~150℃に加熱されて閉環反応し、遊離した有機溶媒等の揮発分を乾燥させることにより自己支持性を有するようになり、支持体から剥離される。 The gel film is usually heated to 20 to 200° C., preferably 40 to 150° C. by receiving heat from the support and/or receiving heat from a heat source such as hot air or an electric heater, and undergoes a ring closure reaction, resulting in the liberated organic solvent and the like. By drying the volatiles, it becomes self-supporting and is released from the support.

前記支持体から剥離されたゲルフィルムは延伸処理してもよい。延伸処理としては、搬送方向(MD)への延伸と幅方向(TD)への延伸を所定の倍率に組み合わせることが可能などであれば、その装置、方法は限定されない。本発明の効果を有するフィルムを作成するための延伸倍率は、通常200℃以上の温度で、MDは通常1.05~1.9倍であり、好ましくは1.1~1.6倍であり、さらに好ましくは1.1~1.5倍であってもよい。TDは、通常MDの倍率のXの1.1~1.5倍であり、好ましくは1.2~1.45倍であってもよい。 The gel film peeled from the support may be stretched. As for the stretching treatment, the apparatus and method are not limited as long as the stretching in the machine direction (MD) and the stretching in the width direction (TD) can be combined at a predetermined ratio. The draw ratio for producing the film having the effects of the present invention is usually at a temperature of 200° C. or higher, and the MD is usually 1.05 to 1.9 times, preferably 1.1 to 1.6 times. , and more preferably 1.1 to 1.5 times. TD is usually 1.1 to 1.5 times the magnification X of MD, and may preferably be 1.2 to 1.45 times.

上記フィルムは、熱風及び/又は電気ヒーター等により、250~500℃の温度で15秒から30分熱処理を行ってもよい。 The film may be heat-treated at a temperature of 250 to 500° C. for 15 seconds to 30 minutes using hot air and/or an electric heater.

フィルムの厚みは5~75μm、好ましくは10~50μm、さらに好ましくは、20~40μmとなるように、固形分濃度、粘度、支持体に流延するポリマー量を調整することが好ましい。 It is preferable to adjust the solid concentration, viscosity, and amount of polymer cast onto the support so that the thickness of the film is 5 to 75 μm, preferably 10 to 50 μm, more preferably 20 to 40 μm.

このようにして得られたポリイミドフィルムに対して、さらにアニール処理を行うことが好ましい。そうすることによってフィルムの熱リラックスが起こり加熱収縮率を小さく抑えることができる。アニール処理の温度としては、特に限定されないが、200℃以上500℃以下が好ましく、200℃以上370℃以下がより好ましく、210℃以上350℃以下が特に好ましい。アニール処理からの熱リラックスにより、200℃での加熱収縮率を上記範囲内に抑えることができるので、より一層寸法精度が高くなり好ましい。 It is preferable to further anneal the polyimide film thus obtained. By doing so, thermal relaxation of the film occurs, and the heat shrinkage rate can be kept small. The annealing temperature is not particularly limited, but is preferably 200° C. or higher and 500° C. or lower, more preferably 200° C. or higher and 370° C. or lower, and particularly preferably 210° C. or higher and 350° C. or lower. Thermal relaxation from the annealing treatment can keep the heat shrinkage rate at 200° C. within the above range, which is preferable because the dimensional accuracy is further improved.

また、得られたポリイミドフィルムに接着性を持たせるため、フィルム表面にコロナ処理やプラズマ処理のような電気処理又はブラスト処理のような物理的処理を行ってもよく、これらの物理的処理は、常法に従って行うことができる。プラズマ処理を行う場合の雰囲気の圧力は、特に限定されないが、通常13.3~1330kPaの範囲、13.3~133kPa(100~1000Torr)の範囲が好ましく、80.0~120kPa(600~900Torr)の範囲がより好ましい。 In order to impart adhesiveness to the obtained polyimide film, the surface of the film may be subjected to electrical treatment such as corona treatment or plasma treatment or physical treatment such as blasting. It can be carried out according to a conventional method. The pressure of the atmosphere when performing plasma treatment is not particularly limited, but is usually in the range of 13.3 to 1330 kPa, preferably in the range of 13.3 to 133 kPa (100 to 1000 Torr), and 80.0 to 120 kPa (600 to 900 Torr). is more preferred.

