JPH01245586A - Flexible printed board - Google Patents

Flexible printed board

Info

Publication number
JPH01245586A
JPH01245586A JP63071818A JP7181888A JPH01245586A JP H01245586 A JPH01245586 A JP H01245586A JP 63071818 A JP63071818 A JP 63071818A JP 7181888 A JP7181888 A JP 7181888A JP H01245586 A JPH01245586 A JP H01245586A
Authority
JP
Japan
Prior art keywords
thermal expansion
resin layer
flexible printed
printed circuit
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63071818A
Other languages
Japanese (ja)
Other versions
JPH0522399B2 (en
Inventor
Takashi Watanabe
尚 渡辺
Haruhiko Aoi
晴彦 青井
Seiji Sato
誠治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP63071818A priority Critical patent/JPH01245586A/en
Priority to US07/329,139 priority patent/US4937133A/en
Priority to EP19890105469 priority patent/EP0335337B1/en
Priority to DE68925490T priority patent/DE68925490T2/en
Priority to KR1019890003943A priority patent/KR930010058B1/en
Publication of JPH01245586A publication Critical patent/JPH01245586A/en
Publication of JPH0522399B2 publication Critical patent/JPH0522399B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To realize a flexible printed board excellent in workability and valuable for an industrial use by a method wherein the thickness ratio of a resin layer high in thermal expansion to another resin layer low in thermal expansion is specified, where both the layers are polyimide resin layers of an insulator. CONSTITUTION:A flexible printed board composed of, at least, a conductor and an insulator is formed by coating the conductor with a resin layer, where the above insulator is a multilayer structure composed of two or more polyimide resin layers, and the t2/t1 ratio, where t2 denotes the sum of the thicknesses of resin layers low in thermal expansion and t1 represents the sum of the thicknesses of other resin layers high in thermal expansion, is so set as to satisfy an equality, 0.01<t2/t1<20000. The whole thickness (t1+t2) of the insulator is normally 5-100mum, and it is preferable that the linear expansion coefficients of the resin layers high and low in the thermal expansion are 20X10<-6>(1/K) or more and less than 20X10<-6>(1/K) respectively, where the resin layers compose the insulator.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、温度変化に対してカール、ねじれ、反り等が
なく、耐熱性、寸法安定性、接着性、耐折曲げ性等に優
れ、かつ、吸水率か小さいフレキシブルプリント基板及
びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has no curling, twisting, warping, etc. due to temperature changes, and has excellent heat resistance, dimensional stability, adhesiveness, bending resistance, etc. The present invention also relates to a flexible printed circuit board with a low water absorption rate and a method for manufacturing the same.

[従来の技術] 従来、フレキシブルプリント基板あるいはフラットケー
ブル(以後フレキシブルプリント基板に含める)は一般
に導体と有機ポリマーの絶縁体とをエポキシ樹脂おるい
はウレタン樹脂等の接着剤で接着して製造されていた。
[Prior Art] Conventionally, flexible printed circuit boards or flat cables (hereinafter referred to as flexible printed circuit boards) are generally manufactured by bonding a conductor and an organic polymer insulator with an adhesive such as epoxy resin or urethane resin. Ta.

しかし、この際に熱圧着等の熱履歴を加えると、冷間時
に基板のカール、ねじれ、反り等を生じてその後の導体
パターニング等か不可能となる欠点があった。これらの
問題は導体と絶縁体の線膨張係数の差に起因する。
However, if a thermal history such as thermocompression bonding is applied at this time, the substrate may curl, twist, warp, etc. when it is cold, making subsequent patterning of the conductor impossible. These problems are caused by the difference in coefficient of linear expansion between conductors and insulators.

また、接着剤層のため難燃性が低下したり、使用するポ
リイミドフィルムか高価であるばか張合わせに多大の手
間を要してフレキシブルプリント基板が高価格になる等
の問題があった。
In addition, there were other problems such as the flame retardance being lowered due to the adhesive layer, and the polyimide film used being expensive and requiring a great deal of effort to bond together, making the flexible printed circuit board expensive.

特開昭56−23.791号公報等においては、ポリア
ミドイミド溶液を金属箔に塗布し、乾燥後に線膨張係数
の差に基いて生じたカールを後工程で熱処理により緩和
する手法が提案されているが、この方法も製造に手間の
かかる点や線膨張係数が異なることからハンダ浴等の再
加熱時にカールするという点等については依然として解
決されておらず満足し得るものではなかった。
In JP-A-56-23-791, etc., a method has been proposed in which a polyamide-imide solution is applied to a metal foil, and after drying, the curl that occurs due to the difference in linear expansion coefficient is alleviated by heat treatment in a subsequent process. However, this method is still unsatisfactory as it requires time and effort to manufacture and curls when reheated in a soldering bath due to different coefficients of linear expansion.

また、特開昭60−157,286号公報や特開昭60
−243.120号公報等においては、特定構造を有す
るポリイミドあるいはポリイミド前駆体溶液を導体上に
塗布して低熱膨張の樹脂を得、カールの少ないフレキシ
ブルプリント基板を得る方法が提案されているが、接着
力が不十分であったり、また、導体をエツチングして回
路を形成する際に導体と接触していた面を内側にしてフ
ィルムが大きくカールし、その後の回路保護等の後作業
が困難になるという問題がめった。
Also, JP-A-60-157,286 and JP-A-60
-243.120 and other publications propose a method of applying a polyimide having a specific structure or a polyimide precursor solution onto a conductor to obtain a resin with low thermal expansion, thereby obtaining a flexible printed circuit board with less curl. The adhesive force may be insufficient, or when the conductor is etched to form a circuit, the film curls significantly with the side that was in contact with the conductor facing inwards, making subsequent work such as protecting the circuit difficult. The problem of becoming one was rare.

また、従来の接着層を用いたタイプでは、その接着層に
硬さ、引裂き強度等のポリイミドフィルムに不足する物
性を保持させていたが、反面、この接着層が存在するた
めに、例えば耐熱性、打(友き加工性等の種々の点で問
題があった。
In addition, in conventional types using an adhesive layer, the adhesive layer maintains physical properties such as hardness and tear strength that are lacking in polyimide films, but on the other hand, the presence of this adhesive layer makes it difficult to maintain heat resistance, for example. There were problems in various respects such as , hammering workability, etc.

