JP2008106140A - Polyimide film and method for producing the same - Google Patents

Polyimide film and method for producing the same Download PDF

Info

Publication number
JP2008106140A
JP2008106140A JP2006290151A JP2006290151A JP2008106140A JP 2008106140 A JP2008106140 A JP 2008106140A JP 2006290151 A JP2006290151 A JP 2006290151A JP 2006290151 A JP2006290151 A JP 2006290151A JP 2008106140 A JP2008106140 A JP 2008106140A
Authority
JP
Japan
Prior art keywords
film
polyimide film
inorganic particles
particles
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006290151A
Other languages
Japanese (ja)
Inventor
Koichi Sawazaki
孔一 沢崎
Toshihiro Teshiba
敏博 手柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2006290151A priority Critical patent/JP2008106140A/en
Priority to PCT/JP2007/070522 priority patent/WO2008050705A1/en
Priority to KR1020097007056A priority patent/KR20090073136A/en
Priority to TW096139585A priority patent/TW200835720A/en
Publication of JP2008106140A publication Critical patent/JP2008106140A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a polyimide film that has excellent running properties, adhesiveness and dimensional stability of a film and is applicable to an automatic optical inspection system (AOI) of a flexible printed circuit board (FPC) or a chip-on-film (COF) and to provide a method for producing the same. <P>SOLUTION: The polyimide film is produced mainly by imidation from p-phenylenediamine and 4,4'-diaminodiphenyl ether as diamine components and pyromellitic acid dianhydride as an acid dianhydride component and comprises 0.1-0.9 wt.% based on the weight of a film resin of inorganic particles, having particle diameters in a range of 0.01-1.5 μm, an average particle diameter of 0.05-0.7 μm and a particle size distribution in which ≥80 vol.% based on the total particles of inorganic particles having particle diameters of 0.15-0.60 μm, dispersed into the film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はポリイミドフィルムおよびその製造方法に関する。さらに詳しくは、添加した無機粒子が露出せず、フィルム中に均一に分散した状態で表面突起を発生させて表面状態を良好に制御可能であり、フィルムの走行性、接着性及び寸法安定性が優れると共に、フレキシブルプリント配線基板(FPC)やチップオンフィルム(COF)の自動光学検査システム(AOI)に適応可能なポリイミドフィルムおよびその製造方法に関する。   The present invention relates to a polyimide film and a method for producing the same. More specifically, the added inorganic particles are not exposed and the surface state can be well controlled by generating surface protrusions in a state of being uniformly dispersed in the film, and the running property, adhesiveness and dimensional stability of the film are improved. The present invention relates to a polyimide film that is excellent and adaptable to an automatic optical inspection system (AOI) of a flexible printed circuit board (FPC) or a chip-on-film (COF), and a manufacturing method thereof.

ポリイミドフィルムは、耐熱性、耐寒性、耐薬品性、電気絶縁性および機械強度などにおいて優れた特性を有することが知られており、電線の電気絶縁材料、断熱材、フレキシブルプリント配線基板(FPC)のベースフィルム、ICのテープオートメイティッドボンディング(TAB)用のキャリアテープフィルム、およびICのリードフレーム固定用テープなどに広く利用されている。これらのうち、特にFPC、TAB用キャリアテープおよびリード固定用テープなどの用途においては、通常、種々の接着剤を介してポリイミドフィルムと銅箔とが接着されて用いられている。   Polyimide films are known to have excellent properties in heat resistance, cold resistance, chemical resistance, electrical insulation, mechanical strength, etc., and electrical insulation materials for wires, heat insulating materials, flexible printed wiring boards (FPC) It is widely used as a base film of IC, a carrier tape film for IC tape automated bonding (TAB), a tape for fixing IC lead frames, and the like. Among these, in particular, in applications such as FPC, TAB carrier tape, and lead fixing tape, a polyimide film and a copper foil are usually bonded to each other through various adhesives.

ポリイミドフィルムがこれらの用途に用いられる際に重要な実用特性は、フィルムの滑り性(易滑性)である。様々なフィルム加工工程において、フィルム支持体(たとえばロール)とフィルムとの易滑性、またフィルム同志の易滑性が確保されることにより、各工程における操作性、取り扱い性を向上させ、更にはフィルム上にシワ等の不良個所の発生が回避できるからである。   An important practical characteristic when a polyimide film is used in these applications is the slipperiness (slidability) of the film. In various film processing steps, the slidability between the film support (for example, roll) and the film and the slidability between the films are ensured, thereby improving the operability and handling in each step, This is because the occurrence of defects such as wrinkles on the film can be avoided.

また一方、ポリイミドフィルムの主用途であるフレキシブルプリント配線板用途においては、通常、種々の接着剤を介して銅箔と接着されているが、ポリイミドフィルムは、その化学構造及び耐薬品(溶剤)安定性により銅箔との接着性が不十分な場合が多いため、現状ではポリイミドフィルムにアルカリ処理、コロナ処理、プラズマ処理、サンドブラスト処理などの表面処理を施してから、銅箔と接着されている。   On the other hand, the flexible printed wiring board, which is the main use of polyimide film, is usually bonded to copper foil via various adhesives. Polyimide film is stable in chemical structure and chemical resistance (solvent). Since adhesiveness with copper foil is often insufficient depending on the properties, the polyimide film is currently bonded with copper foil after being subjected to surface treatment such as alkali treatment, corona treatment, plasma treatment, and sandblast treatment.

また、最近の電子部品のファインピッチ化、特にFPCの検査においては、従来は目視による線幅、異物などの検査が主流であったが、自動光学検査システム(AOI)が導入されるようになってからは、無機粉体を混入する従来処方で製造された耐熱性フィルムでは、走行性に関して十分満足したものが得られていたものの、AOIにおいては、無機粉体が大き過ぎるために、最近のFPCなどの狭ピッチ化に伴い、無機粒子が異物と判断されることがあり、これが自動検査システムの大きな障害になっている。   Further, in recent finer pitches of electronic components, especially inspection of FPC, conventionally, visual inspection of line widths and foreign matters has been mainstream, but an automatic optical inspection system (AOI) has been introduced. In the past, heat-resistant films manufactured with a conventional formulation in which inorganic powder was mixed had been sufficiently satisfactory in terms of runnability, but in AOI, the inorganic powder is too large. Along with narrowing the pitch of FPC or the like, inorganic particles may be judged as foreign matters, which is a major obstacle to automatic inspection systems.

従来、ポリイミドフィルムの易滑化技術としては、不活性無機化合物(例えばアルカリ土類金属のオルトリン酸塩、第2リン酸カルシウム無水物、ピロリン酸カルシウム、シリカ、タルク)をポリアミック酸に添加する方法(例えば、特許文献1参照)、更には微細粒子によってフィルム表面に微細な突起を形成後、プラズマ処理を施す方法(例えば、特許文献2参照)が知られている。しかし、これらに示される無機粒子は粒子径が大きいために、自動光学検査システムには適応しないという問題があった。   Conventionally, as a technique for easily smoothing a polyimide film, a method of adding an inert inorganic compound (for example, alkaline earth metal orthophosphate, dibasic calcium phosphate anhydride, calcium pyrophosphate, silica, talc) to a polyamic acid (for example, Further, a method of performing plasma treatment after forming fine protrusions on the film surface with fine particles (see, for example, Patent Document 2) is known. However, these inorganic particles have a problem that they are not suitable for automatic optical inspection systems due to their large particle size.

また、ポリイミド表層に平均粒子径が0.01〜100μmである無機質粒子が各粒子の一部をそれぞれ埋設させて保持されていて、一部露出した前記無機質粒子からなる多数の突起をフィルムの表面層に1×10〜5×10個/mm存在させる方法(例えば、特許文献3参照)が知られている。この方法は、積極的に表面に無機粒子を露出させ、フィルム表面の摩擦係数を低減させることにより、易滑性効果を効果的に得ることを特徴としているが、無機質粒子が一部露出しているため、接面する他のフィルム表面にすり傷が発生し外観不良をきたすといった問題を抱えていた。
特開昭62−68852号公報 特開2000−191810号公報 特開平5−25295号公報
In addition, inorganic particles having an average particle diameter of 0.01 to 100 μm are held on the polyimide surface layer by embedding a part of each particle, and a plurality of protrusions made of the exposed inorganic particles are formed on the surface of the film. A method (for example, see Patent Document 3) in which 1 × 10 to 5 × 10 8 pieces / mm 2 exists in a layer is known. This method is characterized in that the slippery effect is effectively obtained by actively exposing the inorganic particles on the surface and reducing the friction coefficient of the film surface, but the inorganic particles are partially exposed. For this reason, there is a problem that scratches occur on the other film surface that comes into contact with the film, resulting in poor appearance.
JP-A-62-68852 JP 2000-191810 A Japanese Patent Laid-Open No. 5-25295

本発明は、上述した従来技術における問題点の解決を課題として検討した結果達成されたものである。   The present invention has been achieved as a result of studying the solution of the problems in the prior art described above as an issue.

したがって、本発明の目的は、フィルムの走行性、接着性及び寸法安定性が優れると共に、フレキシブルプリント配線基板(FPC)やチップオンフィルム(COF)の自動光学検査システム(AOI)に適応可能なポリイミドフィルムおよびその製造方法を提供することにある。   Accordingly, an object of the present invention is a polyimide that is excellent in running property, adhesion, and dimensional stability of a film and that can be applied to an automatic optical inspection system (AOI) of a flexible printed wiring board (FPC) or a chip-on-film (COF). It is in providing a film and its manufacturing method.

