JPH02180679A - Preparation of flexible printed wiring board - Google Patents

Preparation of flexible printed wiring board

Info

Publication number
JPH02180679A
JPH02180679A JP33410088A JP33410088A JPH02180679A JP H02180679 A JPH02180679 A JP H02180679A JP 33410088 A JP33410088 A JP 33410088A JP 33410088 A JP33410088 A JP 33410088A JP H02180679 A JPH02180679 A JP H02180679A
Authority
JP
Japan
Prior art keywords
polyimide precursor
precursor resin
printed wiring
flexible printed
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33410088A
Other languages
Japanese (ja)
Other versions
JPH0479713B2 (en
Inventor
Yoshihiro Yamaguchi
能弘 山口
Tetsushi Tanno
淡野 哲志
Takashi Watanabe
尚 渡辺
Seiji Sato
誠治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP33410088A priority Critical patent/JPH02180679A/en
Publication of JPH02180679A publication Critical patent/JPH02180679A/en
Publication of JPH0479713B2 publication Critical patent/JPH0479713B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a flexible printed wiring board generating no curling and excellent in heat resistance and adhesiveness by a simple apparatus and operation by applying a plurality of polyimide precursor resin solutions to a conductor such as a copper foil in a laminar state to form a plurality of layers and subsequently drying and curing said layers. CONSTITUTION:At least two kinds of solutions each prepared by dissolving a polyimide precursor resin such as polyamic acid in a solvent such as dimethylacetamide are simultaneously applied to a conductor 1 composed of a metal foil 1 such as a copper foil according to a method using a multilayer die 2. Thereafter, the formed layers are dried in a dryer 3 and cured in a curing device 4 to convert the polyimide precursor resin solutions to a polyimide resin. By this simple apparatus and operation, a flexible printed wiring board of high quality generating no curling is prepared.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリイミド樹脂を導体上に直接塗布してなるフ
レキシブルプリント配線用基板の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a flexible printed wiring board by directly applying a polyimide resin onto a conductor.

〔従来の技術〕[Conventional technology]

銅箔等の導体上にポリイミド前駆体樹脂7容液を直接塗
布し、乾燥および硬化してフレキシブルプリント配線用
基板を製造することは特開昭62−212140号公報
等で知られている。この方法は接着剤を使用しないため
、カール発生の低減、i5を熱性の向上環の利点を有す
るが、使用するポリイミド前駆体樹脂の種類によっては
多少のカール発生、接着力の不足などの問題が生ずるこ
とがあることが認められた。そして、これらの問題点の
多くは複数のポリイミド前駆体樹脂を使用することによ
り解決できることが見出された。
It is known from Japanese Patent Application Laid-Open No. 62-212140 to manufacture a flexible printed wiring board by directly applying a 7 volume solution of polyimide precursor resin onto a conductor such as copper foil, drying and curing. Since this method does not use adhesive, it has the advantage of reducing curling and improving thermal properties of i5, but depending on the type of polyimide precursor resin used, there are problems such as slight curling and insufficient adhesive strength. It was recognized that this may occur. It has been found that many of these problems can be solved by using multiple polyimide precursor resins.

C発明が解決しようとする課題〕 本発明の目的は複数のポリイミド前駆体樹脂溶液を塗布
、乾燥、硬化を行うに当たり、装置構成を少なくし、操
作を簡易にしてフレキシブルプリント配線用基板を連続
的に製造することである。
C Problems to be Solved by the Invention] The purpose of the present invention is to reduce the equipment configuration and simplify the operation when applying, drying, and curing multiple polyimide precursor resin solutions to continuously form flexible printed wiring boards. It is to be manufactured in

(課題を解決するための手段〕 本発明は導体上に複数のポリイミド前駆体樹脂溶液を層
状に塗布し、乾燥および硬化させることによるフレキシ
ブルプリント配線用基板の製造方法である。
(Means for Solving the Problems) The present invention is a method of manufacturing a flexible printed wiring board by applying a plurality of polyimide precursor resin solutions on a conductor in layers, drying and curing the solution.