[発明が解決しようとする課題] 本発明者は、かかる観点に鑑みて鋭意研究を重ねた結果
、絶縁体を互いにその線膨張係数の異なる複数のポリイ
ンド系樹脂層で多層化することにより、温度変化に対し
ての寸法安定性、接着力、さらにはエツヂフグ後の平面
性等において信頼性に優れたフレキシブルプリント基板
を得ることができることを見出し、本発明を完成した。
[Problems to be Solved by the Invention] As a result of extensive research in view of this point of view, the present inventor has found that the temperature can be improved by multilayering an insulator with a plurality of polyindo resin layers having different coefficients of linear expansion. The present invention was completed based on the discovery that it is possible to obtain a flexible printed circuit board with excellent reliability in terms of dimensional stability against changes, adhesive strength, flatness after etching, etc.

従って、本発明の目的は、熱履歴を加えてもカール、ね
じれ、反り等がなく、及び/又は、充分な接着力、耐折
曲げ性、寸法安定性等を有し、しかも、導体をエツチン
グした後のカールが小さくて作業性に優れた工業的に有
用なフレキシブルプリント基板を提供することにある。
Therefore, it is an object of the present invention to prevent curling, twisting, warping, etc. even when subjected to heat history, and/or to have sufficient adhesive strength, bending resistance, dimensional stability, etc., and to etch conductors. An object of the present invention is to provide an industrially useful flexible printed circuit board that exhibits little curling and is excellent in workability.

ざらに、他の目的は、多様化する需要家の要求に容易に
応えることのできるフレキシブルプリント基板を提供す
ることにある。
Another objective is to provide a flexible printed circuit board that can easily meet the diversifying demands of consumers.

[課題を解決するための手段] すなわち、本発明は、導体上に樹脂層を直接塗エして形
成され、少なくとも導体と絶縁体とを有するフレキシブ
ルプリント基板において、上記絶縁体が互いにその線膨
張係数の異なる複数のポリインド系樹脂層からなる多層
@造てあり、かつ、その高熱膨張性樹脂層の厚み(t1
)と低熱膨張性樹脂層の厚み(t2)の比率(t2/t
1)が0.01<t2/t1<20.ooo (但し、
tl及びt2はそれぞれの樹脂層の厚みの和で必る)の
条件を満たすフレキシブルプリント基板である。
[Means for Solving the Problems] That is, the present invention provides a flexible printed circuit board that is formed by directly coating a resin layer on a conductor and has at least a conductor and an insulator, in which the insulators are mutually linearly expanded. It is multi-layered consisting of multiple polyindo resin layers with different coefficients, and the thickness of the high thermal expansion resin layer (t1
) and the thickness (t2) of the low thermal expansion resin layer (t2/t
1) is 0.01<t2/t1<20. ooo (However,
The flexible printed circuit board satisfies the condition (tl and t2 are the sum of the thicknesses of the respective resin layers).

本発明において、直接塗工により形成されるフレキシブ
ルプリント基板とは、導体上に樹脂溶液おるいはその前
駆体樹脂溶液を直接塗布し、乾燥し、ざらには必要に応
じて硬化さV、導体と絶縁体との複合材を形成してなる
可撓性配線体用単板又はその材料である。
In the present invention, a flexible printed circuit board formed by direct coating means that a resin solution or its precursor resin solution is directly applied onto a conductor, dried, and roughened as necessary. This is a single board for a flexible wiring body or a material thereof, which is formed by forming a composite material of an insulator and an insulator.

また、本発明でいうポリイミド系樹脂とは、ポリイミド
、ポリアミドイミド、ポリベンズイミダゾール、ポリイ
ミドエステル等の耐熱性樹脂である。
Moreover, the polyimide resin referred to in the present invention is a heat-resistant resin such as polyimide, polyamideimide, polybenzimidazole, and polyimide ester.

本発明では、互いにその線膨張係数の異なる高熱膨張性
樹脂層と低熱膨張性樹脂層とを複合化して絶縁体を形成
するものであるが、その高熱膨張性樹脂層の厚み(t1
)と低熱膨張性樹脂層の厚み(t2)の比率(t2/t
1)  (但し、tl及び[2はそれぞれの樹脂層の厚
みの和である)については、0゜01炉20,000、
好ましくは2〜100、より好ましくは3〜25の条件
を満たす必要がある。
In the present invention, an insulator is formed by combining a high thermal expansion resin layer and a low thermal expansion resin layer with different linear expansion coefficients, and the thickness of the high thermal expansion resin layer (t1
) and the thickness (t2) of the low thermal expansion resin layer (t2/t
1) (However, for tl and [2 is the sum of the thickness of each resin layer), 0°01 furnace 20,000,
It is necessary to satisfy a condition of preferably 2 to 100, more preferably 3 to 25.

ここで、高熱膨張性樹脂層及び低熱膨張性樹脂層とは、
多層構造を形成する絶縁体の各構成樹脂層が有する線熱
膨張係数の単純平均値を基準にしてそれより高い値の線
膨張係数を有する樹脂層を高熱膨張性樹脂層といい、ま
た、それより低い線膨張係数を有する樹脂層を低熱膨張
性樹脂層という。
Here, the high thermal expansion resin layer and the low thermal expansion resin layer are:
A resin layer having a linear thermal expansion coefficient higher than the simple average value of the linear thermal expansion coefficients of each component resin layer of an insulator forming a multilayer structure is called a high thermal expansion resin layer. A resin layer having a lower coefficient of linear expansion is referred to as a low thermal expansion resin layer.

厚みの比率(t2/t1)の値が小さすぎると絶縁体全
体としての線膨張係数が大きくなり、導体との線膨張係
数の差により基板が絶縁体を内側にしてカールし、回路
形成作業が困難になったり、導体のエツチング時に歪み
が解除されて寸法か大きく変化する。反対に、厚みの比
率(t2/ tl )の値が大きすぎると本発明の目的
である導体との接着力の向上や、導体エツチング後のフ
ィルムのカール防止等が困難になる。
If the value of the thickness ratio (t2/t1) is too small, the linear expansion coefficient of the insulator as a whole will increase, and the difference in linear expansion coefficient with the conductor will cause the board to curl with the insulator inside, making it difficult to form circuits. When etching the conductor, the distortion may be released and the dimensions may change significantly. On the other hand, if the value of the thickness ratio (t2/tl) is too large, it becomes difficult to improve the adhesive force with the conductor, which is the object of the present invention, and to prevent the film from curling after etching the conductor.