プラズマ処理を行う雰囲気は、不活性ガスを少なくとも20モル%含むものであり、不活性ガスを50モル%以上含有するものが好ましく、80モル%以上含有するものがより好ましく、90モル%以上含有するものが最も好ましい。前記不活性ガスは、He、Ar、Kr、Xe、Ne、Rn、N及びこれらの2種以上の混合物を含む。特に好ましい不活性ガスはArである。さらに、前記不活性ガスに対して、酸素、空気、一酸化炭素、二酸化炭素、四塩化炭素、クロロホルム、水素、アンモニア、テトラフルオロメタン(カーボンテトラフルオリド)、トリクロロフルオロエタン、トリフルオロメタン等を混合してもよい。本発明のプラズマ処理の雰囲気として用いられる好ましい混合ガスの組み合わせは、アルゴン/酸素、アルゴン/アンモニア、アルゴン/ヘリウム/酸素、アルゴン/二酸化炭素、アルゴン/窒素/二酸化炭素、アルゴン/ヘリウム/窒素、アルゴン/ヘリウム/窒素/二酸化炭素、アルゴン/ヘリウム、ヘリウム/空気、アルゴン/ヘリウム/モノシラン、アルゴン/ヘリウム/ジシラン等が挙げられる。 The atmosphere in which the plasma treatment is performed contains at least 20 mol% of an inert gas, preferably 50 mol% or more, more preferably 80 mol% or more, and more preferably 90 mol% or more. Most preferred are those that The inert gas includes He, Ar, Kr, Xe, Ne, Rn, N2 and mixtures of two or more thereof. A particularly preferred inert gas is Ar. Further, oxygen, air, carbon monoxide, carbon dioxide, carbon tetrachloride, chloroform, hydrogen, ammonia, tetrafluoromethane (carbon tetrafluoride), trichlorofluoroethane, trifluoromethane, etc. are mixed with the inert gas. You may Preferred mixed gas combinations used as the atmosphere for the plasma treatment of the present invention are argon/oxygen, argon/ammonia, argon/helium/oxygen, argon/carbon dioxide, argon/nitrogen/carbon dioxide, argon/helium/nitrogen, and argon. /helium/nitrogen/carbon dioxide, argon/helium, helium/air, argon/helium/monosilane, argon/helium/disilane, and the like.

プラズマ処理を施す際の処理電力密度は、特に限定されないが、200W・分/m以上が好ましく、500W・分/m以上がより好ましく、1000W・分/m以上が最も好ましい。プラズマ処理を行うプラズマ照射時間は1秒~10分が好ましい。プラズマ照射時間をこの範囲内に設定することによって、フィルムの劣化を伴うことなしに、プラズマ処理の効果を十分に発揮することができる。プラズマ処理のガス種類、ガス圧、処理密度は上記の条件に限定されず大気中で行われることもある。 The processing power density for plasma treatment is not particularly limited, but is preferably 200 W·min/m 2 or more, more preferably 500 W·min/m 2 or more, and most preferably 1000 W·min/m 2 or more. The plasma irradiation time for plasma treatment is preferably 1 second to 10 minutes. By setting the plasma irradiation time within this range, the effect of the plasma treatment can be fully exhibited without deterioration of the film. The type of gas, gas pressure, and processing density for plasma processing are not limited to the above conditions, and plasma processing may be performed in the atmosphere.

なお、本発明のポリイミドフィルムは、上記のように、特定の特性・物性(特定の突起の割合など)を備えているが、このような態様は、上記条件等を適宜選択することで調整できる。例えば、フィルム両面における特定の突起割合は、ポリアミック酸溶液に添加する無機粒子の平均粒径や添加量の選択により調整しうる。また、このような突起割合は、ポリアミック酸溶液の粘度、ポリアミック酸溶液を流延する支持体の表面粗度、支持体から剥離した後のフィルム延伸倍率等にも影響されうるため、さらにこれらを選択することで突起割合を調整してもよい。すなわち、本発明では、無機粒子の平均粒径、添加量、ポリアミック酸溶液の粘度、支持体の表面粗度、フィルムの延伸倍率などを所定の範囲に調整することにより、フィルム両面における突起割合を調整することを可能としたものである。 As described above, the polyimide film of the present invention has specific characteristics and physical properties (such as a specific proportion of protrusions), but such aspects can be adjusted by appropriately selecting the above conditions. . For example, a specific proportion of projections on both sides of the film can be adjusted by selecting the average particle size and amount of inorganic particles added to the polyamic acid solution. In addition, since such a projection ratio may be affected by the viscosity of the polyamic acid solution, the surface roughness of the support on which the polyamic acid solution is cast, the film draw ratio after peeling from the support, etc., these factors should be considered. You may adjust a protrusion ratio by selecting. That is, in the present invention, the ratio of protrusions on both sides of the film is reduced by adjusting the average particle size of the inorganic particles, the amount added, the viscosity of the polyamic acid solution, the surface roughness of the support, the draw ratio of the film, etc., within a predetermined range. It makes it possible to adjust.

このようにして得られるポリイミドフィルムは、寸法安定性、表面平滑性、折り曲げ特性などに優れるため、後述するように、フィルム幅方向に狭ピッチに配線されるCOF(Chip On Film)、特に高密度実装を目的に両面に配線を施した両面COF等のファインピッチ回路基板や半導体パッケージに好適に用いることができる。 Since the polyimide film obtained in this way is excellent in dimensional stability, surface smoothness, bending characteristics, etc., as described later, COF (Chip On Film) wiring at a narrow pitch in the film width direction, particularly high density It can be suitably used for a fine-pitch circuit board such as a double-sided COF having wiring on both sides for the purpose of mounting, and a semiconductor package.