導体は金属箔であり、好ましくは5〜150μmの厚み
の銅箔である。ポリイミド前駆体樹脂は加熱硬化させる
ことによりイミド結合を生ずるものであり、代表的には
ポリアミック酸である。好ましくは、少なくとも1種の
ポリイミド前駆体樹脂が線膨張係数3X1(I’以下の
樹脂を与えるものであり、このような樹脂は前記特開昭
62−212140号公報等に記載されているが、より
好ましくは特開昭63−245988号公報、特開昭6
3−84188号公報等に記載されたようなジアミノベ
ンズアニリド又はその誘導体を含むジアミン類と芳香族
テトラカルボン酸とを反応させて得られる樹脂である。
The conductor is a metal foil, preferably a copper foil with a thickness of 5 to 150 μm. The polyimide precursor resin generates imide bonds by heating and curing, and is typically polyamic acid. Preferably, at least one polyimide precursor resin provides a resin with a linear expansion coefficient of 3X1 (I' or less), and such resins are described in the above-mentioned Japanese Patent Application Laid-Open No. 62-212140, etc. More preferably, JP-A-63-245988, JP-A-6
It is a resin obtained by reacting diamines containing diaminobenzanilide or its derivatives with an aromatic tetracarboxylic acid as described in Publication No. 3-84188 and the like.

ポリイミド前駆体樹脂はジメチルアセトアミド、N−メ
チル−2−ピロリドン等の溶媒に溶解した溶液して使用
される。そして、ポリイミド前駆体樹脂溶液は2種以上
使用し、これを層状に塗布する。なお、層状に塗布する
ためには、一定板上の粘度を有するポリイミド前駆体樹
脂溶液を使用すればよい。
The polyimide precursor resin is used in the form of a solution dissolved in a solvent such as dimethylacetamide or N-methyl-2-pyrrolidone. Two or more kinds of polyimide precursor resin solutions are used and applied in a layered manner. In addition, in order to apply it in a layered manner, a polyimide precursor resin solution having a constant plate viscosity may be used.

少なくとも1種のポリイミド前駆体樹脂溶液は直接、導
体上に塗布すると共に、少なくとも1種のポリイミド前
駆体樹脂溶液は他のポリイミド前駆体樹脂溶液の上に層
を形成するように塗布する。
The at least one polyimide precursor resin solution is applied directly onto the conductor, and the at least one polyimide precursor resin solution is applied to form a layer over another polyimide precursor resin solution.

この塗布は、塗布された未乾燥のポリイミド前駆体樹脂
溶液の層に逐次他のポリイミド前駆体樹脂i−?JIを
塗布してもよいが、好ましくは、少なくとも2種類のポ
リイミド前駆体樹脂溶液を同時に塗布する。同時に塗布
する手段としては多層ダイを用いる方法が好ましい、な
お、3層以上を塗布する場合は、少なくとも2層につい
て本発明の方法により塗布すればよいが、装置の簡易化
の点からは全層を同時に塗布することが好ましい。
This application is performed by sequentially applying other polyimide precursor resin i-? JI may be applied, but preferably at least two types of polyimide precursor resin solutions are applied simultaneously. A method using a multilayer die is preferable as a means for simultaneously coating. In addition, when coating three or more layers, at least two layers may be coated by the method of the present invention, but from the viewpoint of simplifying the equipment, it is preferable to coat all layers. It is preferable to apply both at the same time.

ポリイミド前駆体樹脂溶液の層を複数層塗布したのち、
乾燥および硬化させて、ポリイミド前駆体樹脂溶液をポ
リイミド樹脂とする。乾燥は通常、150℃以下、好ま
しくは90〜130℃で行われ、硬化はイミド化が生ず
る温度以上、通常130℃以上好ましくは200〜40
0℃、より好ましくは250〜360℃で行われる。
After applying multiple layers of polyimide precursor resin solution,
The polyimide precursor resin solution is dried and cured to form a polyimide resin. Drying is usually carried out at 150°C or lower, preferably 90 to 130°C, and curing is carried out at a temperature higher than the temperature at which imidization occurs, usually 130°C or higher, preferably 200 to 40°C.
It is carried out at 0°C, more preferably at 250-360°C.