本発明において、絶縁体の全体の厚み(tl+t2)は
、通常5〜100虜、好ましくは10〜50虜で必る。
In the present invention, the total thickness (tl+t2) of the insulator is usually 5 to 100 mm, preferably 10 to 50 mm.

また、この絶縁体を構成する高熱膨張性樹脂層の線膨張
係数は20x 10−6(1/K)以上、好ましくは(
30〜100) x 1O−6(1/K)であり、低熱
膨張性樹脂層の線膨張係数は20x 10−6(1/K
)未満、好ましくは(0〜19.) x 1O−6(1
/K)で必って、これら高熱膨張性樹脂層と低熱膨張性
樹脂層との間にはその線膨張係数において5 x 10
−6(1/K)以上、好ましくは10X 1O−6(1
/K)以上の差があることか望ましい。
In addition, the linear expansion coefficient of the high thermal expansion resin layer constituting this insulator is 20x 10-6 (1/K) or more, preferably (
30 to 100) x 1O-6 (1/K), and the linear expansion coefficient of the low thermal expansion resin layer is 20 x 10-6 (1/K).
), preferably (0 to 19.) x 1O-6(1
/K), there must be a linear expansion coefficient of 5 x 10 between the high thermal expansion resin layer and the low thermal expansion resin layer.
-6(1/K) or more, preferably 10X 1O-6(1
/K) or more is desirable.

そして、高熱膨張性樹脂としてはどのようなポリイミド
系樹脂であってもよいか、好ましくは下記一般式で示さ
れる構成単位を有するポリアミドイミド樹脂又はポリイ
ミド樹脂を主成分とするものである。
The high thermal expansion resin may be any polyimide resin, but preferably one whose main component is a polyamide-imide resin or a polyimide resin having a structural unit represented by the following general formula.

(但し、上記各一般式において、Ar1は炭素数12以
上の2価の芳香族基であり、Ar2は4価の芳香族基で
ある) ここで、上記^r としては、例えば、ooo、oSO
,oSO2や、 F3 Go(H)oG 、Go−Q−o−Ol−等を挙げるこ
とができ、また、上記Ar2としては、例えば、 体との密着力の点から、好ましくは 、IQCOCであ
る。
(However, in each of the above general formulas, Ar1 is a divalent aromatic group having 12 or more carbon atoms, and Ar2 is a tetravalent aromatic group.) Here, as the above ^r, for example, ooo, oSO
, oSO2, F3 Go(H)oG, Go-Q-o-Ol-, etc., and the above-mentioned Ar2 is, for example, preferably IQCOC from the point of view of adhesion to the body. .

このような構造を有するポリイミド系樹脂は、通常その
線膨張係数が20x 10−6(1/K)以上と比較的
高い値を示すが、導体との密着カヤ可[直性等において
優れた性能を発揮する。
Polyimide resins with such a structure usually have a relatively high linear expansion coefficient of 20x 10-6 (1/K) or more, but they also have excellent performance in terms of straightness, etc. demonstrate.

また、低熱膨張性樹脂としては、線膨張係数が低いポリ
イミド系樹脂であれば格別な制限はないが、下記一般式
(II>又は(I[I)で示される構成単位を有するポ
リイミド系樹脂が好ましい。
In addition, there are no particular restrictions on the low thermal expansion resin as long as it is a polyimide resin with a low coefficient of linear expansion, but polyimide resins having a structural unit represented by the following general formula (II> or (I[I)) may be used. preferable.

一般式(II> (但し、式中Arは4価の芳香族基を示し、旧及びR2
は互いに同じであっても異なっていてもよい低級アルキ
ル基、低級アルコキシ基又はハロゲンのいずれかを示し
1、O及びmはO〜4の整数でおり、少なくとも1つの
低級アルコキシ基を有する)で示される構成単位、好ま
しくは下記構成単位を含むポリアミドイミド樹脂。
General formula (II> (However, in the formula, Ar represents a tetravalent aromatic group, and
represents either a lower alkyl group, a lower alkoxy group or a halogen which may be the same or different from each other; 1, O and m are integers of O to 4, and have at least one lower alkoxy group); A polyamide-imide resin containing the structural units shown, preferably the following structural units.

一般式(III) で示される構成単位を含むポリイミド樹脂。General formula (III) A polyimide resin containing the structural unit shown below.

これらポリイミド系樹脂の合成は、−数的にはN−メチ
ルピロリドン(NHP)、ジメチルホルムアミド(DH
F)、ジメチルアセトアミド(DHAC) 、ジメチル
スルフ4キサイド(D)IsO) 、硫酸ジメチル、ス
ルホラン、ブヂロラクトン、クレゾール、フェノール、
ハロゲン化フェノール、シクロヘキサノン、ジオキサン
、テトラヒドロフラン、ダイグライム等の溶媒中で、上
記各一般式に対応するジアミン化合物及び酸無水物化合
物をほぼ等モルの割合で混合し、反応温度O〜200’
C1好ましくはO〜100’Cの範囲で反応させること
により、ポリイミド系樹脂の前駆体溶液が得られ、さら
に、これらの樹脂溶液を導体上に塗工し、乾燥する操作
を繰返すか、おるいは、多層ダイ等により同時に多層塗
工し、乾燥することにより、導体上に多層構造のポリイ
ミド系樹脂層若しくはポリイミド系前駆体樹脂層を形成
せしめ、験体樹脂層の場合にはこれを200’C以上、
好ましくは300 °C以上の加熱処理してイミド化反
応を行う。
The synthesis of these polyimide resins is carried out numerically using N-methylpyrrolidone (NHP), dimethylformamide (DH
F), dimethylacetamide (DHAC), dimethylsulfoxide (D)IsO), dimethyl sulfate, sulfolane, butyrolactone, cresol, phenol,
In a solvent such as halogenated phenol, cyclohexanone, dioxane, tetrahydrofuran, diglyme, etc., diamine compounds and acid anhydride compounds corresponding to each of the above general formulas are mixed in approximately equal molar ratios, and the reaction temperature is O~200'.
C1 Preferably, by reacting in the range of O to 100'C, a precursor solution of polyimide resin is obtained, and further, the operation of coating these resin solutions on the conductor and drying is repeated, or The polyimide resin layer or polyimide precursor resin layer with a multilayer structure is formed on the conductor by simultaneously applying multiple layers using a multilayer die or the like and drying. C or higher,
The imidization reaction is preferably carried out by heat treatment at 300°C or higher.