[銅張積層体]
本発明には、上述した本発明のポリイミドフィルムを用いた(備えた)銅張り積層体も含む。このような銅張り積層体は、ポリイミドフィルムの少なくとも一方の面に銅層が形成されており、特に、ポリイミドフィルムの両面に銅層が形成されている。
このような銅張り積層体の製造方法は特に限定されず、従来公知の製造方法に従ってよい。例えば、ポリイミドフィルムの少なくとも一方の面(特に両面)に、スパッタ法により形成したニッケルクロムを主成分とする金属層の上に、電気めっき法により銅を主成分とする層を積層する方法が一般的である。本発明の銅張り積層体は、例えば、ポリイミドフィルムの両面に、ニッケルクロム合金層を設け、この上に所定厚み(例えば、厚み1~3μm)の銅を電気めっき法により形成させることで得られる。
[Copper clad laminate]
The present invention also includes a copper-clad laminate using (provided with) the polyimide film of the present invention described above. In such a copper-clad laminate, a copper layer is formed on at least one side of a polyimide film, and in particular, a copper layer is formed on both sides of the polyimide film.
The method for producing such a copper-clad laminate is not particularly limited, and a conventionally known production method may be followed. For example, on at least one surface (especially both surfaces) of a polyimide film, a metal layer containing nickel chromium as a main component formed by a sputtering method is generally laminated with a layer containing copper as a main component by electroplating. target. The copper-clad laminate of the present invention can be obtained, for example, by providing a nickel-chromium alloy layer on both sides of a polyimide film and forming copper with a predetermined thickness (for example, a thickness of 1 to 3 μm) thereon by electroplating. .

また、本発明は、上述した本発明の銅張り積層板を用いた(備えた)両面COF用基板を含む。両面COF用基板は、銅張り積層板に配線回路を設けたものであってもよい。
このような両面COF用基板の製造方法は特に限定されず、公知の方法を用いることができるが、特に、セミアディティブ法により製造してもよい。
より具体的な方法としては、フォトリソ法を用いて配線回路をパターニングし、配線を形成したい箇所のレジスト層を剥離した後、露出した薄銅層上に電解銅めっきにより配線を形成、その後レジスト層、薄銅層、下地金属層を除去し、配線に無電解スズめっき法によりスズを0.1~0.5μm形成し、その後必要な部分にソルダーレジストを積層する方法などが挙げられる。
The present invention also includes a substrate for double-sided COF using (provided with) the copper-clad laminate of the present invention described above. The double-sided COF substrate may be a copper-clad laminate provided with a wiring circuit.
The method for manufacturing such a double-sided COF substrate is not particularly limited, and a known method can be used, but in particular, it may be manufactured by a semi-additive method.
As a more specific method, the wiring circuit is patterned using the photolithography method, the resist layer is peeled off where the wiring is to be formed, the wiring is formed on the exposed thin copper layer by electrolytic copper plating, and then the resist layer is formed. , removing the thin copper layer and the underlying metal layer, forming tin of 0.1 to 0.5 μm on the wiring by electroless tin plating, and then laminating a solder resist on the required portion.

本発明は、本発明の効果を奏する限り、本発明の技術的範囲内において、上記の構成を種々組み合わせた態様を含む。 The present invention includes various combinations of the above configurations within the technical scope of the present invention as long as the effects of the present invention are exhibited.

次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 EXAMPLES Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

なお、実施例中、PPDはパラフェニレンジアミンを表し、4,4’-ODAは4,4’-ジアミノジフェニルエーテルを表し、PMDAはピロメリット酸二無水物を表し、BPDAは3,3’,4,4’-ジフェニルテトラカルボン酸二無水物を表し、DMAcはN,N-ジメチルアセトアミドをそれぞれ表す。 In the examples, PPD represents paraphenylenediamine, 4,4′-ODA represents 4,4′-diaminodiphenyl ether, PMDA represents pyromellitic dianhydride, and BPDA represents 3,3′,4 ,4′-diphenyltetracarboxylic dianhydride, and DMAc represents N,N-dimethylacetamide.