乾燥および硬化に用いる装置としては、任意のものを使
用することができるが、塗布された導体(以下、基体と
いう)が、装置に接触しないフローティング形式のもの
を使用することが好ましい。
Although any device can be used for drying and curing, it is preferable to use a floating type device in which the applied conductor (hereinafter referred to as the substrate) does not come into contact with the device.

フローティング形式とは、基体を気流中に浮遊させた状
態で乾燥および硬化を行うものであり、基体を連続的に
走行させつつ、基体面に対して上又は下に配置したノズ
ルから均一に気流を基体面に向けて吹き出し、走行する
基体を浮遊させると共に、波を打つように湾曲しながら
走行させるものである。このようなフローティング形式
のものを使用することにより、よりカールの少ない製品
を得ることができる。加熱は熱風を気流として吹き出す
ことにより行うことが好ましいが、赤外線加熱、電磁誘
導加熱等を使用又は併用してもよい。
The floating method is a method in which drying and curing are performed while the substrate is suspended in an airflow, and while the substrate is continuously running, airflow is uniformly applied from nozzles placed above or below the substrate surface. Air is blown toward the surface of the substrate, causing the traveling substrate to float, and to travel while curving in waves. By using such a floating type, a product with less curl can be obtained. Heating is preferably performed by blowing out hot air as an air stream, but infrared heating, electromagnetic induction heating, etc. may be used or used in combination.

乾燥および硬化は順次温度を高めるようにして行うこと
が好ましいので、複数の乾燥室および硬化室を設け、基
体の走行方向に従って順次その温度を高くすることが望
ましい。また、乾燥器と硬化器は一体の連続したもので
あっても何ら差支えない。
Since drying and curing are preferably carried out by increasing the temperature sequentially, it is desirable to provide a plurality of drying chambers and curing chambers and to increase the temperature sequentially in accordance with the traveling direction of the substrate. Moreover, there is no problem even if the dryer and the hardener are integrated and continuous.

塗布するポリイミド前駆体樹脂溶液については、均一な
塗膜を得るため、および塗膜の絶縁性を向上させるため
には、溶液中に混入した異物を取り除くことが好ましく
、溶液装入ラインにフィルターを入れることがよい。
Regarding the polyimide precursor resin solution to be applied, in order to obtain a uniform coating film and improve the insulation properties of the coating film, it is preferable to remove foreign substances mixed into the solution, and a filter is installed in the solution charging line. It's good to put it in.

フィルターとしてはステンレススチール製の焼結フィル
ター又は不織布が適している。フィルターはその寿命を
長くするため、2段階以上の多段階に配置することがよ
く、その場合はjlIi次フィシフイルターを小さくす
ることがよい、孔径は100〜1.unが好ましい。ま
た、ポリイミド前駆体樹脂溶液の装入ラインを複数設け
、並列に配置するとフィルター交換の作業性が向上する
。また、塗布するポリイミド前駆体樹脂溶液は予め脱泡
器で脱泡しておくことが好ましい。
Suitable filters are sintered stainless steel filters or non-woven fabrics. In order to extend the life of the filter, it is best to arrange it in multiple stages of two or more. In that case, it is better to make the jlIi order filter small, with a pore diameter of 100 to 1. un is preferred. Furthermore, if a plurality of charging lines for the polyimide precursor resin solution are provided and arranged in parallel, the workability of filter replacement will be improved. Further, it is preferable that the polyimide precursor resin solution to be applied be defoamed in advance using a defoamer.

〔実施例〕〔Example〕

以下、実施例に基づいて、本発明を具体的に説明する。 The present invention will be specifically described below based on Examples.

線膨張係数は、イミド化反応が十分終了した試料を用い
、サーモメカニカルアナライザー(TMA)を用いて、
250℃に昇温後に10℃/minで冷却して240℃
から100℃までの平均の線膨張係数を算出して求めた
The coefficient of linear expansion is determined using a thermomechanical analyzer (TMA) using a sample that has undergone sufficient imidization reaction.
After heating to 250℃, cool at 10℃/min to 240℃
The average linear expansion coefficient from 100°C to 100°C was calculated.