本発明においては、上記ポリイミド系の高熱膨張性樹脂
及び低熱膨張性樹脂について、種々のジアミン、テトラ
カルボン酸化合物、トリカルホン酸化合物又はこれらの
酸無水物を用いてコーポリマリゼーションし又は別途合
成して得られたポリイミド又はその前駆体及びポリアミ
ドイミド等をブレンドすることができる。
In the present invention, the polyimide-based high thermal expansion resin and low thermal expansion resin are copolymerized using various diamines, tetracarboxylic acid compounds, tricarphonic acid compounds, or acid anhydrides thereof, or are synthesized separately. The obtained polyimide or its precursor, polyamideimide, etc. can be blended.

具体的に例を挙げると、叶フェニレンジアミン、m−フ
ェニレンジアミン、3,4°−ジアミノジフェニルエー
テル、4,4°−ジアミノジフェニルエーテル、4.4
−ジアミノジフェニルメタン、3,3°−ジメチル−4
,4′−ジアミノジフェニルメタン、2,2−ビス[4
−(4−アミノフェノキシ〉フェニル]プロパン、1.
2−ビス(アニリノ)エタン、ジアミノジフェニルスル
ホン、ジアミノベンズアニリド、ジアミノベンゾエート
、ジアミノジフェニルスルフィド、2.2−ビス(p−
アミノフェニル)プロパン、2,2−ビス(p−アミノ
フェニル)へキサフルオロプロパン、1.5−ジアミノ
ナフタレン、ジアミノトルエン、ジアミノベンゾトリフ
ルオライト、1,4−ビス(叶アミノフェノキシ)ベン
ゼン、4,4゛−ビス(p−アミノフェノキシ)ビフェ
ニル、ジアミノアントラキノン、4,4′−ヒス(3−
アミノフェノキシフェニル〉ジフェニルスルホン、1,
3−ビス(アニリノ)ヘキ)ナフルオロプロパン、1,
4−ビス(アニリノ)オクタ−ノルレオロブタン、1,
5−ビス(アニリノ)デ゛カフルオロペンタン、1,7
−ビス(アニリノ)テトラデカフルオロへブタン、下記
一般式 (但し、式中R4及びR6は2価の有Ialを示し、1
(3及びR5は1価の有Ia、基を示し、p及びqは1
より大きい整数を示す)で表されるジアミノシロキサン
、2,2−ビス[4−(p−アミノフェノキシ)フェニ
ル]へキサフルオロプロパン、2.2−ビス[4−(3
−アミノフェノキシ)フェニル]ヘキサフルオロプロパ
ン、2,2−ビス[4−(2−アミノフェノキシ)フェ
ニル1へキサフルオロプロパン、2,2−ビス[4−(
4−アミツノエノキシ)−3,5−ジメチルフェニル]
へキサフルオロプロパン、2,2−ビス[4−(、ll
−アミノフェノキシ)−3,5−ジトリフルオロメチル
フェニル]へキサフルオロプロパン、p−ビス(4−ア
ミノ−2−トリフルオロメチルフェノキシ)ベンゼン、
4.4゛−ビス(4−アミノ−2−トリフルオロメチル
フェノキシ)ビフェニル、4,4−ビス(4−アミノ−
3−トリフルオロメチルフェノキシ)ビフェニル、4.
4−ビス(4−アミノ−2−トリフルオロメチシフ1ノ
キシ)ジフェニルスルホン、4,4“−ビス(3−アミ
ノ−5−トリフルオロメチルフェノキシ)ジフェニルス
ルフ4ン、2,2−ビス[4−(4−アミノ−3−トリ
フルオロメチルフェノキシ)フェニル]へキサフルオロ
プロパン、ベンジジン、3,3°、5,5°−テトラカ
ルボンジジン、オクタフルオロベンジジン、3.3“−
ジメトキシベンジジン、o−トリジン、m−トリジン、
2,2°、5,5°、6,6°−ヘキサフルオロトリジ
ン、4,4°゛−ジアミノターフェニル、4,4111
−シアミックガーターフェニル等のジアミン類、並びに
これらのジアミンとホスゲン等の反応によって得られる
ジイソシアナート類がある。
Specific examples include phenylenediamine, m-phenylenediamine, 3,4°-diaminodiphenyl ether, 4,4°-diaminodiphenyl ether, 4.4
-diaminodiphenylmethane, 3,3°-dimethyl-4
, 4'-diaminodiphenylmethane, 2,2-bis[4
-(4-aminophenoxy>phenyl]propane, 1.
2-bis(anilino)ethane, diaminodiphenylsulfone, diaminobenzanilide, diaminobenzoate, diaminodiphenylsulfide, 2,2-bis(p-
aminophenyl)propane, 2,2-bis(p-aminophenyl)hexafluoropropane, 1,5-diaminonaphthalene, diaminotoluene, diaminobenzotrifluorite, 1,4-bis(aminophenoxy)benzene, 4, 4′-bis(p-aminophenoxy)biphenyl, diaminoanthraquinone, 4,4′-his(3-
Aminophenoxyphenyl〉diphenyl sulfone, 1,
3-bis(anilino)hex)nafluoropropane, 1,
4-bis(anilino)octa-norreolobutane, 1,
5-bis(anilino)dicafluoropentane, 1,7
-bis(anilino)tetradecafluorohebutane, the following general formula (wherein R4 and R6 represent divalent Ial, and 1
(3 and R5 represent a monovalent Ia group, p and q are 1
2,2-bis[4-(p-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis[4-(3
-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis[4-(2-aminophenoxy)phenyl1hexafluoropropane, 2,2-bis[4-(
4-amitunoenoxy)-3,5-dimethylphenyl]
Hexafluoropropane, 2,2-bis[4-(,ll
-aminophenoxy)-3,5-ditrifluoromethylphenyl]hexafluoropropane, p-bis(4-amino-2-trifluoromethylphenoxy)benzene,
4.4'-bis(4-amino-2-trifluoromethylphenoxy)biphenyl, 4,4-bis(4-amino-
3-trifluoromethylphenoxy)biphenyl, 4.
4-bis(4-amino-2-trifluoromethylphenoxy)diphenylsulfone, 4,4"-bis(3-amino-5-trifluoromethylphenoxy)diphenylsulfone, 2,2-bis[ 4-(4-amino-3-trifluoromethylphenoxy)phenyl]hexafluoropropane, benzidine, 3,3°,5,5°-tetracarboxydine, octafluorobenzidine, 3.3“-
dimethoxybenzidine, o-tolidine, m-tolidine,
2,2°, 5,5°, 6,6°-hexafluorotridine, 4,4°゛-diaminoterphenyl, 4,4111
There are diamines such as -cyamic garter phenyl, and diisocyanates obtained by reacting these diamines with phosgene.