[実施例1]
(ポリイミドフィルムの作成)
PPD(分子量108.14)、4,4’-ODA(分子量200.24)、BPDA(分子量294.22)、PMDA(分子量218.12)をモル比35/65/30/70の割合で用意し、DMAc中20重量%溶液にして重合し、3500poiseのポリアミド酸溶液を得た。これに、平均粒子径0.1μmのシリカのDMAcスラリーを樹脂重量当たり0.5重量%添加し、十分に攪拌し分散させた。次にガラス板上に厚み125μmのポリエステルフィルム(ルミラーX43:東レ製、Ra0.2μm)を置き支持体とし、この支持体上にポリアミド酸溶液を乗せ、アプリケーターで流延した。続いてこれを無水酢酸、β-ピコリンの混合溶液に10分間浸してイミド化反応させた後、ポリイミドゲルフィルムをポリエステルフィルムから剥がし、そのゲルフィルムを手動延伸器にてアプリケーター方向(以後MDとする)に1.15倍、その垂直方向(以後TDとする)に1.40倍延伸したのち、支持枠に固定した。その後300℃で20分間、続いて400℃で5分間加熱乾燥した後、上記支持枠より取り外し、厚さ35μmのポリイミドフィルムを得た。
[Example 1]
(Preparation of polyimide film)
Prepare PPD (molecular weight 108.14), 4,4'-ODA (molecular weight 200.24), BPDA (molecular weight 294.22), PMDA (molecular weight 218.12) at a molar ratio of 35/65/30/70 Then, the mixture was made into a 20% by weight solution in DMAc and polymerized to obtain a polyamic acid solution of 3500 poise. To this, DMAc slurry of silica having an average particle size of 0.1 μm was added in an amount of 0.5% by weight based on the weight of the resin, and sufficiently stirred to disperse. Next, a 125 μm thick polyester film (Lumirror X43: manufactured by Toray Industries, Ra 0.2 μm) was placed on a glass plate as a support, and a polyamic acid solution was placed on the support and cast using an applicator. Subsequently, this was immersed in a mixed solution of acetic anhydride and β-picoline for 10 minutes to cause an imidization reaction, then the polyimide gel film was peeled off from the polyester film, and the gel film was manually stretched in the direction of the applicator (hereinafter referred to as MD ) and 1.40 times in the vertical direction (hereinafter referred to as TD), and fixed to a support frame. After drying by heating at 300° C. for 20 minutes and then at 400° C. for 5 minutes, the film was removed from the supporting frame to obtain a polyimide film having a thickness of 35 μm.

このフィルムについて、次の各特性の評価を行い、表1にその結果を示した。
(1)表面粗度
表面粗さ測定機SE-3500(小坂研究所製)を用い、JIS B0601―1982に準じて測定した。
(2)表面突起個数
レーザー顕微鏡VK-9710(キーエンス製)を用いて、100cmの視野でフィルム表面の突起を観察、高さ測定を行い、0.8μm以上の突起の個数を数えた。
なお、観察は、測定部位を対物レンズにて10倍に拡大して(モニター上の倍率200倍で)行った。また、観察された突起の幅は、いずれも15μm以上のものであり(幅15μm未満の突起はなく)、突起が複数の凸部を有する場合には最も高い凸部の高さを突起の高さとした。
(3)熱膨張係数
TMA-60(島津製作所製)を使用し、測定温度範囲:50~200℃、昇温速度:10℃/分の条件で測定した。
(4)引張弾性率
RTM-250(エー・アンド・デイ製)を使用し、引張速度:100mm/分の条件で測定した。
(5)ループスティフネス
ループステフネステスタDA(東洋精機製作所製)を使用し、サンプル幅20mm、ループ長50mm、圧縮距離20mmの条件で測定した。
(6)フィルム取扱性
スリップテスター(テクノ・ニーズ社製)に、サンプルの支持体面と非支持体面を重ね合わせ固定し、荷重200g、測定速度120mm/minの速度で、静止摩擦係数と動摩擦係数を測定した。結果を表1に示す。
This film was evaluated for the following characteristics, and the results are shown in Table 1.
(1) Surface roughness Measured according to JIS B0601-1982 using a surface roughness measuring machine SE-3500 (manufactured by Kosaka Laboratory).
(2) Number of surface protrusions Using a laser microscope VK-9710 (manufactured by KEYENCE CORPORATION), protrusions on the film surface were observed in a field of view of 100 cm 2 and the height was measured to count the number of protrusions of 0.8 µm or more.
The observation was performed by magnifying the measurement site by 10 times with an objective lens (200 times magnification on the monitor). In addition, the width of the observed protrusions was all 15 μm or more (there were no protrusions with a width of less than 15 μm), and when the protrusions had a plurality of protrusions, the height of the highest protrusion was Satoshi.
(3) Thermal expansion coefficient TMA-60 (manufactured by Shimadzu Corporation) was used, and the measurement temperature range was 50 to 200°C, and the heating rate was 10°C/min.
(4) Tensile modulus RTM-250 (manufactured by A&D) was used, and tensile speed was measured at 100 mm/min.
(5) Loop Stiffness Loop stiffness tester DA (manufactured by Toyo Seiki Seisakusho) was used to measure under the conditions of a sample width of 20 mm, a loop length of 50 mm, and a compression distance of 20 mm.
(6) Film Handleability The support surface and the non-support surface of the sample were superimposed and fixed on a slip tester (manufactured by Techno Needs Co., Ltd.), and the static friction coefficient and dynamic friction coefficient were measured at a load of 200 g and a measurement speed of 120 mm / min. It was measured. Table 1 shows the results.