接着力は、テンションテスターを用い、輻10m111
の銅張品の樹脂側を両面テープによりアルミ板に固定し
、銅を180″′方向に5 mm/minの速度で剥離
して求めた。
Adhesive strength was measured using a tension tester with a radius of 10m111
The resin side of the copper-clad product was fixed to an aluminum plate with double-sided tape, and the copper was peeled off in the 180'' direction at a speed of 5 mm/min.

加熱収縮率は、幅10mm、長さ200mmの導体をエ
ツチングした後のフィルムを用い、250℃の熱風オー
ブン中で30分間熱処理し、その前後の寸法変化率によ
り求めた。
The heat shrinkage rate was determined from the dimensional change rate before and after heat treatment using a film after etching a conductor with a width of 10 mm and a length of 200 mm in a hot air oven at 250° C. for 30 minutes.

エツチング後のフィルムのカールは、導体を塩化第二鉄
水溶液で全面エツチングした後、縦10cmXtR10
cmx厚さ25μmの大きさのフィルムを100℃で1
0分間乾燥した後、発生したカールの曲率半径を求めて
数値化した。
The curl of the film after etching is determined by etching the entire surface of the conductor with a ferric chloride aqueous solution, and then etching the film with a length of 10 cm
A film with a size of cm x 25 μm thick was heated at 100°C.
After drying for 0 minutes, the radius of curvature of the curls generated was determined and quantified.

エツチング後のフィルムの強度及び弾性率は、JIS 
  Z−1702、ASTM   D−88267に準
じて測定した。
The strength and elastic modulus of the film after etching are JIS
Measured according to Z-1702 and ASTM D-88267.

なお、各側における略号は以下のとおりである。The abbreviations on each side are as follows.

PMDA :ビロメリフト酸二無水物 BTDA:3.3′、4.4′−ベンヅフェノンテトラ
カルボン酸二無水物 DDE  :4.4’−ジアミノジフェニルエーテル MABA : 2 ”−メチル−4,4′−ジアミノベ
ンズアニリド DMACニジメチルアセトアミド 合成例I DDEl、2kgをDMAC27kgに溶解した後10
℃に冷却し、BTDAl、9kgを徐々に加えて、反応
させ、粘稠なポリイミド前駆体樹脂溶液Aを得た。
PMDA: Bilomeliftic dianhydride BTDA: 3.3',4.4'-benzuphenonetetracarboxylic dianhydride DDE: 4.4'-diaminodiphenyl ether MABA: 2''-methyl-4,4'-diamino Benzanilide DMAC Nidimethylacetamide Synthesis Example I After dissolving 2 kg of DDEl in 27 kg of DMAC,
The mixture was cooled to 0.degree. C., and 9 kg of BTDAl was gradually added thereto to cause a reaction, thereby obtaining a viscous polyimide precursor resin solution A.

合成例2 MABA5.2kfとDDE4.0kgをD M A 
C102kgに溶解した後、10℃に冷却し、P M 
DA8.8kgを徐々に加えて、反応させ、粘稠なポリ
イミド前駆体樹脂溶液Bを得た。
Synthesis Example 2 DMA 5.2kf of MABA and 4.0kg of DDE
After dissolving in 102 kg of C, it was cooled to 10°C and P M
8.8 kg of DA was gradually added and reacted to obtain a viscous polyimide precursor resin solution B.

実施例 第1図の装置にて、銅箔1に第1層がポリイミド前駆体
樹脂溶液、第2層がポリイミド前駆体樹脂溶液B1第3
層がポリイミド前駆体樹脂溶液Aでそれぞれのフィルム
厚さが8.17.2μmになるよう多層ダイ2で同時に
塗布し、その後130〜360℃まで順次温度が高めら
れ複数のフローティング形式の乾燥器3および硬化器4
を22分かけて走行させることにより、乾燥および硬化
を行い、樹脂層の厚み27μmの銅張品を巻取り機5で
巻取った。得られた洞張品すなわち、フレキシブルプリ
ント配線用基板は接着力1.8ktr1国、カールは略
平ら、加熱収縮率0. 1%、熱膨張係数が11 X 
10−’ (1/K)の良好なものであった。
Example In the apparatus shown in FIG. 1, the first layer was a polyimide precursor resin solution and the second layer was a polyimide precursor resin solution B1 and a third layer were applied to the copper foil 1.
The layers are simultaneously coated with a polyimide precursor resin solution A using a multilayer die 2 so that each film has a thickness of 8.17.2 μm, and then the temperature is sequentially increased from 130 to 360° C., and a plurality of floating type dryers 3 are applied. and hardener 4
was run for 22 minutes to dry and cure, and a copper-clad product with a resin layer thickness of 27 μm was wound up with a winding machine 5. The obtained product, that is, the flexible printed wiring board, has an adhesive strength of 1.8 ktr1, a substantially flat curl, and a heat shrinkage rate of 0. 1%, thermal expansion coefficient 11
It was a good value of 10-' (1/K).