また、テトラカルボン酸並びにその誘導体としては次の
ようなものが挙げられる。なお、ここではテトラカルボ
ン酸として例示するが、これらのエステル化物、酸無水
物、酸塩化物も使用できることは勿論である。ピロメリ
ット酸、3,3°、4,4°−ビフェニルテトラカルボ
ン フェノンテトラカルボン酸、3,3°,4,4°−ジフ
ェニルスルホンテトラカルボン ニルエーテルテトラカルボン ゾフェノンテトラカルボン酸、2, 3, 6. 7−
ナフタレンテトラカルボン酸、1,4,5.7−ナフタ
レンテトラカルボン酸、1,2,5.6−ナフタレンテ
トラカルボン酸、3.3’,4.4’−ジフェニルメタ
ンテトラカルボン酸、2,2−ビス(3,4−ジカルボ
キシフェニル)プロパン、2,2−ビス(3,4−ジカ
ルボキシフェニル)へキサフルオロプロパン、3,4,
9.10−テトラカルボキシペリレン、2,2−ビス[
4− (3.4−ジカルホキシフエノキシ)フ[ニル]
プロパン、2,2−ビス[4−(3,4−ジカルホキシ
フエノキシ)フェニル]へキリ−フルオロプロパン、ブ
タンテトラカルボン酸、シクロペンタンテトラカルボン
酸等がおる。また、トリメリット酸及びその誘導体も挙
げることができる。
In addition, examples of tetracarboxylic acids and derivatives thereof include the following. Although tetracarboxylic acids are exemplified here, esterified products, acid anhydrides, and acid chlorides thereof can of course also be used. Pyromellitic acid, 3,3°,4,4°-biphenyltetracarboxylic phenonetetracarboxylic acid, 3,3°,4,4°-diphenylsulfonetetracarbonyl ethertetracarboxylic acid, 2,3, 6. 7-
Naphthalenetetracarboxylic acid, 1,4,5.7-naphthalenetetracarboxylic acid, 1,2,5.6-naphthalenetetracarboxylic acid, 3.3',4.4'-diphenylmethanetetracarboxylic acid, 2,2- Bis(3,4-dicarboxyphenyl)propane, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane, 3,4,
9.10-Tetracarboxyperylene, 2,2-bis[
4-(3.4-dicarboxyphenoxy)ph[nyl]
Examples include propane, 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]hexylfluoropropane, butanetetracarboxylic acid, cyclopentanetetracarboxylic acid, and the like. Also mentioned are trimellitic acid and its derivatives.

ざらに、反応性官能基を有する化合物で変性し、架橋構
造やラダー構造を導入することもできる。
Furthermore, it is also possible to introduce a crosslinked structure or ladder structure by modifying with a compound having a reactive functional group.

例えば、次のような方法がある。For example, there are the following methods.

■ 下記一般式で表される化合物で変性することによっ
て、ピロロン環やイソインドロキナゾリンジオン環等を
導入する。
(2) By modifying with a compound represented by the following general formula, a pyrrolone ring, isoindoquinazolinedione ring, etc. are introduced.

〔但し、式中1<7は2+z価(lは1又は2である)
の芳香族有機基を示し、8は一Nl′12基、− co
su2基又は−302N■2基から選択された置換基で
あってアミン基に対しオルト位である〕 ■ 重合性不飽和結合を有するアミン、ジアミン、ジカ
ルボン酸、トリカルボン酸、テトラカルボン酸の誘導体
で変性して、硬化時に橋かけ構造を形成する。不飽和化
合物としては、マレイン酸、ナジック酸、テトラヒドロ
フタル酸、エチニルアニリン等が使用できる。
[However, in the formula, 1<7 is 2+z value (l is 1 or 2)
represents an aromatic organic group, 8 is a -Nl'12 group, -co
A substituent selected from su2 group or -302N2 group, which is ortho to the amine group] ■ A derivative of amine, diamine, dicarboxylic acid, tricarboxylic acid, or tetracarboxylic acid having a polymerizable unsaturated bond It is modified to form a cross-linked structure upon curing. As the unsaturated compound, maleic acid, nadic acid, tetrahydrophthalic acid, ethynylaniline, etc. can be used.

■ フェノール性水酸基あるいはカルボン酸を有する芳
香族アミンで変性し、この水酸基又は力ルボキシル基と
反応し得る橋かけ剤を用いて網目構造を形成する。
(2) Modification with an aromatic amine having a phenolic hydroxyl group or carboxylic acid, and forming a network structure using a crosslinking agent that can react with the hydroxyl group or carboxylic acid group.

本発明の低熱膨張性樹脂は、このような前記各成分を用
いて変性することにより、その線膨張係数を調整するこ
とができる。すなわち、一般式(n)又は(I)の構造
のみからなるポリイミド系樹脂は、面内にI X 1O
−5(K−1)以下の線膨張係数を有する絶縁体を形成
可能であるが、これを前記各成分を使用して変性するこ
とにより、線膨張係数を任意に大きくすることができる
。また、−般式(II )又は(1)の構成単位を含む
ポリイミド系樹脂であっても、上記の各成分を使用して
変性することにより、高熱膨張性樹脂とすることもでき
る。
The linear expansion coefficient of the low thermal expansion resin of the present invention can be adjusted by modifying it using each of the above-mentioned components. That is, a polyimide resin consisting only of the structure of general formula (n) or (I) has I
Although it is possible to form an insulator having a coefficient of linear expansion of -5 (K-1) or less, the coefficient of linear expansion can be arbitrarily increased by modifying the insulator using each of the above-mentioned components. Further, even a polyimide resin containing the structural unit of general formula (II) or (1) can be made into a high thermal expansion resin by modifying it using each of the above-mentioned components.

また、接着性、耐折曲げ性等の諸物性をざらに向上させ
る目的で変性することも可能である。
Further, it is also possible to modify it for the purpose of roughly improving various physical properties such as adhesiveness and bending resistance.