(両面銅張り積層板の作成)
上記で得られたポリイミドフィルムの支持体面にスパッタ法により、ニッケルクロム層(Ni:Cr=80:20m、厚さ25nm)、および銅層(厚さ100nm)を形成した後、同様に非支持体面にもニッケルクロム層、銅層を形成した。続いて硫酸銅めっき液を用いた電解めっきにて厚さ2μmの銅層を両面に形成した。
(Creation of double-sided copper-clad laminate)
After forming a nickel chromium layer (Ni:Cr=80:20m, thickness 25 nm) and a copper layer (thickness 100 nm) by sputtering on the support surface of the polyimide film obtained above, similarly, the non-support surface A nickel-chromium layer and a copper layer were also formed on the substrate. Subsequently, a copper layer having a thickness of 2 μm was formed on both surfaces by electroplating using a copper sulfate plating solution.

得られた両面銅張り積層板(図1)について以下の項目を評価した。結果を表1に記載する。 The following items were evaluated for the obtained double-sided copper-clad laminate (FIG. 1). The results are listed in Table 1.

(7)ピンホール個数
両面銅張り積層板の支持体面をカバーフィルムで保護した後、塩化第二鉄溶液を用いてエッチング処理を行い、非支持体面の銅層、ニッケルクロム層を除去した。続いて、暗室にて、蛍光灯バックライトをポリイミド面(非支持体面)から照らし、銅面(支持体面)側に漏れてくる光(ピンホール)の個数を100cmの視野で目視にて数えた。同様の手法で、非支持体面のピンホールの個数も評価した。
(7) Number of Pinholes After protecting the support surface of the double-sided copper-clad laminate with a cover film, etching was performed using a ferric chloride solution to remove the copper layer and nickel-chromium layer on the non-support surface. Subsequently, in a dark room, a fluorescent backlight was illuminated from the polyimide surface (non-support surface), and the number of light (pinholes) leaking to the copper surface (support surface) was visually counted in a field of view of 100 cm 2 . rice field. The number of pinholes on the non-support surface was also evaluated in a similar manner.

(評価用COF用基板の作成)
上記で得られた両面銅張り積層板の非支持体面の銅層、ニッケルクロム層を除去したサンプルについて、銅表面(支持体面)を上村工業(株)製スルカップACL-067を水で15%に希釈した液に、30℃30秒間含浸させて脱脂した後、乾燥厚が15μmとなるようにフォトレジストをラミネートして、図2に示す評価用パターン(ライン幅20μm、スペース幅20μm)を露光・現像した。その後、常法に従って、セミアディティブ法により、厚さ8μmの銅めっき層を形成し、評価用COF用基板を作成した。
得られたCOF用基板について、以下の項目を評価し、結果を表1に示した。
(Creation of substrate for COF for evaluation)
Regarding the sample from which the copper layer and the nickel-chromium layer on the non-support surface of the double-sided copper-clad laminate obtained above were removed, the copper surface (support surface) was treated with Slucup ACL-067 manufactured by Uyemura & Co., Ltd. to 15% with water. After degreasing by immersing in the diluted solution at 30° C. for 30 seconds, a photoresist is laminated so that the dry thickness is 15 μm, and the evaluation pattern (line width 20 μm, space width 20 μm) shown in FIG. 2 is exposed and exposed. Developed. After that, a copper plating layer having a thickness of 8 μm was formed by a semi-additive method according to a conventional method, and a substrate for COF for evaluation was produced.
The obtained COF substrate was evaluated for the following items, and the results are shown in Table 1.

(8)折り曲げ性
COF用基板の導体側を内側に図3の様に折り曲げ、1.0kgfの荷重を10秒間加えた後、COF基板を開き元の状態にした。これを1サイクルとし、5回から30回繰り返し、その間、導体の折り曲げ箇所を顕微鏡で観察し、導体が破断するまでの回数を測定した。
(8) Bendability The conductor side of the COF substrate was folded inward as shown in FIG. 3, and after applying a load of 1.0 kgf for 10 seconds, the COF substrate was returned to its original state. This cycle was repeated 5 to 30 times, during which the bent portions of the conductor were observed under a microscope, and the number of times until the conductor was broken was measured.

(9)寸法安定性
上記で得られた評価用COF基板を被着体(ガラス)に異方導電フィルム(ACF:製品名、日立化成製アニソルムC5311)を用いて、180℃×10秒、5MPaの条件で圧着した(図4)。
(9) Dimensional stability Using the COF substrate for evaluation obtained above as an adherend (glass) with an anisotropic conductive film (ACF: product name, Hitachi Chemical Anisolm C5311), 180 ° C. × 10 seconds, 5 MPa (Fig. 4).