上記の目標を達成するために本発明によれば、ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテル、酸二無水物成分としてピロメリット酸二無水物を主たる構成成分とし、イミド化によって製造されるポリイミドフィルムであって、粒子径が0.01〜1.5μmの範囲内にあり、かつ平均粒子径が0.05〜0.7μmであり、さらに粒子径0.15〜0.60μmの無機粒子が全粒子中80体積%以上の割合を占める粒度分布を有する無機粒子がフィルム樹脂重量当たり0.1〜0.9重量%の割合でフィルム中に分散されていることを特徴とするポリイミドフィルムが提供される。

なお、本発明ポリイミドフィルムにおいては、
前記ポリイミドフィルムにおける各構成成分の割合が、ジアミン成分として10〜50モル%のパラフェニレンジアミン及び50〜90モル%の4,4’−ジアミノジフェニルエーテル、酸二無水物成分としてピロメリット酸二無水物100モル%からなること、
前記無機粒子がフィルム樹脂重量当たり0.3〜0.8重量%の割合で含まれていること、
前記無機粒子の平均粒子径が0.1〜0.6μmであること、
前記無機粒子の平均粒子径が0.3〜0.5μmであること、
前記無機粒子に起因する突起がフィルム表面に存在し、その突起の高さが2μm以上のものの数が5個/40cm角以下であること、および
フィルム厚みが5〜75μmであること
が、いずれも好ましい条件として挙げられる。
In order to achieve the above goal, according to the present invention, paraphenylenediamine and 4,4′-diaminodiphenyl ether as diamine components, pyromellitic dianhydride as acid dianhydride components as main components, and imidization A manufactured polyimide film having a particle size in the range of 0.01 to 1.5 μm, an average particle size of 0.05 to 0.7 μm, and a particle size of 0.15 to 0.60 μm. Inorganic particles having a particle size distribution in which 80% by volume or more of all the inorganic particles are dispersed in the film at a rate of 0.1 to 0.9% by weight per film resin weight A polyimide film is provided.

In the polyimide film of the present invention,
The proportion of each component in the polyimide film is 10-50 mol% paraphenylenediamine and 50-90 mol% 4,4'-diaminodiphenyl ether as the diamine component, and pyromellitic dianhydride as the acid dianhydride component. Consisting of 100 mol%,
The inorganic particles are contained in a ratio of 0.3 to 0.8% by weight per film resin weight;
The average particle diameter of the inorganic particles is 0.1 to 0.6 μm,
The average particle diameter of the inorganic particles is 0.3 to 0.5 μm,
The protrusions resulting from the inorganic particles are present on the film surface, the number of protrusions having a height of 2 μm or more is 5/40 cm square or less, and the film thickness is 5 to 75 μm. It is mentioned as preferable conditions.

また、上記本発明のポリイミドフィルムの製造方法は、パラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテルとからなるジアミン成分と、ピロメリット酸二無水物からなるテトラカルボン酸二無水物成分を、極性有機溶媒中で反応させてポリアミド酸を製造し、これをイミド化した後、フィルムに成形するに際し、粒子径が0.01〜1.5μmの範囲内にあり、かつ平均粒子径が0.05〜0.7μmであり、さらに粒子径0.15〜0.60μmの無機粒子が全粒子中80体積%以上の割合を占める粒度分布を有する無機粒子を、前記極性有機溶媒と同じ極性有機溶媒に分散させたスラリーを、ポリイミド製造工程中のポリアミド酸溶液に、前記無機粒子が樹脂重量当たり0.1〜0.9重量%の割合となるように添加することを特徴とする。   The method for producing a polyimide film of the present invention comprises a diamine component composed of paraphenylenediamine and 4,4′-diaminodiphenyl ether and a tetracarboxylic dianhydride component composed of pyromellitic dianhydride. After reacting in a solvent to produce a polyamic acid, imidizing it, and forming into a film, the particle diameter is in the range of 0.01 to 1.5 μm and the average particle diameter is 0.05 to Disperse inorganic particles having a particle size distribution of 0.7 μm and inorganic particles having a particle size of 0.15 to 0.60 μm in a proportion of 80% by volume or more in the same polar organic solvent as the polar organic solvent. The resulting slurry is added to the polyamic acid solution in the polyimide manufacturing process so that the inorganic particles are in a proportion of 0.1 to 0.9% by weight per resin weight. And wherein the door.

本発明によれば、以下に説明するとおり、添加した無機粒子が露出せず、フィルム中に均一に分散した状態で表面突起を発生させて表面状態を良好に制御可能であり、フィルムの走行性、接着性及び寸法安定性が優れると共に、フレキシブルプリント配線基板(FPC)やチップオンフィルム(COF)の自動光学検査システム(AOI)に適応可能なポリイミドフィルムを得ることができる。   According to the present invention, as described below, the added inorganic particles are not exposed, and surface protrusions can be generated in a state of being uniformly dispersed in the film, so that the surface state can be well controlled, and the running property of the film In addition, it is possible to obtain a polyimide film that is excellent in adhesiveness and dimensional stability and that can be applied to an automatic optical inspection system (AOI) of a flexible printed circuit board (FPC) or a chip-on-film (COF).

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明のポリイミドフィルムを得るに際しての前駆体であるポリアミド酸について説明する。   First, the polyamic acid which is a precursor for obtaining the polyimide film of the present invention will be described.

本発明においては、芳香族テトラカルボン酸二無水物成分と芳香族ジアミン成分または、この両者を主成分とする化学物質を有機溶媒中で付加重合させることによって、ワニス状ポリアミド酸を得るものであり、芳香族ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテルを、芳香族テトラカルボン酸二無水物成分としてピロメリット酸二無水物を、それぞれ主たる構成成分に使用する。すなわち、パラフェニレンジアミン、4、4’−ジアミノジフェニルエーテル、及びピロメリット酸二無水物、の3種類を必須の構成成分とし、これら3種類のみ、あるいはこれら3種類に加えて少量の別成分を加えることにより得られる。好ましくはジアミン成分として10〜50モル%のパラフェニレンジアミン及び50〜90モル%の4,4’−ジアミノジフェニルエーテルを用い、酸二無水物成分として100モル%のピロメリット酸二無水物を用いて得られる。パラフェニレンジアミンが多すぎると硬くなり、少なすぎると柔らかすぎるので、1〜70モル%が好ましく、更に好ましくは5〜60モル%、より好ましくは10〜50モル%である。4,4’−ジアミノジフェニルエーテルが多すぎると柔らかくなり、少なすぎると硬くなるので、20〜99モル%が好ましく、更に好ましくは40〜95モル%、より好ましくは50〜90モル%である。   In the present invention, an aromatic tetracarboxylic dianhydride component and an aromatic diamine component, or a chemical substance composed mainly of both components is subjected to addition polymerization in an organic solvent to obtain a varnish-like polyamic acid. Paraphenylenediamine and 4,4′-diaminodiphenyl ether are used as the aromatic diamine component, and pyromellitic dianhydride is used as the main component as the aromatic tetracarboxylic dianhydride component. That is, three types of paraphenylenediamine, 4,4′-diaminodiphenyl ether, and pyromellitic dianhydride are essential components, and only these three types or a small amount of other components are added to these three types. Can be obtained. Preferably, 10-50 mol% paraphenylenediamine and 50-90 mol% 4,4'-diaminodiphenyl ether are used as the diamine component, and 100 mol% pyromellitic dianhydride is used as the acid dianhydride component. can get. If the amount of paraphenylenediamine is too large, it becomes hard, and if it is too small, it is too soft, so 1 to 70 mol% is preferable, more preferably 5 to 60 mol%, and more preferably 10 to 50 mol%. When the amount of 4,4'-diaminodiphenyl ether is too much, it becomes soft, and when it is too little, it becomes hard, so 20 to 99 mol% is preferable, 40 to 95 mol% is more preferable, and 50 to 90 mol% is more preferable.

本発明においては、上述の通り、パラフェニレンジアミンや4,4’−ジアミノジフェニルエーテル以外に少量の他のジアミンを添加してもよい。また、ピロメリット酸二無水物以外に少量の他の酸二無水物を添加してもよい。具体的な他のジアミン及び酸二無水物としては以下のものが挙げられるが、これらに限定されない。   In the present invention, as described above, a small amount of other diamine may be added in addition to paraphenylenediamine and 4,4'-diaminodiphenyl ether. In addition to pyromellitic dianhydride, a small amount of other acid dianhydrides may be added. Specific examples of other diamines and acid dianhydrides include, but are not limited to:

(1)酸二無水物
3,3',4,4'−ビフェニルテトラカルボン酸二無水物、2,3',3,4'−ビフェニルテトラカルボン酸二無水物、3,3',4,4'−ベンゾフェノンテトラカルボン酸二無水物、2,3,6,7−ナフタレンジカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)エーテル、ピリジン−2,3,5,6−テトラカルボン酸二無水物、1,2,4,5−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、1,4,5,8−デカヒドロナフタレンテトラカルボン酸二無水物、4,8−ジメチル−1,2,5,6−ヘキサヒドロナフタレンテトラカルボン酸二無水物、2,6−ジクロロ−1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,7−ジクロロ−1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−テトラクロロ−1,4,5,8−ナフタレンテトラカルボン酸二無水物、1,8,9,10−フェナントレンテトラカルボン酸二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ベンゼン−1,2,3,4−テトラカルボン酸二無水物、3,4,3',4'−ベンゾフェノンテトラカルボン酸二無水物等。
(1) Acid dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4 4′-benzophenone tetracarboxylic dianhydride, 2,3,6,7-naphthalenedicarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) ether, pyridine-2,3,5 6-tetracarboxylic dianhydride, 1,2,4,5-naphthalene tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 1,4,5,8-deca Hydronaphthalenetetracarboxylic dianhydride, 4,8-dimethyl-1,2,5,6-hexahydronaphthalenetetracarboxylic dianhydride, 2,6-dichloro-1,4,5,8-naphthalenetetracarboxylic Acid dianhydride, 2,7-dichloro B-1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-tetrachloro-1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,8,9 , 10-phenanthrenetetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, , 1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis ( 3,4-dicarboxyphenyl) sulfone dianhydride, benzene-1,2,3,4-tetracarboxylic dianhydride, 3,4,3 ′, 4′-benzophenone tetracarboxylic dianhydride, and the like.