本発明においては、少なくとも1層のポリイミド系高熱
膨張性樹脂層と少なくとも1層のポリイミド系低熱膨張
性樹脂層とを複合して絶縁体を形成するわけであるが、
その層の配列は任意である。
In the present invention, an insulator is formed by combining at least one polyimide-based high thermal expansion resin layer and at least one polyimide-based low thermal expansion resin layer.
The arrangement of the layers is arbitrary.

すなわち、導体と接する高熱膨張性樹脂層及びそれに接
する低熱膨張性樹脂層を設けることにより、良好な接着
力、高温での寸法安定性、絶縁体全体としての線膨張係
数の低下等の効果を達成することができる。また、導体
と接する低熱膨張性樹脂層及びそれに接する高熱膨張性
樹脂層を設けることにより、導体をエツチングした後の
フィルムのカールを低減することができる。さらに、導
体と接する第1の高熱膨張性樹脂層、この第1の高熱膨
張性樹脂層に接する低熱膨張性樹脂層及びこの低熱膨張
性樹脂層に接する第2の高熱膨張性樹脂層を設けること
により、上記2つの場合の各効果を同時に達成すること
かできる。また、さらに導体と接する高熱膨張性樹脂層
、これに接する第1の低熱膨張性樹脂層及びこれに接し
かつこれよりも高い線膨張係数を有する第2の低熱膨張
性樹脂層を設けることにより、フィルムのカールをより
低減させることができる。これらの低熱膨張性樹脂及び
高熱膨張性樹脂の種類、構成を変えることにより、フィ
ルムの弾性率、強度等の機械的物性を任意にコントロー
ルすることができ、種々の需要家のニーズに対応するこ
とができる。
In other words, by providing a high thermal expansion resin layer in contact with the conductor and a low thermal expansion resin layer in contact with it, effects such as good adhesive strength, dimensional stability at high temperatures, and a reduction in the coefficient of linear expansion of the insulator as a whole are achieved. can do. Furthermore, by providing a low thermal expansion resin layer in contact with the conductor and a high thermal expansion resin layer in contact with it, curling of the film after etching the conductor can be reduced. Further, a first high thermal expansion resin layer in contact with the conductor, a low thermal expansion resin layer in contact with the first high thermal expansion resin layer, and a second high thermal expansion resin layer in contact with the low thermal expansion resin layer are provided. Accordingly, the effects of the above two cases can be achieved simultaneously. Furthermore, by providing a high thermal expansion resin layer in contact with the conductor, a first low thermal expansion resin layer in contact with this, and a second low thermal expansion resin layer in contact with this and having a higher coefficient of linear expansion, Curling of the film can be further reduced. By changing the type and composition of these low thermal expansion resins and high thermal expansion resins, the mechanical properties such as the elastic modulus and strength of the film can be controlled arbitrarily to meet the needs of various customers. Can be done.

本発明のフレキシブルプリント基板は、少なくとも導体
と絶縁体を有するものであるが、導体としては、銅、ア
ルミニウム、鉄、銀、パラジウム、ニッケル、クロム、
モリブデン、タングステン又はそれらの合金等を挙げる
ことができ、好ましくは銅である。
The flexible printed circuit board of the present invention has at least a conductor and an insulator, and examples of the conductor include copper, aluminum, iron, silver, palladium, nickel, chromium,
Examples include molybdenum, tungsten, and alloys thereof, and copper is preferable.

また、これらの導体についてはその表面に、接着力の向
上を目的として、ザイデイング、ニッケルメッキ、銅−
亜鉛合金メツキ、又は、アルミニウムアルコラード、ア
ルミニウムキレート、シランカップリング剤等によって
化学的あるいは機械的な表面処理を施してもよい。
In addition, the surface of these conductors is coated with zaiding, nickel plating, and copper-plating to improve adhesion.
Chemical or mechanical surface treatment may be performed using zinc alloy plating, aluminum alcoholade, aluminum chelate, silane coupling agent, or the like.

[実施例] 以下、実施例及び比較例に基づいて、本発明を具体的に
説明するが、本発明はこれに限定されないことは勿論で
ある。
[Examples] The present invention will be specifically described below based on Examples and Comparative Examples, but it goes without saying that the present invention is not limited thereto.

線膨張係数は、イミド化反応か十分終了した試料を用い
、1ナーモメカニカルアナライザー(t八)を用いて、
250℃に昇温後に10’C/min、で冷却して24
0’Cから100’Cまでの平均の線膨張率を算出して
求めた。
The coefficient of linear expansion is determined using a 1-nerm mechanical analyzer (t8) using a sample that has undergone a sufficient imidization reaction.
After heating to 250°C, cool at 10'C/min for 24 hours.
The average coefficient of linear expansion from 0'C to 100'C was calculated.

接着力は、テンシロンテスターを用い、幅10mmの銅
張品の樹脂側を両面テープによりアルミ板に固定し、銅
を180°方向に5mm/minの速度で剥離して求め
た。
The adhesive strength was determined by fixing the resin side of a 10 mm wide copper-clad product to an aluminum plate with double-sided tape and peeling off the copper in a 180° direction at a rate of 5 mm/min using a Tensilon tester.

加熱収縮率は、幅10mm、長さ200mmの導体をエ
ツチングした後のフィルムを用い、250’Cの熱風オ
ーブン中で30分間熱処理し、その前後の寸法変化率に
より求めた。
The heat shrinkage rate was determined from the dimensional change rate before and after heat treatment using a film after etching a conductor with a width of 10 mm and a length of 200 mm in a hot air oven at 250'C for 30 minutes.

エツチング後のフィルムのカールは、導体を塩化第二鉄
水溶液で全面エツチングした債、縦10cmx横10c
m×厚さ25IJRの大きさのフィルムを100’Cで
10分間乾燥し後、発生したカールの曲率半径を求めて
数値化した。
The curl of the film after etching is determined by etching the entire surface of the conductor with a ferric chloride aqueous solution.
After drying a film having a size of m x thickness of 25 IJR at 100'C for 10 minutes, the radius of curvature of the curls generated was determined and quantified.

エツチング後のフィルムの強度及び弾性率は、JIS 
7−1702、ASrHD−882−67に準じて測定
した。
The strength and elastic modulus of the film after etching are JIS
7-1702 and ASrHD-882-67.

なお、各例における略号は以下のとおりである。The abbreviations in each example are as follows.