評価用回路パターン30サンプルの外形寸法を圧着前(L3)と圧着後(L4)で測定し、以下の式で算出した伸び率の標準偏差を測定した。
伸び率(%)={(L4-L3)/L3}×100
The external dimensions of 30 samples of circuit patterns for evaluation were measured before (L3) and after (L4) pressure bonding, and the standard deviation of elongation calculated by the following formula was measured.
Elongation rate (%) = {(L4-L3) / L3} x 100

[実施例2]
ゲルフィルムをMDに1.25倍、TDに1.40倍に延伸した他は、実施例1と同様の手順で厚さ38μmのポリイミドフィルムを得た。
[Example 2]
A polyimide film having a thickness of 38 μm was obtained in the same manner as in Example 1 except that the gel film was stretched 1.25 times in MD and 1.40 times in TD.

[実施例3]
平均粒子径0.4μmのシリカのDMAcスラリーを用いること以外は、実施例1と同様の手順で厚さ35μmのポリイミドフィルムを得た。
[Example 3]
A polyimide film having a thickness of 35 μm was obtained in the same manner as in Example 1, except that a DMAc slurry of silica having an average particle size of 0.4 μm was used.

[実施例4]
ゲルフィルムをMDに1.15倍、TDに1.35倍に延伸した他は、実施例3と同様の手順で厚さ25μmのポリイミドフィルムを得た。
[Example 4]
A polyimide film having a thickness of 25 μm was obtained in the same manner as in Example 3, except that the gel film was stretched 1.15 times in MD and 1.35 times in TD.

[実施例5]
PPD、4,4’-ODA、BPDA、PMDAをモル比20/80/35/65の割合とし、平均粒子径0.4μmのシリカを用いること以外は、実施例2と同様の手順で、厚さ38μmのポリイミドフィルムを得た。
[Example 5]
PPD, 4,4′-ODA, BPDA, and PMDA were adjusted to a molar ratio of 20/80/35/65, and silica having an average particle size of 0.4 μm was used. A polyimide film with a thickness of 38 μm was obtained.

[実施例6]
PPD、4,4’-ODA、BPDA、PMDAをモル比30/70/25/75の割合とすること以外は、実施例3と同様の手順で、厚さ38μmのポリイミドフィルムを得た。
[Example 6]
A polyimide film having a thickness of 38 μm was obtained in the same manner as in Example 3, except that PPD, 4,4'-ODA, BPDA and PMDA were used in a molar ratio of 30/70/25/75.

[実施例7]
平均粒子径1.0μmのリン酸水素カルシウムを用いること以外は、実施例5と同様の手順で、厚さ25μmのポリイミドフィルムを得た。
[Example 7]
A polyimide film having a thickness of 25 μm was obtained in the same manner as in Example 5, except that calcium hydrogen phosphate having an average particle size of 1.0 μm was used.

[実施例8]
PPD、BPDAをモル比1:1の割合とし、これに平均粒子径0.1μmのシリカのDMAcスラリーを樹脂重量当たり0.5重量%添加しポリアミド酸溶液を作成した。そして、支持体として厚み125μmのポリエステルフィルム(ルミラーS10:東レ製、Ra0.05μm)を使用する以外は、実施例4と同様の手順で、厚さ38μmのポリイミドフィルムを得た。
[Example 8]
PPD and BPDA were mixed at a molar ratio of 1:1, and DMAc slurry of silica having an average particle size of 0.1 μm was added at 0.5% by weight per resin weight to prepare a polyamic acid solution. A polyimide film having a thickness of 38 μm was obtained in the same manner as in Example 4, except that a polyester film having a thickness of 125 μm (Lumirror S10: manufactured by Toray Industries, Inc., Ra 0.05 μm) was used as the support.

[実施例9]
PPD、4,4’-ODA、BPDA、PMDAをモル比40/60/25/75の割合とすること以外は、実施例3と同様の手順で、厚さ35μmのポリイミドフィルムを得た。
[Example 9]
A polyimide film having a thickness of 35 μm was obtained in the same manner as in Example 3, except that PPD, 4,4′-ODA, BPDA and PMDA were used in a molar ratio of 40/60/25/75.

[実施例10]
PPD、4,4’-ODA、BPDA、PMDAをモル比45/55/35/65の割合とすること以外は、実施例3と同様の手順で、厚さ35μmのポリイミドフィルムを得た。
[Example 10]
A polyimide film having a thickness of 35 μm was obtained in the same manner as in Example 3, except that PPD, 4,4'-ODA, BPDA and PMDA were used in a molar ratio of 45/55/35/65.

実施例2~8で得られたポリイミドフィルムおよび、それらを用いて実施例1と同様の手順で作成した両面銅張り積層板、評価用COF基板は、実施例1と同様にその特性を評価し、表1にその結果を示した。 The properties of the polyimide films obtained in Examples 2 to 8, and the double-sided copper-clad laminates and evaluation COF substrates prepared in the same manner as in Example 1 using them were evaluated in the same manner as in Example 1. , Table 1 shows the results.