(2)ジアミン
3,4'−ジアミノジフェニルエーテル、3,3'−ジアミノジフェニルエーテル、メタフェニレンジアミン、4,4'−ジアミノジフェニルプロパン、3,4'−ジアミノジフェニルプロパン、3,3'−ジアミノジフェニルプロパン、4,4'−ジアミノジフェニルメタン、3,4'−ジアミノジフェニルメタン、3,3'−ジアミノジフェニルメタン、ベンチジン、4,4'−ジアミノジフェニルサルファイド、3,4'−ジアミノジフェニルサルファイド、3,3'−ジアミノジフェニルサルファイド、4,4'−ジアミノジフェニルスルホン、3,4'−ジアミノジフェニルスルホン、3,3'−ジアミノジフェニルスルホン、2,6−ジアミノピリジン、ビス−(4−アミノフェニル)ジエチルシラン、3,3'−ジクロロベンチジン、ビス−(4−アミノフェニル)エチルホスフィノキサイド、ビス−(4−アミノフェニル)フェニルホスフィノキサイド、ビス−(4−アミノフェニル)−N−フェニルアミン、ビス−(4−アミノフェニル)−N−メチルアミン、1,5−ジアミノナフタレン、3,3'−ジメチル−4,4'−ジアミノビフェニル、3,4'−ジメチル−3',4−ジアミノビフェニル3,3'−ジメトキシベンチジン、2,4−ビス(p−β−アミノ−t−ブチルフェニル)エーテル、ビス(p−β−アミノ−t−ブチルフェニル)エーテル、p−ビス(2−メチル−4−アミノペンチル)ベンゼン、p−ビス−(1,1−ジメチル−5−アミノペンチル)ベンゼン、m−キシリレンジアミン、p−キシリレンジアミン、1,3−ジアミノアダマンタン、3,3'−ジアミノ−1,1'−ジアミノアダマンタン、3,3'−ジアミノメチル1,1'−ジアダマンタン、ビス(p−アミノシクロヘキシル)メタン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、3−メチルヘプタメチレンジアミン、4,4'−ジメチルヘプタメチレンジアミン、2,11−ジアミノドデカン、1,2−ビス(3−アミノプロポキシ)エタン、2,2−ジメチルプロピレンジアミン、3−メトキシヘキサエチレンジアミン、2,5−ジメチルヘキサメチレンジアミン、2,5−ジメチルヘプタメチレンジアミン、5−メチルノナメチレンジアミン、1,4−ジアミノシクロヘキサン、1,12−ジアミノオクタデカン、2,5−ジアミノ−1,3,4−オキサジアゾール、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、N−(3−アミノフェニル)−4−アミノベンズアミド、4−アミノフェニル−3−アミノベンゾエート等。
(2) Diamine 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, metaphenylenediamine, 4,4′-diaminodiphenylpropane, 3,4′-diaminodiphenylpropane, 3,3′-diaminodiphenylpropane 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, benzidine, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3,3'- Diaminodiphenyl sulfide, 4,4′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 2,6-diaminopyridine, bis- (4-aminophenyl) diethylsilane, 3, , 3'-Dichlorobenzidine Bis- (4-aminophenyl) ethylphosphinoxide, bis- (4-aminophenyl) phenylphosphinoxide, bis- (4-aminophenyl) -N-phenylamine, bis- (4-aminophenyl) ) -N-methylamine, 1,5-diaminonaphthalene, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,4'-dimethyl-3 ', 4-diaminobiphenyl 3,3'-dimethoxybench Gin, 2,4-bis (p-β-amino-t-butylphenyl) ether, bis (p-β-amino-t-butylphenyl) ether, p-bis (2-methyl-4-aminopentyl) benzene P-bis- (1,1-dimethyl-5-aminopentyl) benzene, m-xylylenediamine, p-xylylenediamine, 1,3-diaminoadamantane, 3, '-Diamino-1,1'-diaminoadamantane, 3,3'-diaminomethyl 1,1'-diadamantane, bis (p-aminocyclohexyl) methane, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylene Diamine, decamethylenediamine, 3-methylheptamethylenediamine, 4,4'-dimethylheptamethylenediamine, 2,11-diaminododecane, 1,2-bis (3-aminopropoxy) ethane, 2,2-dimethylpropylenediamine 3-methoxyhexaethylenediamine, 2,5-dimethylhexamethylenediamine, 2,5-dimethylheptamethylenediamine, 5-methylnonamethylenediamine, 1,4-diaminocyclohexane, 1,12-diaminooctadecane, 2,5- Diamino-1,3 , 4-oxadiazole, 2,2-bis (4-aminophenyl) hexafluoropropane, N- (3-aminophenyl) -4-aminobenzamide, 4-aminophenyl-3-aminobenzoate and the like.

また、本発明において、ポリアミド酸溶液の形成に使用される有機溶媒の具体例としては、例えば、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミドなどのホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミドなどのアセトアミド系溶媒、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドンなどのピロリドン系溶媒、フェノール、o−,m−,またはp−クレゾール、キシレノール、ハロゲン化フェノール、カテコールなどのフェノール系溶媒、あるいはヘキサメチルホスホルアミド、γ−ブチロラクトンなどの非プロトン性極性溶媒を挙げることができ、これらを単独又は混合物として用いるのが望ましいが、さらにはキシレン、トルエンのような芳香族炭化水素の使用も可能である。   In the present invention, specific examples of the organic solvent used for forming the polyamic acid solution include sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, N, N-dimethylformamide, N, N-diethylformamide and the like. Formamide solvents, N, N-dimethylacetamide, acetamide solvents such as N, N-diethylacetamide, pyrrolidone solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, phenol, o-, Examples thereof include phenolic solvents such as m- or p-cresol, xylenol, halogenated phenol and catechol, or aprotic polar solvents such as hexamethylphosphoramide and γ-butyrolactone, and these may be used alone or as a mixture. Desirable to use News xylene, the use of aromatic hydrocarbons such as toluene are also possible.

重合方法は公知のいずれの方法で行ってもよく、例えば
(1)先に芳香族ジアミン成分全量を溶媒中に入れ、その後芳香族テトラカルボン酸類成分を芳香族ジアミン成分全量と当量になるよう加えて重合する方法。
The polymerization method may be performed by any known method, for example,
(1) A method in which the entire amount of the aromatic diamine component is first put in a solvent, and then the aromatic tetracarboxylic acid component is added so as to be equivalent to the total amount of the aromatic diamine component and polymerized.

(2)先に芳香族テトラカルボン酸類成分全量を溶媒中に入れ、その後芳香族ジアミン成分を芳香族テトラカルボン酸類成分と等量になるよう加えて重合する方法。   (2) A method in which the whole amount of the aromatic tetracarboxylic acid component is first put in a solvent, and then the aromatic diamine component is added in an amount equal to the amount of the aromatic tetracarboxylic acid component for polymerization.

(3)一方の芳香族ジアミン化合物を溶媒中に入れた後、反応成分に対して芳香族テトラカルボン酸類化合物が95〜105モル%となる比率で反応に必要な時間混合した後、もう一方の芳香族ジアミン化合物を添加し、続いて芳香族テトラカルボン酸類化合物を全芳香族ジアミン成分と全芳香族テトラカルボン酸類成分とがほぼ等量になるよう添加して重合する方法。   (3) After one aromatic diamine compound is put in a solvent, the aromatic tetracarboxylic acid compound is mixed with the reaction component at a ratio of 95 to 105 mol% for the time required for the reaction, A method in which an aromatic diamine compound is added, and then an aromatic tetracarboxylic acid compound is added and polymerized so that the total aromatic diamine component and the total aromatic tetracarboxylic acid component are approximately equal.

(4)芳香族テトラカルボン酸類化合物を溶媒中に入れた後、反応成分に対して一方の芳香族ジアミン化合物が95〜105モル%となる比率で反応に必要な時間混合した後、芳香族テトラカルボン酸類化合物を添加し、続いてもう一方の芳香族ジアミン化合物を全芳香族ジアミン成分と全芳香族テトラカルボン酸類成分とがほぼ等量になるよう添加して重合する方法。   (4) After placing the aromatic tetracarboxylic acid compound in the solvent, the aromatic tetracarboxylic acid compound is mixed for a time required for the reaction at a ratio of 95 to 105 mol% of one aromatic diamine compound with respect to the reaction component, A method in which a carboxylic acid compound is added, and then the other aromatic diamine compound is added and polymerized so that the total aromatic diamine component and the total aromatic tetracarboxylic acid component are approximately equal.