1)HD八:ピロメリット酸二無水物 BPDA : 3,3’、4.4’−ビフェニルテトラ
カルボン無水物 B T D^:3,3′,4,4“−ベンゾフェノンテ
トラカルホン酸二無水物 DDE:  4,4°−ジアミノジフェニルエーテルH
へBA:2“−メチル−4,4“−ジアミノベンズアニ
リドPPD :パラフエニレンジアミン I)I)S:  3,3’−ジアミノジフェニルスルフ
4ン8八PP:2,2−ビ′ス[4−(4−アミノフェ
ノキシ)フェニル]プロパン DDH : 4.4’−ジアミノジフェニルメタンDH
Ac ニジメチルアセトアミド N)IP : N−メチル−2−ピロリドン合成例1 温度計、塩化カルシウム管、攪拌機及び窒素吸込口を取
付けた500mの4つ目フラスコに200m/minの
速度で窒素を流しながら、0.1モルのDI)E及び3
00dのD)lAcを加えて攪拌し溶解した後、この溶
液を水冷浴中で10’C以下に冷却しながら0.10モ
ルのBTDAを徐々に加えた。反応混合物は発熱しなが
ら重合し、粘稠なポリアミック酸(ポリイミド前駆体溶
液)が得られた。
1) HD8: Pyromellitic dianhydride BPDA: 3,3',4,4'-biphenyltetracarboxylic anhydride BT D^: 3,3',4,4''-benzophenonetetracarboxylic dianhydride DDE: 4,4°-diaminodiphenyl ether H
BA: 2"-methyl-4,4"-diaminobenzanilide PPD: paraphenylenediamine I) I) S: 3,3'-diaminodiphenylsulfon 88 PP: 2,2-bi's [4-(4-aminophenoxy)phenyl]propane DDH: 4.4'-diaminodiphenylmethane DH
Ac Nidimethylacetamide N) IP: N-Methyl-2-pyrrolidone Synthesis Example 1 While flowing nitrogen at a speed of 200 m/min into a 500 m fourth flask equipped with a thermometer, calcium chloride tube, stirrer, and nitrogen inlet. , 0.1 mol of DI)E and 3
D) lAc of 00d was added and dissolved by stirring, and then 0.10 mol of BTDA was gradually added while cooling the solution to below 10'C in a water cooling bath. The reaction mixture was polymerized while generating heat, and a viscous polyamic acid (polyimide precursor solution) was obtained.

このポリアミック酸溶液を、ステンレス枠上に固定した
市販の厚さ35μmの電解銅箔(日本鉱業(体製)の粗
面上にアプリケータを用いてフィルム厚みが約255μ
mになるようにコーティングし、130’C及び150
’Cの熱風オーブン中で順次10分間放置して乾燥させ
、次いで15分間かけて360’Cまで昇温ざぜ、イミ
ド化反応を行った。
This polyamic acid solution was applied using an applicator onto the rough surface of a commercially available 35 μm thick electrolytic copper foil (manufactured by Nippon Mining Co., Ltd.) fixed on a stainless steel frame to a film thickness of approximately 255 μm.
m, coated at 130'C and 150
The mixture was left to dry in a hot air oven at 360°C for 10 minutes, and then the temperature was raised to 360°C over 15 minutes to perform an imidization reaction.

得られた銅張品は、樹脂を内側に大きくカールしlこ。The resulting copper-clad product is made by curling the resin inward.

この銅張品を塩化第二鉄水溶液でエツチングし、得られ
たフィルムの線膨張性係数を測定したところ、55x 
10−6(1/K)で必った。
When this copper-clad product was etched with an aqueous ferric chloride solution and the linear expansion coefficient of the obtained film was measured, it was found to be 55x.
I got it at 10-6 (1/K).

合成例2〜6 合成例1と同様にして、種々のジアミン化合物と酸無水
物を用いて重合反応を行い、高熱膨張性ポリイミド前駆
体溶液を調製し、合成例1と同様に銅箔上にコーティン
グし、厚さ25μmのフィルムを得た。合成例1と同様
にその線膨張係数を測定した。結果を第1表に示す。
Synthesis Examples 2 to 6 In the same manner as in Synthesis Example 1, a polymerization reaction was carried out using various diamine compounds and acid anhydrides to prepare a high thermal expansion polyimide precursor solution. Coating was performed to obtain a film with a thickness of 25 μm. The linear expansion coefficient was measured in the same manner as in Synthesis Example 1. The results are shown in Table 1.

合成例7 合成例1と同様にして、0.055モルのHABA及び
0.045モルのDDEを300威のDHAcに溶解し
た後、0.10モルのPMDAを加えて反応させ、粘稠
なポリアミック酸を得た。
Synthesis Example 7 In the same manner as in Synthesis Example 1, 0.055 mol of HABA and 0.045 mol of DDE were dissolved in 300 mol of DHAc, and then 0.10 mol of PMDA was added and reacted to form a viscous polyamic. Obtained acid.

このポリアミック酸を用いて得られたポリアミドイミド
フィルムの線膨張係数は13X 10−6(1/K)で
おった。
The linear expansion coefficient of the polyamideimide film obtained using this polyamic acid was 13×10 −6 (1/K).

合成例8 合成例1と同様にして、0.090モルのPPD及び0
.010モルのDDEを300mlのDHAcに溶解し
た後、0.10モルのBPOAを加えて反応させ、粘稠
なポリアミック酸を得た。
Synthesis Example 8 In the same manner as in Synthesis Example 1, 0.090 mol of PPD and 0
.. After dissolving 0.10 mol of DDE in 300 ml of DHAc, 0.10 mol of BPOA was added and reacted to obtain a viscous polyamic acid.

このポリアミック酸を用いて得られたポリイミドフィル
ムの線膨張係数は10x 10−6(1/K)であった
The linear expansion coefficient of the polyimide film obtained using this polyamic acid was 10×10 −6 (1/K).