Figure 0007109946000001
Figure 0007109946000001

上記表の結果から、実施例のポリイミドフィルムは、表面平滑性、寸法安定性、折り曲げ性などに優れたフィルムであるといえる。また、フィルム両面の表面平滑性のバランスに優れるため、フィルムの取り扱い性も良く、高い生産性を維持できるフィルムであることが確認できた。 From the results in the above table, it can be said that the polyimide films of Examples are films excellent in surface smoothness, dimensional stability, bendability, and the like. In addition, it was confirmed that the film was excellent in balance of surface smoothness on both sides of the film, so that the film was easy to handle and could maintain high productivity.

本発明のポリイミドフィルムは、寸法安定性、折り曲げ特性などに優れている。また、本発明では、両面において高い表面品位を有するフィルムを得ることができる。そのため、このような本発明のポリイミドフィルムは、特に高密度実装を目的に両面に配線を施した両面COF等のファインピッチ回路基板や半導体パッケージに好適に用いることができる。 The polyimide film of the present invention is excellent in dimensional stability, bending properties and the like. Moreover, in the present invention, a film having high surface quality on both sides can be obtained. Therefore, such a polyimide film of the present invention can be suitably used for fine-pitch circuit boards such as double-sided COF with wiring on both sides, and semiconductor packages, particularly for the purpose of high-density mounting.

Claims (12)

無機粒子を含有するポリイミドフィルムであって、フィルムの一方の面aにおける高さ0.8μm以上の突起の割合をA個/100cm、フィルムの他方の面bにおける高さ0.8μm以上の突起の割合をB個/100cmとするとき、A及びBがいずれも10個以下、AとBとの差の絶対値が2以上である両面COF用ポリイミドフィルム。 A polyimide film containing inorganic particles, wherein the ratio of projections with a height of 0.8 μm or more on one side a of the film is A/100 cm 2 , and the projections with a height of 0.8 μm or more on the other side b of the film A polyimide film for double-sided COF, wherein each of A and B is 10 or less , and the absolute value of the difference between A and B is 2 or more , where B is the ratio of B per 100 cm 2 . A及びBがいずれも8個以下、AとBとの差の絶対値が以上である請求項1記載のポリイミドフィルム。 2. The polyimide film according to claim 1 , wherein both A and B are 8 or less , and the absolute value of the difference between A and B is 3 or more. A及び/又はBが2個以上である請求項1又は2に記載のポリイミドフィルム。 3. The polyimide film according to claim 1, wherein A and/or B are two or more. 面a及び面bの両面において、表面粗さRaが0.01~0.05μm、表面粗さRzが0.05~0.6μmである請求項1~3のいずれかに記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 3, having a surface roughness Ra of 0.01 to 0.05 µm and a surface roughness Rz of 0.05 to 0.6 µm on both sides a and b. MD方向の熱膨張係数が4~10ppm/℃であり、TD方向の熱膨張係数が0~8ppm/℃である請求項1~4のいずれかに記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 4, which has a coefficient of thermal expansion of 4 to 10 ppm/°C in the MD direction and 0 to 8 ppm/°C in the TD direction. 引張弾性率5~10GPa及び/又はループスティフネス10~75mN/cmを充足する請求項1~5のいずれかに記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 5, which has a tensile modulus of elasticity of 5 to 10 GPa and/or a loop stiffness of 10 to 75 mN/cm. パラフェニレンジアミンを含む芳香族ジアミン成分、及び酸無水物成分を重合成分とするポリイミドで構成されている請求項1~6のいずれかに記載のポリイミドフィルム。 7. The polyimide film according to any one of claims 1 to 6, comprising a polyimide containing an aromatic diamine component containing paraphenylenediamine and an acid anhydride component as a polymerization component. 無機粒子の平均粒径が0.05~0.5μmである請求項1~7のいずれかに記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 7, wherein the inorganic particles have an average particle size of 0.05 to 0.5 µm. 請求項1~8のいずれかに記載のポリイミドフィルムを用いた両面銅張り積層板。 A double-sided copper-clad laminate using the polyimide film according to any one of claims 1 to 8. 銅厚みが1~3μmである請求項9記載の両面銅張り積層板。 10. The double-sided copper-clad laminate according to claim 9, wherein the copper thickness is 1-3 μm. 請求項9又は10記載の両面銅張り積層板を用いた両面COF用基板。 A double-sided COF substrate using the double-sided copper-clad laminate according to claim 9 or 10. 請求項9又は10記載の両面銅張り積層板を用いて、セミアディティブ法により両面COF用基板を製造する方法。 A method for producing a double-sided COF substrate by a semi-additive method using the double-sided copper-clad laminate according to claim 9 or 10.
JP2018049912A 2017-03-29 2018-03-16 polyimide film Active JP7109946B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017066471 2017-03-29
JP2017066471 2017-03-29

Publications (2)

Publication Number Publication Date
JP2018168358A JP2018168358A (en) 2018-11-01
JP7109946B2 true JP7109946B2 (en) 2022-08-01

Family

ID=63876078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018049912A Active JP7109946B2 (en) 2017-03-29 2018-03-16 polyimide film

Country Status (4)