(5)溶媒中で一方の芳香族ジアミン成分と芳香族テトラカルボン酸類をどちらかが過剰になるよう反応させてポリアミド酸溶液(A)を調整し、別の溶媒中でもう一方の芳香族ジアミン成分と芳香族テトラカルボン酸類をどちらかが過剰になるよう反応させポリアミド酸溶液(B)を調整する。こうして得られた各ポリアミド酸溶液(A)と(B)を混合し、重合を完結する方法。この時ポリアミド酸溶液(A)を調整するに際し芳香族ジアミン成分が過剰の場合、ポリアミド酸溶液(B)では芳香族テトラカルボン酸成分を過剰に、またポリアミド酸溶液(A)で芳香族テトラカルボン酸成分が過剰の場合、ポリアミド酸溶液(B)では芳香族ジアミン成分を過剰にし、ポリアミド酸溶液(A)と(B)を混ぜ合わせこれら反応に使用される全芳香族ジアミン成分と全芳香族テトラカルボン酸類成分とがほぼ等量になるよう調整する。   (5) A polyamic acid solution (A) is prepared by reacting one aromatic diamine component with an aromatic tetracarboxylic acid in a solvent so that either one becomes excessive, and the other aromatic diamine in another solvent. The polyamic acid solution (B) is prepared by reacting the component and the aromatic tetracarboxylic acid so that either one becomes excessive. A method of mixing the polyamic acid solutions (A) and (B) thus obtained to complete the polymerization. At this time, when adjusting the polyamic acid solution (A), if the aromatic diamine component is excessive, the polyamic acid solution (B) contains excessive aromatic tetracarboxylic acid component, and the polyamic acid solution (A) contains aromatic tetracarboxylic acid. When the acid component is excessive, the polyamic acid solution (B) makes the aromatic diamine component excessive, and the polyamic acid solutions (A) and (B) are combined to form the wholly aromatic diamine component and wholly aromatic compound used in these reactions. Adjustment is made so that the amount of the tetracarboxylic acid component is approximately equal.

なお、重合方法はこれらに限定されることはなく、その他公知の方法を用いてもよい。   The polymerization method is not limited to these, and other known methods may be used.

こうして得られるポリアミド酸溶液は、固形分を5〜40重量%、好ましくは10〜30重量%を含有しており、またその粘度はブルックフィールド粘度計による測定値で10〜2000Pa・s、好ましくは、100〜1000Pa・sのものが、安定した送液のために好ましく使用される。また、有機溶媒溶液中のポリアミド酸は部分的にイミド化されていてもよい。   The polyamic acid solution thus obtained contains a solid content of 5 to 40% by weight, preferably 10 to 30% by weight, and its viscosity is 10 to 2000 Pa · s as measured by a Brookfield viscometer, preferably 100-1000 Pa · s is preferably used for stable liquid feeding. Moreover, the polyamic acid in the organic solvent solution may be partially imidized.

本発明のフィルム表面上に突起を形成させるために樹脂に添加される無機粒子は、前記のポリイミドフィルム製造工程で接触する全ての化学物質に対して不溶であるであることが必要である。   The inorganic particles added to the resin in order to form protrusions on the film surface of the present invention must be insoluble in all chemical substances that come into contact in the polyimide film manufacturing process.

本発明において使用可能な無機粒子としては、SiO(シリカ)、TiO、CaHPO、Ca等を好適に挙げることができる。中でもゾル・ゲル法の湿式粉砕法で製造したシリカが、ワニス状ポリアミド酸溶液中で安定かつ物理的に安定し、ポリイミドの諸物性に影響を与えないことから好ましく使用される。 Preferred examples of the inorganic particles that can be used in the present invention include SiO 2 (silica), TiO 2 , CaHPO 4 , and Ca 2 P 2 O 7 . Among these, silica produced by a wet pulverization method such as a sol-gel method is preferably used because it is stable and physically stable in a varnish-like polyamic acid solution and does not affect the physical properties of polyimide.

さらに、微細シリカ粉は、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホオキサイド、n−メチルピロリドン等の極性溶媒に均一に分散させたシリカスラリーとして使用することで、凝集を防止できるため好ましい。このスラリーは、粒子径が非常に小さいため、沈降速度が遅く安定している。また、たとえ沈降しても再攪拌する事で容易に再分散可能である。   Furthermore, the fine silica powder is used as a silica slurry that is uniformly dispersed in a polar solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, n-methylpyrrolidone, and prevents aggregation. This is preferable because it is possible. Since this slurry has a very small particle size, the sedimentation rate is low and stable. Even if it settles, it can be easily redispersed by re-stirring.

本発明において、ポリイミドフィルムの表面に突起を形成させる為に添加される無機粒子は、その粒子径が0.01〜1.5μmの範囲内にあり、かつ平均粒子径が0.05μm〜0.7μmの範囲、より好ましくは0.1〜0.6μmの範囲、さらにより好ましくは0.3〜0.5μmの範囲にある場合に、ポリイミドフィルムを自動光学検査システムへ検査上での問題を生じることなく適応可能とするばかりか、フィルムの機械物性等の低下を発生させずに使用可能とする。逆にこれらの範囲より平均粒子径が下回ると、フィルムへの充分な易滑性が得られず、逆に上回ると、自動検査システムで無機粒子が異物と判断され障害を来すことになるため好ましくない。また、通常のフィルムの厚さは5μm〜75μmであるため、この粒子径範囲での無機粒子がボリアミドフィルムの表面に露出することはない。   In the present invention, the inorganic particles added to form protrusions on the surface of the polyimide film have a particle size in the range of 0.01 to 1.5 μm and an average particle size of 0.05 μm to 0.00. In the range of 7 μm, more preferably in the range of 0.1-0.6 μm, even more preferably in the range of 0.3-0.5 μm, the polyimide film is caused to have an inspection problem to an automatic optical inspection system. It can be used without causing a decrease in the mechanical properties of the film. On the other hand, if the average particle diameter is below these ranges, sufficient slipperiness to the film cannot be obtained, and if it exceeds, the inorganic particles will be judged as foreign substances by the automatic inspection system and cause trouble. It is not preferable. Moreover, since the thickness of a normal film is 5 micrometers-75 micrometers, the inorganic particle in this particle diameter range is not exposed on the surface of a polyamide film.

無機粒子の添加量は、フィルム樹脂重量当たり0.1〜0.9重量%が好ましく、0.3〜0.8重量%の割合で含まれていることがより好ましい。0.1重量%以下であるとフィルム表面の突起数も不足することによってフィルムへの充分な易滑性が得られず、搬送性が悪化し、ロールに巻いた時のフィルム巻姿も悪化するため好ましくない。また、逆に0.9重量%以上であると、フィルムの易滑性は良化するものの、無機粒子の異常凝集による粗大突起が増加し、これが結果的に自動検査システムで異物と判断され障害を来すことになるため好ましくない。   The added amount of the inorganic particles is preferably 0.1 to 0.9% by weight, more preferably 0.3 to 0.8% by weight, based on the weight of the film resin. If the amount is 0.1% by weight or less, the film surface is insufficient in number of protrusions, so that sufficient slipperiness to the film cannot be obtained, the transportability is deteriorated, and the film winding shape when wound on a roll is also deteriorated. Therefore, it is not preferable. On the other hand, if it is 0.9% by weight or more, the slipperiness of the film is improved, but coarse protrusions due to abnormal aggregation of inorganic particles increase. It is not preferable because it will come.

無機粒子による表面突起の形成により、フィルム表面積も拡大し、十分に粗面化されアンカー効果が見られ接着性を損なうこともなくなるのである。   By forming surface protrusions with inorganic particles, the film surface area is increased, the surface is sufficiently roughened, the anchor effect is seen, and the adhesiveness is not impaired.

無機粒子の粒度分布については、狭い分布であること、つまり類似の大きさの粒子が全粒子に占める割合が高い方が良く、具体的には粒子径0.15〜0.60μmの粒子が全粒子中80体積%以上の割合を占めることが好ましい。この範囲を下回り0.15μm以下の粒子の占める割合が高くなると、フィルムの易滑性が低下するため好ましくない。また、無機粒子送液の際には5μmカットフィルターや10μmカットフィルターにより粗粒を除去することが可能であるが、0.60μm以上の粒子の占める割合が高くなると、フィルターの目詰まりを頻発させてしまい工程安定性を損ねるばかりか、粒子の粗大凝集が生じやすくなるため好ましくない。   Regarding the particle size distribution of the inorganic particles, it is better that the particle size distribution is narrow, that is, the proportion of particles having similar sizes in all particles is high. Specifically, all particles having a particle size of 0.15 to 0.60 μm are all present. It is preferable to occupy a ratio of 80% by volume or more in the particles. If the proportion of particles below this range and 0.15 μm or less increases, the slipperiness of the film decreases, which is not preferable. In addition, it is possible to remove coarse particles with a 5 μm cut filter or a 10 μm cut filter when feeding inorganic particles, but if the proportion of particles of 0.60 μm or more increases, the filter will frequently clog. As a result, not only process stability is impaired, but coarse aggregation of particles tends to occur, which is not preferable.