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法によれば、簡易な装置および節易な操
作で、カールのない、耐熱性や接着性に優れた筋品質の
フレキシブルプリント配線用基板を製造することができ
る。
According to the manufacturing method of the present invention, a curl-free flexible printed wiring board with excellent heat resistance and adhesive properties and streak quality can be manufactured with a simple device and easy operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のフローシートを示すものであ
る。 1 ・・−・−−−一−−・・・・・銅箔、2 ・・−
−−一−・・・多層グイ、3−・−−−−−−一 乾燥
器、4 ・−・−・・−・−硬化器、5 ・−−−−−
−一 巻取り機
FIG. 1 shows a flow sheet of an embodiment of the present invention. 1 ・・−・−−−1−−・・・・Copper foil, 2 ・・−
−−1−・・・Multilayer gooey, 3−・−−−−−−1 Dryer, 4 ・−・−・・−・−Harder, 5 ・−−−−−
-1 Winding machine

Claims (3)

【特許請求の範囲】[Claims] 1.導体上に複数のポリイミド前駆体樹脂溶液を層状に
塗布し、乾燥および硬化させることを特徴とするフレキ
シブルプリント配線用基板の製造方法。
1. A method for manufacturing a flexible printed wiring board, comprising applying a plurality of polyimide precursor resin solutions on a conductor in layers, drying and curing the layers.
2.導体上に複数のポリイミド前駆体樹脂溶液を多層ダ
イを用いて直接同時に、層状に塗布し、乾燥および硬化
させることを特徴とするフレキシブルプリント配線用基
板の製造方法。
2. A method for manufacturing a flexible printed wiring board, which comprises directly and simultaneously applying a plurality of polyimide precursor resin solutions onto a conductor in layers using a multilayer die, drying and curing the solution.
3.乾燥および硬化をフローティング形式で行う請求項
1又は2記載のフレキシブルプリント配線用基板の製造
方法。
3. 3. The method for manufacturing a flexible printed wiring board according to claim 1, wherein drying and curing are performed in a floating manner.
JP33410088A 1988-12-29 1988-12-29 Preparation of flexible printed wiring board Granted JPH02180679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33410088A JPH02180679A (en) 1988-12-29 1988-12-29 Preparation of flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33410088A JPH02180679A (en) 1988-12-29 1988-12-29 Preparation of flexible printed wiring board

Publications (2)

Publication Number Publication Date
JPH02180679A true JPH02180679A (en) 1990-07-13
JPH0479713B2 JPH0479713B2 (en) 1992-12-16

Family

ID=18273526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33410088A Granted JPH02180679A (en) 1988-12-29 1988-12-29 Preparation of flexible printed wiring board

Country Status (1)