Country Link
JP (1) JP7109946B2 (en)
KR (1) KR102466340B1 (en)
CN (1) CN108795040A (en)
TW (1) TWI780124B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220025B2 (en) * 2017-06-09 2023-02-09 三星電子株式会社 Films comprising polyimides or poly(amide-imide) copolymers, displays comprising such films, and methods of making such films
JP7109176B2 (en) * 2017-10-18 2022-07-29 東レ・デュポン株式会社 polyimide film
KR102202472B1 (en) * 2019-06-11 2021-01-13 피아이첨단소재 주식회사 Polyimide film and manufacturing method thereof
KR102317327B1 (en) * 2019-08-29 2021-10-27 피아이첨단소재 주식회사 Polyimide film and manufacturing method thereof
CN113386416B (en) * 2021-07-08 2022-12-16 江西柔顺科技有限公司 Heat-conducting double-sided copper-clad plate and preparation method thereof
WO2023037774A1 (en) * 2021-09-08 2023-03-16 国立大学法人 筑波大学 Semiconductor apparatus and method for manufacturing semiconductor apparatus
CN114914774B (en) * 2022-07-13 2022-10-25 深圳市卓汉材料技术有限公司 Grounding elastic terminal, manufacturing method and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290304A (en) 2007-05-23 2008-12-04 Du Pont Toray Co Ltd Copper-clad plate
JP2008290302A (en) 2007-05-23 2008-12-04 Du Pont Toray Co Ltd Copper-clad plate
JP2013018926A (en) 2011-07-14 2013-01-31 Du Pont-Toray Co Ltd Polyimide film
JP2016132744A (en) 2015-01-21 2016-07-25 東レ・デュポン株式会社 Polyimide film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963960B2 (en) * 2004-06-29 2012-06-27 株式会社カネカ Novel polyimide film and laminate including the polyimide film
JP2008106140A (en) * 2006-10-25 2008-05-08 Du Pont Toray Co Ltd Polyimide film and method for producing the same
JP6035678B2 (en) 2013-02-19 2016-11-30 住友金属鉱山株式会社 Method for manufacturing flexible wiring board and flexible wiring board
TWI545013B (en) * 2014-09-18 2016-08-11 達勝科技股份有限公司 Polyimide metal laminate and a method of fabricating the same
JP6735542B2 (en) * 2015-08-25 2020-08-05 東レ・デュポン株式会社 Polyimide film and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290304A (en) 2007-05-23 2008-12-04 Du Pont Toray Co Ltd Copper-clad plate
JP2008290302A (en) 2007-05-23 2008-12-04 Du Pont Toray Co Ltd Copper-clad plate
JP2013018926A (en) 2011-07-14 2013-01-31 Du Pont-Toray Co Ltd Polyimide film
JP2016132744A (en) 2015-01-21 2016-07-25 東レ・デュポン株式会社 Polyimide film

Also Published As

Publication number Publication date
JP2018168358A (en) 2018-11-01
KR20180110597A (en) 2018-10-10
TWI780124B (en) 2022-10-11
TW201839054A (en) 2018-11-01
CN108795040A (en) 2018-11-13
KR102466340B1 (en) 2022-11-14

Similar Documents

Publication Publication Date Title
JP7109946B2 (en) polyimide film
JP6908590B2 (en) Polyamic acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board
JP5262030B2 (en) Polyimide film and copper-clad laminate based thereon
JP2005314669A (en) Polyimide film and copper-clad laminate using the same as substrate
JP7109176B2 (en) polyimide film
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
JP6370609B2 (en) Polyimide film
JPWO2009019968A1 (en) Multilayer polyimide film, laminate and metal-clad laminate
US20070260036A1 (en) High Adhesive Polyimide Film and Method for Producing Same
JP7077064B2 (en) Polyimide film
TW202225270A (en) Non-thermoplastic polyimide film, multilayer polyimide film, and metal-clad laminated plate
JP5985940B2 (en) COF substrate for tablet devices
JP2016132744A (en) Polyimide film
JP4318111B2 (en) Polyimide film and method for producing the same
JP7212518B2 (en) METAL-CLAD LAMINATE, METHOD FOR MANUFACTURING SAME AND CIRCUIT BOARD
JP2008106139A (en) Polyimide film and method for producing the same
JP5571839B2 (en) Polyimide film and copper-clad laminate based on the same
JP7405644B2 (en) Metal-clad laminates and circuit boards
KR102560356B1 (en) Polyimide film and metal-clad laminated body
JP6603021B2 (en) Polyimide film
JP2008106140A (en) Polyimide film and method for producing the same
JP5297573B2 (en) Polyimide film with high adhesiveness
JP2727185B2 (en) Method for producing aromatic polyimide multilayer film
JP2024052391A (en) Method for manufacturing laminated plate, and roll of laminate with protective film
JP2022047880A (en) Manufacturing method of polyimide film and manufacturing method of metal-clad laminate board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220720

R150 Certificate of patent or registration of utility model

Ref document number: 7109946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150