無機粒子に起因したフィルム表面突起においては、高さ2μm以上の突起数が5個/40cm角以下であること、より好ましくは3個/40cm角以下、さらにより好ましくは1個/40cm角以下であることが望ましい。これよりも多いと自動検査システムで無機粒子が異物と判断され障害を来すことになるため好ましくない。   In the film surface protrusion caused by the inorganic particles, the number of protrusions having a height of 2 μm or more is 5 pieces / 40 cm square or less, more preferably 3 pieces / 40 cm square or less, and even more preferably 1 piece / 40 cm square or less. It is desirable to be. If it is more than this, it is not preferable because the inorganic particles are judged as foreign substances by the automatic inspection system and cause trouble.

本発明においては、このような無機粒子を、ポリイミドフィルムの製造に使用される有機溶媒と同じ極性溶媒に分散させたスラリーを、ポリイミド製造工程中のポリアミド酸溶液に添加した後、脱環化脱溶媒させてポリイミドフィルムを得ることが好ましいが、ポリアミド酸重合前の有機溶媒中に無機粒子スラリーを添加した後、ポリアミド酸重合、脱環化脱溶媒を経てポリイミドフィルムを得ることなど、脱環化脱溶媒前の工程であればいかなる工程において無機粒子スラリーを添加することが可能である。   In the present invention, a slurry in which such inorganic particles are dispersed in the same polar solvent as the organic solvent used in the production of the polyimide film is added to the polyamic acid solution in the polyimide production process, and then decyclized and removed. It is preferable to obtain a polyimide film by solvent, but after adding inorganic particle slurry to the organic solvent before polyamic acid polymerization, polyamic acid polymerization, decyclization and desolvation to obtain a polyimide film, etc. It is possible to add the inorganic particle slurry in any step before the solvent removal.

次に、本発明のポリイミドフィルムの製造方法について説明する。   Next, the manufacturing method of the polyimide film of this invention is demonstrated.

ポリイミドフィルムを製膜する方法としては、ポリアミック酸溶液をフィルム状にキャストし熱的に脱環化脱溶媒させてポリイミドフィルムを得る方法、およびポリアミック酸溶液に環化触媒及び脱水剤を混合し化学的に脱環化させてゲルフィルムを作成しこれを加熱脱溶媒することによりポリイミドフィルムを得る方法が挙げられるが、後者の方が得られるポリイミドフィルムの熱膨張係数を低く抑えることができることから好ましい。   As a method for forming a polyimide film, a polyamic acid solution is cast into a film and thermally decyclized and desolvated to obtain a polyimide film, and a polyamic acid solution is mixed with a cyclization catalyst and a dehydrating agent. Although a method of obtaining a polyimide film by preparing a gel film by decyclizing it and heating it to remove the solvent is mentioned, the latter is preferable because the thermal expansion coefficient of the obtained polyimide film can be kept low. .

化学的に脱環化させる方法においては、まず上記ポリアミック酸溶液を調製する。   In the method of chemically decyclizing, first, the polyamic acid solution is prepared.

上記ポリアミック酸溶液は、環化触媒(イミド化触媒)、脱水剤およびゲル化遅延剤などを含有することができる。   The polyamic acid solution can contain a cyclization catalyst (imidization catalyst), a dehydrating agent, a gelation retarder, and the like.

本発明で使用される環化触媒の具体例としては、トリメチルアミン、トリエチレンジアミンなどの脂肪族第3級アミン、ジメチルアニリンなどの芳香族第3級アミン、およびイソキノリン、ピリジン、β−ピコリンなどの複素環第3級アミンなどが挙げられるが、なかでも複素環式第3級アミンから選ばれる少なくとも一種類のアミンを使用するのが好ましい。   Specific examples of the cyclization catalyst used in the present invention include aliphatic tertiary amines such as trimethylamine and triethylenediamine, aromatic tertiary amines such as dimethylaniline, and complex such as isoquinoline, pyridine and β-picoline. Examples thereof include cyclic tertiary amines, among which at least one amine selected from heterocyclic tertiary amines is preferably used.

本発明で使用される脱水剤の具体例としては、無水酢酸、無水プロピオン酸、無水酪酸などの脂肪族カルボン酸無水物、および無水安息香酸などの芳香族カルボン酸無水物などが挙げられるが、なかでも無水酢酸および/または無水安息香酸が好ましい。   Specific examples of the dehydrating agent used in the present invention include aliphatic carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, and butyric anhydride, and aromatic carboxylic acid anhydrides such as benzoic anhydride, Of these, acetic anhydride and / or benzoic anhydride are preferred.

ポリアミック酸溶液からポリイミドフィルムを製造する方法としては、環化触媒および脱水剤を含有せしめたポリアミック酸溶液をスリット付き口金から支持体上に流延してフィルム状に成形し、支持体上でイミド化を一部進行させて自己支持性を有するゲルフィルムとした後、支持体より剥離し、加熱乾燥/イミド化し、熱処理を行う。   As a method for producing a polyimide film from a polyamic acid solution, a polyamic acid solution containing a cyclization catalyst and a dehydrating agent is cast on a support from a base with a slit and formed into a film, and an imide is formed on the support. The gel film is partially advanced to form a gel film having self-supporting properties, and then peeled off from the support, heat-dried / imidized, and subjected to heat treatment.

上記ポリアミック酸溶液は、スリット状口金を通ってフィルム状に成型され、加熱された支持体上に流延され、支持体上で熱閉環反応をし、自己支持性を有するゲルフィルムとなって支持体から剥離される。   The polyamic acid solution is formed into a film shape through a slit-shaped die, cast on a heated support, undergoes a thermal ring-closing reaction on the support, and is supported as a gel film having self-supporting properties. It is peeled from the body.

上記支持体とは、金属製の回転ドラムやエンドレスベルトであり、その温度は液体または気体の熱媒、および/または電気ヒーターなどの輻射熱により制御される。   The support is a metal rotating drum or an endless belt, and its temperature is controlled by radiant heat from a liquid or gaseous heat medium and / or an electric heater.

上記ゲルフィルムは、支持体からの受熱および/または熱風や電気ヒーターなどの熱源からの受熱により、30〜200℃、好ましくは40〜150℃に加熱されて閉環反応し、遊離した有機溶媒などの揮発分を乾燥させることにより自己支持性を有するようになり、支持体から剥離される。   The gel film is heated to 30 to 200 ° C., preferably 40 to 150 ° C. by receiving heat from a support and / or receiving heat from a heat source such as hot air or an electric heater, and causes a ring-closing reaction, and a free organic solvent or the like. By drying the volatile matter, it becomes self-supporting and is peeled off from the support.

上記支持体から剥離されたゲルフィルムは、通常回転ロールにより走行速度を規制しながら走行方向に延伸される。延伸は、140℃以下の温度で1.05〜1.9倍、好ましくは1.1〜1.6倍、さらに好ましくは1.1〜1.5倍の倍率で実施される。走行方向に延伸されたゲルフィルムは、テンター装置に導入され、テンタークリップに幅方向両端部を把持されて、テンタークリップと共に走行しながら、幅方法へ延伸される。   The gel film peeled off from the support is usually stretched in the running direction while regulating the running speed with a rotating roll. Stretching is performed at a temperature of 140 ° C. or less at a magnification of 1.05 to 1.9 times, preferably 1.1 to 1.6 times, and more preferably 1.1 to 1.5 times. The gel film stretched in the running direction is introduced into the tenter device, and both ends in the width direction are held by the tenter clip, and stretched in the width method while running with the tenter clip.

上記の乾燥ゾーンで乾燥したフィルムは、熱風、赤外ヒーターなどで15秒から10分加熱される。次いで、熱風および/または電気ヒーターなどにより、250〜500の温度で15秒から20分熱処理を行う。走行方向への延伸倍率と幅方向への延伸倍率を調整しながら、得られるポリイミドフィルムのフィルム厚みを5〜75μmに調整するのが好ましい。この範囲より厚くても薄くなっても、製膜性が著しく低下することになるため好ましくない。   The film dried in the drying zone is heated for 15 seconds to 10 minutes with hot air, an infrared heater or the like. Next, heat treatment is performed for 15 seconds to 20 minutes at a temperature of 250 to 500 using hot air and / or an electric heater. It is preferable to adjust the film thickness of the resulting polyimide film to 5 to 75 μm while adjusting the draw ratio in the running direction and the draw ratio in the width direction. Even if it is thicker or thinner than this range, the film forming property is remarkably lowered, which is not preferable.

以下、本発明について実施例を用いて説明する。   Hereinafter, the present invention will be described using examples.

本発明における各種物性の測定方法について以下に説明する。   A method for measuring various physical properties in the present invention will be described below.

[摩擦係数(静摩擦係数)]
フィルムの処理面同士を重ね合わせ、JIS K−7125(1999)に基づき測定した。すなわち、スベリ係数測定装置Slip Tester(株式会社テクノニーズ製)を使用し、フィルム処理面同士を重ね合わせて、その上に200gのおもりを載せ、フィルムの一方を固定、もう一方を100mm/分で引っ張り、摩擦係数を測定した。
[Friction coefficient (Static friction coefficient)]
The processed surfaces of the films were overlapped and measured according to JIS K-7125 (1999). That is, using a slip coefficient measuring apparatus Slip Tester (manufactured by Technonez Co., Ltd.), the film processing surfaces are overlapped with each other, a 200 g weight is placed thereon, one of the films is fixed, and the other is fixed at 100 mm / min. Tensile and friction coefficients were measured.

[接着力]
接着性評価方法は具体的にはIPC−FC−241の方法に基づき、ポリイミドフィルムと銅箔とを市販の熱可塑性ポリイミド接着剤で接着し、硬板上にフィルムを固定し、測定することによって求めた。
[Adhesive strength]
Specifically, the adhesion evaluation method is based on the method of IPC-FC-241, by bonding a polyimide film and a copper foil with a commercially available thermoplastic polyimide adhesive, fixing the film on a hard plate, and measuring. Asked.