Country Link
JP (1) JPH02180679A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206590A (en) * 1990-11-30 1992-07-28 Sumitomo Bakelite Co Ltd Manufacture of flexible printed circuit board
JP2003080630A (en) * 2001-09-11 2003-03-19 Mitsui Chemicals Inc Polyimide metallic foil laminate
WO2005087388A1 (en) * 2004-03-17 2005-09-22 Nippon Steel Chemical Co., Ltd. Process for production of laminates for hdd suspension
US7060784B2 (en) 2003-06-25 2006-06-13 Shin-Etsu Chemical Co., Ltd. Polyimide precursor resin solution composition sheet
US7321496B2 (en) 2004-03-19 2008-01-22 Matsushita Electric Industrial Co., Ltd. Flexible substrate, multilayer flexible substrate and process for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804830B2 (en) * 2011-07-29 2015-11-04 株式会社カネカ Method for producing metal-clad laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474762A (en) * 1977-11-28 1979-06-15 Fuji Photo Film Co Ltd Production of heat-sensitive recording sheet
JPS6119352A (en) * 1984-06-30 1986-01-28 アクゾ・エヌ・ヴエー Flexible multilayer laminate and manufacture thereof
JPH02168694A (en) * 1988-12-22 1990-06-28 Mitsui Toatsu Chem Inc Flexible laminate and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474762A (en) * 1977-11-28 1979-06-15 Fuji Photo Film Co Ltd Production of heat-sensitive recording sheet
JPS6119352A (en) * 1984-06-30 1986-01-28 アクゾ・エヌ・ヴエー Flexible multilayer laminate and manufacture thereof
JPH02168694A (en) * 1988-12-22 1990-06-28 Mitsui Toatsu Chem Inc Flexible laminate and manufacture thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206590A (en) * 1990-11-30 1992-07-28 Sumitomo Bakelite Co Ltd Manufacture of flexible printed circuit board
JP2003080630A (en) * 2001-09-11 2003-03-19 Mitsui Chemicals Inc Polyimide metallic foil laminate
JP4667675B2 (en) * 2001-09-11 2011-04-13 三井化学株式会社 Polyimide metal foil laminate
US7060784B2 (en) 2003-06-25 2006-06-13 Shin-Etsu Chemical Co., Ltd. Polyimide precursor resin solution composition sheet
WO2005087388A1 (en) * 2004-03-17 2005-09-22 Nippon Steel Chemical Co., Ltd. Process for production of laminates for hdd suspension
US7321496B2 (en) 2004-03-19 2008-01-22 Matsushita Electric Industrial Co., Ltd. Flexible substrate, multilayer flexible substrate and process for producing the same
US7773386B2 (en) 2004-03-19 2010-08-10 Panasonic Corporation Flexible substrate, multilayer flexible substrate

Also Published As

Publication number Publication date
JPH0479713B2 (en) 1992-12-16

Similar Documents

Publication Publication Date Title
TWI408200B (en) Novel polyimide film, adhesive film obtained using the same, and flexible metal laminated laminate
TWI465491B (en) Organic insulating film having controlled molecular orientation, and adhesive film, flexible metal-clad laminate, multilayer flexible metal-clad laminate, coverlay film, tab tape, and cof base tape including the organic insulating
TWI386477B (en) Polyimine multilayer multilayer film and method of producing the same
US5112694A (en) Flexible printed-circuit base board and process for producing the same
JPS59162044A (en) Thick polyimide-metal laminate of large exfoliation strength
JPS61264028A (en) Polyimide film having high dimensional stability and production thereof
JPWO2009019968A1 (en) Multilayer polyimide film, laminate and metal-clad laminate
JP4078625B2 (en) Biaxially oriented polyimide film and method for producing the same
TWI610972B (en) Polyimine film and method of producing the same
JP4774901B2 (en) Method for producing polyimide film
JP2000071268A (en) Polyimide film and its production
JPS60157286A (en) Flexible printed board and method of producing same
KR102432657B1 (en) Polyimide film
JPH02180682A (en) Preparation of board for flexible printed wiring
JPH02180679A (en) Preparation of flexible printed wiring board
JP2009117192A (en) Insulated heating element
JP2009182073A (en) Multilayer substrate
JP2007169494A (en) Aromatic polyimide film, cover-lay film and flexible laminated plate
JP3067128B2 (en) Manufacturing method of metal foil laminated polyimide film
JP2007055039A (en) One side metal clad laminated sheet and its manufacturing method
JPH03180343A (en) Multilayer extruded polyimide film and manufacture thereof
JP3947994B2 (en) Polyimide film, its production method and use
JPS61264027A (en) Production of polyimide film having high dimensional stability
JP4977953B2 (en) Polyimide precursor film, method for producing polyimide film, and polyimide film
JP2006321223A (en) Adhesive sheet, metal laminated sheet and printed wiring board