[自動光学検査(AOI)]
オルボテック社製のSK−75を使用してベースフィルムを検査した。異物と微粒子の区別の付く場合を「○」評価、一方異物と微粒子の大きさが類似していて、両者の区別が付かない場合を「×」評価とした。
[Automatic optical inspection (AOI)]
The base film was inspected using SK-75 manufactured by Orbotech. The case where a foreign substance and a fine particle could be distinguished was evaluated as “◯”, while the case where the size of the foreign substance and the fine particle was similar and could not be distinguished from each other was evaluated as a “x” evaluation.

[無機粒子の評価]
堀場製作所のレーザ回析/散乱式粒度分布測定装置LA−910を用い、極性溶媒に分散させた試料を測定、解析した結果から粒子径範囲、平均粒子径、粒子径0.15〜0.60μmの全粒子中に対する占有率を読み取った。
[Evaluation of inorganic particles]
Using a laser diffraction / scattering type particle size distribution measuring apparatus LA-910 manufactured by HORIBA, a sample dispersed in a polar solvent was measured and analyzed, and the particle size range, average particle size, and particle size 0.15 to 0.60 μm were obtained. The occupancy ratio in all particles was read.

[異常突起数]
フィルム40cm角面積当たりにおいて、高さ2μm以上の突起数をカウントした。高さ測定は、レーザーテック(株)製走査型レーザー顕微鏡「1LM15W」にて、ニコン製100倍レンズ(CF Plan 100×/0.95 ∞/0 EPI)を用いて、「SURFACE1」モードにてフィルム表面を撮影・解析することにより確認した。
[Number of abnormal protrusions]
The number of protrusions having a height of 2 μm or more was counted per 40 cm square area of the film. The height is measured with a scanning laser microscope “1LM15W” manufactured by Lasertec Co., Ltd., using a Nikon 100 × lens (CF Plan 100 × / 0.95∞ / 0 EPI) in the “SURFACE1” mode. This was confirmed by photographing and analyzing the surface.

[フィルム厚み]
Mitutoyo製ライトマチック(Series318)を使用して測定した。
[Film thickness]
Measurements were made using Mitutoyo lightmatic (Series 318).

[線膨張係数]
島津製作所製TMA−50を使用し、測定温度範囲:50〜200℃、昇温速度:10℃/minの条件で測定した。
[Linear expansion coefficient]
TMA-50 manufactured by Shimadzu Corporation was used, and measurement was performed under the conditions of a measurement temperature range: 50 to 200 ° C. and a heating rate: 10 ° C./min.

次に、ボリアミド酸溶液の合成例を説明する。   Next, a synthesis example of a polyamic acid solution will be described.

[合成例1]
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で100/75/25の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液にして重合し、3000poiseのポリアミド酸溶液を得た。
[Synthesis Example 1]
Prepare pyromellitic dianhydride (molecular weight 218.12) / 4,4'-diaminodiphenyl ether (molecular weight 200.24) / paraphenylenediamine (molecular weight 108.14) at a molar ratio of 100/75/25. And polymerized to a 18.5 wt% solution in DMAc (N, N-dimethylacetamide) to give a 3000 poise polyamic acid solution.

[合成例2]
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で100/70/30の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液にして重合し、3000poiseのポリアミド酸溶液を得た。
[Synthesis Example 2]
Prepare pyromellitic dianhydride (molecular weight 218.12) / 4,4'-diaminodiphenyl ether (molecular weight 200.24) / paraphenylenediamine (molecular weight 108.14) at a molar ratio of 100/70/30. And polymerized to a 18.5 wt% solution in DMAc (N, N-dimethylacetamide) to give a 3000 poise polyamic acid solution.

[合成例3]
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で100/80/20の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液にして重合し、3000poiseのポリアミド酸溶液を得た。
[Synthesis Example 3]
Prepare pyromellitic dianhydride (molecular weight 218.12) / 4,4'-diaminodiphenyl ether (molecular weight 200.24) / paraphenylenediamine (molecular weight 108.14) at a molar ratio of 100/80/20. And polymerized to a 18.5 wt% solution in DMAc (N, N-dimethylacetamide) to give a 3000 poise polyamic acid solution.

[合成例4]
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で100/50/50の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液にして重合し、3000poiseのポリアミド酸溶液を得た。
[Synthesis Example 4]
Prepare pyromellitic dianhydride (molecular weight 218.12) / 4,4'-diaminodiphenyl ether (molecular weight 200.24) / paraphenylenediamine (molecular weight 108.14) at a molar ratio of 100/50/50. And polymerized to a 18.5 wt% solution in DMAc (N, N-dimethylacetamide) to give a 3000 poise polyamic acid solution.

[合成例5]
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で100/60/40の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液にして重合し、3000poiseのポリアミド酸溶液を得た。
[Synthesis Example 5]
Prepare pyromellitic dianhydride (molecular weight 218.12) / 4,4'-diaminodiphenyl ether (molecular weight 200.24) / paraphenylenediamine (molecular weight 108.14) at a molar ratio of 100/60/40. And polymerized to a 18.5 wt% solution in DMAc (N, N-dimethylacetamide) to give a 3000 poise polyamic acid solution.

[合成例6]
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)をモル比で50/50の割合で混合し、DMAc(N,N−ジメチルアセトアミド)18.5重量%溶液にして重合し、3000poiseのポリアミド酸溶液を得た。
[Synthesis Example 6]
Pyromellitic dianhydride (molecular weight 218.12) / 4,4′-diaminodiphenyl ether (molecular weight 200.24) is mixed at a molar ratio of 50/50, and DMAc (N, N-dimethylacetamide) 18. Polymerization was performed with a 5% by weight solution to obtain a 3000 poise polyamic acid solution.

[実施例1]
全粒子の粒子径が0.01μm以上1.5μm以下に収まっており、平均粒子径0.32μm、粒子径0.15〜0.60μmの粒子が全粒子中87.5体積%のシリカのN,N−ジメチルアセトアミドスラリーを合成例1で得たポリアミド酸溶液に樹脂重量当たり0.3重量%添加し、十分攪拌、分散させた。このポリアミド酸溶液に無水酢酸(分子量102.09)とイソキノリンからなる転化剤をポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。得られた混合物を、T型スリットダイより回転する90℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.05mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ38μmのポリイミドフィルムを得た。得られたポリイミドフィルムの特性を表1に示した。
[Example 1]
The particle diameter of all the particles is 0.01 μm or more and 1.5 μm or less, and particles having an average particle diameter of 0.32 μm and a particle diameter of 0.15 to 0.60 μm are 87.5% by volume of silica N , N-dimethylacetamide slurry was added to the polyamic acid solution obtained in Synthesis Example 1 in an amount of 0.3% by weight per resin weight and sufficiently stirred and dispersed. To this polyamic acid solution, a conversion agent comprising acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight with respect to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. The obtained mixture was cast on a 90 ° C. stainless steel drum rotated by a T-shaped slit die to obtain a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.05 mm. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 38 μm. The properties of the obtained polyimide film are shown in Table 1.

[実施例2〜7]
使用したポリアミド酸溶液、シリカの平均粒子径、シリカ添加量、粒子径0.15〜0.60μmの粒子の全粒子中に占める割合をそれぞれ表1のように設定した以外は実施例1と同様にして得られた38μm厚みのポリイミドフィルムについてそれぞれ特性を評価し、表1に示した。
[Examples 2 to 7]
Example 1 except that the polyamic acid solution used, the average particle diameter of silica, the amount of silica added, and the proportion of particles having a particle diameter of 0.15 to 0.60 μm in all particles were set as shown in Table 1, respectively. The properties of the 38 μm-thick polyimide films obtained in this manner were evaluated and are shown in Table 1.

[実施例8]
全粒子の粒子径が0.01μm以上1.5μm以下に収まっており、平均粒子径0.37μm、粒子径0.15〜0.60μmの粒子が全粒子中86.5体積%のシリカのN,N−ジメチルアセトアミドスラリーを合成例1で得たポリアミド酸溶液に樹脂重量当たり0.35重量%添加し、十分攪拌、分散させた。このポリアミド酸溶液に無水酢酸(分子量102.09)とイソキノリンからなる転化剤をポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。得られた混合物を、T型スリットダイより回転する90℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.05mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ25μmのポリイミドフィルムを得た。
[Example 8]
The particle diameter of all the particles is 0.01 μm or more and 1.5 μm or less, and particles having an average particle diameter of 0.37 μm and a particle diameter of 0.15 to 0.60 μm are 86.5% by volume of silica N. , N-dimethylacetamide slurry was added to the polyamic acid solution obtained in Synthesis Example 1 in an amount of 0.35% by weight per resin weight and sufficiently stirred and dispersed. To this polyamic acid solution, a conversion agent comprising acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight with respect to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. The obtained mixture was cast on a 90 ° C. stainless steel drum rotated by a T-shaped slit die to obtain a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.05 mm. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 25 μm.

得られたポリイミドフィルムの特性を表2に示した。   The properties of the obtained polyimide film are shown in Table 2.

[実施例9]
ドラムの回転速度は実施例8と同一で、ドラムから引き剥がし後のゲルフィルム搬送速度(製膜速度)を実施例8よりも2倍に速め、12.5μm厚みのフィルムを得た以外は、実施例8と同様にして得たポリイミドフィルムについてそれぞれ特性を評価し、表2に示した。
[Example 9]
The rotational speed of the drum was the same as in Example 8, except that the gel film transport speed (film forming speed) after peeling from the drum was twice as fast as in Example 8 to obtain a 12.5 μm thick film. The properties of the polyimide films obtained in the same manner as in Example 8 were evaluated and are shown in Table 2.

[実施例10]
ドラムの回転速度は実施例8と同一で、ドラムから引き剥がし後のゲルフィルム搬送速度(製膜速度)を実施例8よりも4倍に速め、7.5μm厚みのフィルムを得た以外は、実施例8と同様にして得たポリイミドフィルムについてそれぞれ特性を評価し、表2に示した。
[Example 10]
The rotational speed of the drum was the same as in Example 8, except that the gel film conveyance speed (film formation speed) after peeling from the drum was increased 4 times compared to Example 8 to obtain a film having a thickness of 7.5 μm. The properties of the polyimide films obtained in the same manner as in Example 8 were evaluated and are shown in Table 2.

[実施例11]
ドラムの回転速度は実施例8と同一で、ドラムから引き剥がし後のゲルフィルム搬送速度(製膜速度)を実施例8よりも2分の1の速度とし、50μm厚みのフィルムを得た以外は、実施例8と同様にして得たポリイミドフィルムについてそれぞれ特性を評価し、表2に示した。
[Example 11]
The rotational speed of the drum was the same as in Example 8, except that the gel film transport speed (film forming speed) after peeling from the drum was half that of Example 8, and a film having a thickness of 50 μm was obtained. The characteristics of the polyimide films obtained in the same manner as in Example 8 were evaluated and are shown in Table 2.

[実施例12]
ドラムの回転速度は実施例8と同一で、ドラムから引き剥がし後のゲルフィルム搬送速度(製膜速度)を実施例8よりも3分の1の速度とし、75μm厚みのフィルムを得た以外は、実施例8と同様にして得たポリイミドフィルムについてそれぞれ特性を評価し、表2に示した。
[Example 12]
The rotational speed of the drum was the same as in Example 8, except that the gel film transport speed (film forming speed) after peeling from the drum was 1/3 of that in Example 8, and a 75 μm thick film was obtained. The characteristics of the polyimide films obtained in the same manner as in Example 8 were evaluated and are shown in Table 2.

[比較例1]
シリカを添加しない以外は、実施例1と同様にして、38μm厚みのポリイミドフィルムを得た。得られたポリイミドフィルムについて特性を評価し、表3に示した。静摩擦係数が高く滑り性の悪いフィルムが得られた。また接着力も低かった。
[Comparative Example 1]
A polyimide film having a thickness of 38 μm was obtained in the same manner as in Example 1 except that silica was not added. Properties of the obtained polyimide film were evaluated and are shown in Table 3. A film with a high coefficient of static friction and poor slip was obtained. Also, the adhesive strength was low.

[比較例2]
全粒子の粒子径が0.1μm以上4.5μm以下に収まっており、平均粒子径1.1μm、粒子径0.15〜0.60μmの粒子が全粒子中27.3体積%のシリカのN,N−ジメチルアセトアミドスラリーを合成例6で得たポリアミド酸溶液に樹脂重量当たり0.2重量%添加し、十分攪拌、分散させた。このポリアミド酸溶液に無水酢酸(分子量102.09)とイソキノリンからなる転化剤をポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。得られた混合物を、T型スリットダイより回転する90℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.05mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ38μmのポリイミドフィルムを得た。
[Comparative Example 2]
The particle diameter of all particles is 0.1 μm or more and 4.5 μm or less, and the average particle diameter is 1.1 μm and the particle diameter is 0.15 to 0.60 μm. , N-dimethylacetamide slurry was added to the polyamic acid solution obtained in Synthesis Example 6 by 0.2% by weight per resin weight and sufficiently stirred and dispersed. To this polyamic acid solution, a conversion agent comprising acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight with respect to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. The obtained mixture was cast on a 90 ° C. stainless steel drum rotated by a T-shaped slit die to obtain a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.05 mm. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 38 μm.

得られたポリイミドフィルムの特性を表3に示した。AOI検査では異物と微粒子の区別が付かなく、異常突起も多く発生した。また線膨張係数が高いため寸法変化が大きかった。   The properties of the obtained polyimide film are shown in Table 3. AOI inspection did not distinguish between foreign particles and fine particles, and many abnormal projections were generated. Moreover, the dimensional change was large due to the high linear expansion coefficient.

[比較例3]
粒子径範囲が0.01〜0.3μm、平均粒子径0.08μm、添加量0.35重量%、粒子径0.15〜0.60μmの粒子の全粒子中に占める割合31.4体積%のリン酸水素カルシウムを用いた以外は、比較例2と同様にして得られた38μm厚みのポリイミドフィルムについて特性を評価し、表3に示した。静摩擦係数が高く、滑り性がやや悪いフィルムが得られた。また線膨張係数が高いため寸法変化が大きかった。
[Comparative Example 3]
31.4% by volume of particles having a particle size range of 0.01 to 0.3 μm, an average particle size of 0.08 μm, an addition amount of 0.35% by weight, and a particle size of 0.15 to 0.60 μm in all particles The properties of a 38 μm-thick polyimide film obtained in the same manner as in Comparative Example 2 except that the calcium hydrogen phosphate was used were evaluated and are shown in Table 3. A film having a high coefficient of static friction and slightly poor sliding property was obtained. Moreover, the dimensional change was large due to the high linear expansion coefficient.

[比較例4]
粒子径範囲が0.01〜1.5μm、平均粒子径0.4μm、添加量0.35重量%、粒子径0.15〜0.60μmの粒子の全粒子中に占める割合72.6体積%のリン酸水素カルシウムを用いた以外は、比較例2と同様にして得られた38μm厚みのポリイミドフィルムについて特性を評価し、表3に示した。この例では、0.9〜1.3μmの粒子径の占有率が全体の22.3体積%を占めていたため、これが原因で異常突起数が多くなった。またAOI検査では異物と微粒子の区別が付けづらい結果となった。さらには線膨張係数が高いため寸法変化が大きかった。
[Comparative Example 4]
The ratio of the particle diameter range of 0.01 to 1.5 μm, the average particle diameter of 0.4 μm, the addition amount of 0.35% by weight, and the particle diameter of 0.15 to 0.60 μm in all the particles is 72.6% by volume. The properties of a 38 μm-thick polyimide film obtained in the same manner as in Comparative Example 2 except that the calcium hydrogen phosphate was used were evaluated and are shown in Table 3. In this example, since the occupation ratio of the particle diameter of 0.9 to 1.3 μm occupied 22.3% by volume, the number of abnormal protrusions increased. In the AOI inspection, it was difficult to distinguish between foreign substances and fine particles. Furthermore, the dimensional change was large due to the high linear expansion coefficient.

[比較例5]
合成例1で得たポリアミド酸溶液を用いた以外は、比較例2と同様にして、38μm厚みのポリイミドフィルムを得た。得られたポリイミドフィルムについて特性を評価し、表3に示した。AOI検査では異物と微粒子の区別が付かなく、異常突起も多く発生した。
[Comparative Example 5]
A polyimide film having a thickness of 38 μm was obtained in the same manner as in Comparative Example 2 except that the polyamic acid solution obtained in Synthesis Example 1 was used. Properties of the obtained polyimide film were evaluated and are shown in Table 3. AOI inspection did not distinguish between foreign particles and fine particles, and many abnormal projections were generated.

Figure 2008106140
Figure 2008106140

Figure 2008106140
Figure 2008106140

Figure 2008106140
Figure 2008106140

表1〜3の結果から明らかな通り、ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテル、酸二無水物成分としてピロメリット酸二無水物とから主としてイミド化によって製造されるポリイミドフィルムであって粒子径が0.01〜1.5μmの範囲内にあり、かつ平均粒子径が0.05〜0.7μmである無機粒子を主体とする粉体がフィルム樹脂重量当たり0.1〜0.9重量%の割合で、フィルム中に均一に分散された本発明のポリイミドフィルムは、優れた易滑性、寸法安定性、接着性を保持し、粗大粒子による突起数も少ないことからAOI検査により該粒子が異物と判断されるような障害もなく、したがって微細な配線を形成するフレキシブルプリント配線基板(FPC)やチップオンフィルム(COF)などの用途に好適である。   As is clear from the results of Tables 1 to 3, it is a polyimide film produced mainly by imidization from paraphenylenediamine and 4,4′-diaminodiphenyl ether as a diamine component and pyromellitic dianhydride as an acid dianhydride component. The powder mainly composed of inorganic particles having a particle diameter in the range of 0.01 to 1.5 μm and an average particle diameter of 0.05 to 0.7 μm is 0.1 to 0 per film resin weight. The polyimide film of the present invention uniformly dispersed in the film at a ratio of 9% by weight retains excellent slidability, dimensional stability and adhesiveness, and has a small number of projections due to coarse particles, so AOI inspection Therefore, the flexible printed wiring board (FPC) or chip-on-film which does not have a problem that the particles are judged as foreign matter and thus forms fine wiring Suitable for applications such as (COF).

本発明のポリイミドフィルムは、フィルムの走行性、接着性及び寸法安定性が優れると共に、フレキシブルプリント配線基板(FPC)やチップオンフィルム(COF)の自動光学検査システム(AOI)に適応可能であることから、AOI検査により無機粒子が異物と判断されるような障害もなく、微細な配線を形成するフレキシブルプリント配線基板(FPC)やチップオンフィルム(COF)などの用途に好適である。   The polyimide film of the present invention has excellent film runnability, adhesion and dimensional stability, and can be applied to an automatic optical inspection system (AOI) of a flexible printed circuit board (FPC) or a chip-on-film (COF). Therefore, it is suitable for uses such as a flexible printed wiring board (FPC) and a chip-on-film (COF) that form fine wiring without any obstacle that the inorganic particles are judged as foreign matter by the AOI inspection.

Claims (8)

ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテル、酸二無水物成分としてピロメリット酸二無水物を主たる構成成分とし、イミド化によって製造されるポリイミドフィルムであって、粒子径が0.01〜1.5μmの範囲内にあり、かつ平均粒子径が0.05〜0.7μmであり、さらに粒子径0.15〜0.60μmの無機粒子が全粒子中80体積%以上の割合を占める粒度分布を有する無機粒子がフィルム樹脂重量当たり0.1〜0.9重量%の割合でフィルム中に分散されていることを特徴とするポリイミドフィルム。 Paraimide diamine and 4,4′-diaminodiphenyl ether as a diamine component, and pyromellitic dianhydride as an acid dianhydride component as main components, and a polyimide film produced by imidization, having a particle size of 0. In the range of 01 to 1.5 μm, the average particle size is 0.05 to 0.7 μm, and the proportion of inorganic particles having a particle size of 0.15 to 0.60 μm is 80% by volume or more in all particles. A polyimide film characterized in that inorganic particles having an occupied particle size distribution are dispersed in the film at a ratio of 0.1 to 0.9% by weight per film resin weight. 前記ポリイミドフィルムにおける各構成成分の割合が、ジアミン成分として10〜50モル%のパラフェニレンジアミン及び50〜90モル%の4,4’−ジアミノジフェニルエーテル、酸二無水物成分として100モル%のピロメリット酸二無水物からなることを特徴とする請求項1に記載のポリイミドフィルム。 The proportion of each component in the polyimide film is 10 to 50 mol% paraphenylenediamine and 50 to 90 mol% 4,4'-diaminodiphenyl ether as a diamine component, and 100 mol% pyromellitic as an acid dianhydride component. The polyimide film according to claim 1, comprising an acid dianhydride. 前記無機粒子がフィルム樹脂重量当たり0.3〜0.8重量%の割合で含まれていることを特徴とする請求項1または2に記載のポリイミドフィルム。 The polyimide film according to claim 1 or 2, wherein the inorganic particles are contained at a ratio of 0.3 to 0.8% by weight per film resin weight. 前記無機粒子の平均粒子径が0.1〜0.6μmであることを特徴とする請求項1〜3のいずれか1項に記載のポリイミドフィルム。 The polyimide film according to claim 1, wherein the inorganic particles have an average particle diameter of 0.1 to 0.6 μm. 前記無機粒子の平均粒子径が0.3〜0.5μmであることを特徴とする請求項1〜4のいずれか1項に記載のポリイミドフィルム。 The average particle diameter of the said inorganic particle is 0.3-0.5 micrometer, The polyimide film of any one of Claims 1-4 characterized by the above-mentioned. 前記無機粒子に起因する突起がフィルム表面に存在し、その突起の高さが2μm以上のものの数が5個/40cm角以下であることを特徴とする請求項1〜5のいずれか1項に記載のポリイミドフィルム。 6. The method according to claim 1, wherein protrusions due to the inorganic particles are present on the film surface, and the number of protrusions having a height of 2 μm or more is 5/40 cm square or less. The polyimide film as described. フィルム厚みが5〜75μmであることを特徴とする請求項1〜6のいずれか1項に記載のポリイミドフィルム。 Film thickness is 5-75 micrometers, The polyimide film of any one of Claims 1-6 characterized by the above-mentioned. パラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテルとからなるジアミン成分と、ピロメリット酸二無水物からなるテトラカルボン酸二無水物成分を、極性有機溶媒中で反応させてポリアミド酸を製造し、これをイミド化した後、フィルムに成形するに際し、粒子径が0.01〜1.5μmの範囲内にあり、かつ平均粒子径が0.05〜0.7μmであり、さらに粒子径0.15〜0.60μmの無機粒子が全粒子中80体積%以上の割合を占める粒度分布を有する無機粒子を、前記極性有機溶媒と同じ極性有機溶媒に分散させたスラリーを、ポリイミド製造工程中のポリアミド酸溶液に、前記無機粒子が樹脂重量当たり0.1〜0.9重量%の割合となるように添加することを特徴とする請求項1〜7のいずれか1項に記載のポリイミドフィルムの製造方法。 A polyamic acid is produced by reacting a diamine component composed of paraphenylenediamine and 4,4′-diaminodiphenyl ether with a tetracarboxylic dianhydride component composed of pyromellitic dianhydride in a polar organic solvent. After imidizing, when forming into a film, the particle diameter is in the range of 0.01 to 1.5 μm, the average particle diameter is 0.05 to 0.7 μm, and the particle diameter is 0.15 to 0.15 μm. A polyamic acid solution in a polyimide manufacturing process is prepared by dispersing slurry in which inorganic particles having a particle size distribution in which 0.60 μm inorganic particles occupy 80% by volume or more of all particles are dispersed in the same polar organic solvent as the polar organic solvent. The inorganic particles are added so as to have a ratio of 0.1 to 0.9% by weight per resin weight. Method for producing Li imide film.
JP2006290151A 2006-10-25 2006-10-25 Polyimide film and method for producing the same Pending JP2008106140A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006290151A JP2008106140A (en) 2006-10-25 2006-10-25 Polyimide film and method for producing the same
PCT/JP2007/070522 WO2008050705A1 (en) 2006-10-25 2007-10-22 Polyimide film and method for production thereof
KR1020097007056A KR20090073136A (en) 2006-10-25 2007-10-22 Polyimide film and method for production thereof
TW096139585A TW200835720A (en) 2006-10-25 2007-10-23 Polyimide film and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290151A JP2008106140A (en) 2006-10-25 2006-10-25 Polyimide film and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008106140A true JP2008106140A (en) 2008-05-08

Family

ID=39324502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290151A Pending JP2008106140A (en) 2006-10-25 2006-10-25 Polyimide film and method for producing the same

Country Status (4)

Country Link
JP (1) JP2008106140A (en)
KR (1) KR20090073136A (en)
TW (1) TW200835720A (en)
WO (1) WO2008050705A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150137447A (en) 2014-05-29 2015-12-09 삼성전자주식회사 Slot die for film manufacturing
TWI780124B (en) * 2017-03-29 2022-10-11 日商東麗 杜邦股份有限公司 Polyimide film
KR102202472B1 (en) * 2019-06-11 2021-01-13 피아이첨단소재 주식회사 Polyimide film and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730247B2 (en) * 1986-10-09 1995-04-05 宇部興産株式会社 Aromatic polyamic acid solution composition
JPH03170548A (en) * 1989-11-30 1991-07-24 Mitsui Toatsu Chem Inc Polyimide film and its production
JP2914338B2 (en) * 1996-02-27 1999-06-28 東レ株式会社 Aromatic polyamide or aromatic polyimide film and magnetic recording medium using the same
JP2001031866A (en) * 1999-07-21 2001-02-06 Mitsubishi Chemicals Corp Polyimide composition and substrate for solar cell produced by using the composition
JP2004217907A (en) * 2002-12-25 2004-08-05 Du Pont Toray Co Ltd Polyimide film and method for producing the same
JP2005314669A (en) * 2004-03-30 2005-11-10 Du Pont Toray Co Ltd Polyimide film and copper-clad laminate using the same as substrate
JP2006124685A (en) * 2004-09-29 2006-05-18 Ube Ind Ltd Polyimide film for cof (chip-on-film), and laminate

Also Published As

Publication number Publication date
KR20090073136A (en) 2009-07-02
WO2008050705A1 (en) 2008-05-02
TW200835720A (en) 2008-09-01

Similar Documents

Publication Publication Date Title
JP6423633B2 (en) Polyimide film for graphite sheet and method for producing the same
JP5262030B2 (en) Polyimide film and copper-clad laminate based thereon
JP2005314669A (en) Polyimide film and copper-clad laminate using the same as substrate
JP7109946B2 (en) polyimide film
JP2017114098A (en) Laminated film
JP2008106139A (en) Polyimide film and method for producing the same
JP2008106141A (en) Polyimide film and method for producing the same
JP2010126634A (en) Polyimide film and method for producing the same
JP2009021351A (en) Cover lay
JP2013018926A (en) Polyimide film
JP4947297B2 (en) Copper plate
JP2016132744A (en) Polyimide film
JP2008106140A (en) Polyimide film and method for producing the same
JP2009021350A (en) Cover lay
JP2008106138A (en) Polyimide film and method for producing the same
JP5571839B2 (en) Polyimide film and copper-clad laminate based on the same
JP2004217907A (en) Polyimide film and method for producing the same
JP2008290303A (en) Copper-clad plate
JP5285557B2 (en) Aromatic polyimide film and method for producing the same
JP2008290304A (en) Copper-clad plate
JP2014043511A (en) Polyimide film and method for producing the same
JP2008290301A (en) Copper-clad plate
JP2009018522A (en) Copper clad plate
JP2009214424A (en) Multilayer aromatic polyimide film
JP2016132743A (en) Polyimide film