実施例1〜6 合成例1〜6の樹脂溶液を電解銅箔上にその樹脂層の厚
みが2IIf&となるように塗工した後、130℃で5
分間乾燥した。このようにして得られた第1の樹脂層の
上に、さらに合成例7の樹脂溶液をその樹脂層の厚みが
23IJRになるように塗工し、130’C及び150
’Cの熱風オーブン中で順次10分間づつ放置して乾燥
し、次いで15分かけて360℃まで昇温させることに
よりイミド化反応を行って第2の樹脂層を形成させ、全
体の樹脂層の厚み25μmの銅張品を作製した。
Examples 1 to 6 The resin solutions of Synthesis Examples 1 to 6 were coated on electrolytic copper foil so that the resin layer had a thickness of 2IIf&, and then heated at 130°C for 5
Dry for a minute. On the thus obtained first resin layer, the resin solution of Synthesis Example 7 was further applied so that the thickness of the resin layer was 23IJR, and 130'C and 150
'C' hot air oven for 10 minutes at a time to dry, then raise the temperature to 360°C over 15 minutes to perform an imidization reaction and form a second resin layer. A copper-clad product with a thickness of 25 μm was produced.

得られた銅張晶について、その接着力、フィルムのカー
ル、加熱収縮率及び熱膨張係数を測定した。結果を第2
表に示す。
The adhesive strength, film curl, heat shrinkage rate, and thermal expansion coefficient of the obtained copper-clad crystal were measured. Second result
Shown in the table.

第2表の結果から明らかなように、各実施例1〜6の銅
張量は、はぼ平らで必って熱膨張性係数が各比較例に比
べて低い数値を示し、接着力、エツチング後のフィルム
のカール及び加熱収縮率においても優れた性能を有する
ものであった。
As is clear from the results in Table 2, the copper cladding of each of Examples 1 to 6 is almost flat, and the coefficient of thermal expansion is necessarily lower than that of each comparative example, and the adhesive strength and etching The resulting film also had excellent performance in terms of curl and heat shrinkage.

また、上記実施例1のフィルムの強度は25Kg/mm
2であり、弾性率は500Kg/mm2であった。
In addition, the strength of the film of Example 1 is 25 kg/mm.
2, and the elastic modulus was 500 Kg/mm2.

実施例7 合成例7の樹脂溶液に代えて合成例8の樹脂溶液を使用
し対外は、上記実施例1〜6と同様にして銅張量を作製
し、その接着力、フィルムのカール、加熱収縮率及び熱
膨張係数を測定した。結果を第2表に示す。
Example 7 The resin solution of Synthesis Example 8 was used in place of the resin solution of Synthesis Example 7, and the copper tension was prepared in the same manner as in Examples 1 to 6 above, and the adhesive strength, film curl, and heating were evaluated. The shrinkage rate and thermal expansion coefficient were measured. The results are shown in Table 2.

比較例1〜2 合成例7及び8で得た銅張量について、その接着力、フ
ィルムのカール、加熱収縮率及び熱膨張係数を測定した
。結果を第2表に示す。
Comparative Examples 1 and 2 The adhesive strength, film curl, heat shrinkage rate, and thermal expansion coefficient of the copper tensions obtained in Synthesis Examples 7 and 8 were measured. The results are shown in Table 2.

合成例7の銅張量から得られた比較例1のフィルムの強
度は26に’J/mm2であり、弾性率は600に’j
/mm2であった。
The strength of the film of Comparative Example 1 obtained from the copper cladding amount of Synthesis Example 7 was 26'J/mm2, and the elastic modulus was 600'J/mm2.
/mm2.

実施例8〜11 合成例7で得られた銅張量の樹脂層上に合成例1〜4の
樹脂溶液をその樹脂層の厚みが2IJRとなるように塗
工し、130’Cで5分間乾燥した後、15分かけて3
60’Cまで昇温してイミド化反応を行い、樹脂層の厚
み27μmの銅張量を得た。
Examples 8 to 11 The resin solutions of Synthesis Examples 1 to 4 were coated on the resin layer with the copper cladding obtained in Synthesis Example 7 so that the thickness of the resin layer was 2IJR, and the mixture was heated at 130'C for 5 minutes. After drying, apply for 15 minutes 3
The temperature was raised to 60'C to carry out an imidization reaction, and a resin layer having a copper cladding thickness of 27 μm was obtained.

得られた銅張量について、その接着力、フィルムのカー
ル、加熱収縮率及び熱膨張係数を測定した。結果を第2
表に示す。
Regarding the obtained copper tension, its adhesive strength, film curl, heat shrinkage rate, and thermal expansion coefficient were measured. Second result
Shown in the table.

第2表の結果から明らかなように、これら各実施例8〜
11のフィルムのカールは大幅に改善されている。
As is clear from the results in Table 2, each of these Examples 8-
The curl of No. 11 film is significantly improved.

実施例12〜15 実施例1で得られた銅張量の樹脂層上に合成例1〜4の
樹脂溶液をその樹脂層の厚みが2μsとなるように塗工
し、130’Cで5分間乾燥した後、15分かけて36
0 ’Cまで昇温してイミド化反応を行って第3の樹脂
層を形成させ、樹脂層の厚み27IUの銅張量を得た。
Examples 12 to 15 The resin solutions of Synthesis Examples 1 to 4 were coated on the resin layer with the copper cladding obtained in Example 1 so that the thickness of the resin layer was 2 μs, and the mixture was heated at 130'C for 5 minutes. After drying, 36 minutes for 15 minutes.
The temperature was raised to 0'C to perform an imidization reaction to form a third resin layer, and the copper cladding amount of the resin layer was 27 IU thick.

得られた銅張量について、その接着力、フィルムのカー
ル、加熱収縮率及び熱膨張係数を測定した。結果を第2
表に示す。
Regarding the obtained copper tension, its adhesive strength, film curl, heat shrinkage rate, and thermal expansion coefficient were measured. Second result
Shown in the table.

第2表の結果から明らかなように、これら各実施例12
〜15のフィルムの接着力及びカールは大幅に改善され
ている。
As is clear from the results in Table 2, each of these Example 12
The adhesion and curl of the ~15 films are significantly improved.

実施例16 実施例7で得られた銅張吊上に合成例1の樹脂溶液をそ
の樹脂層の厚みが2虜となるように塗工し、130℃で
5分間乾燥した後、15分かけて360’Cまで昇温し
てイミド化反応を行い、樹脂層の厚み27μmの銅張量
を得た。
Example 16 The resin solution of Synthesis Example 1 was applied to the copper-clad suspension obtained in Example 7 so that the resin layer had a thickness of 2 mm, dried at 130°C for 5 minutes, and then dried for 15 minutes. The temperature was raised to 360'C to carry out an imidization reaction, and a resin layer having a copper cladding thickness of 27 μm was obtained.

得られた銅張量について、その接着力、フィルムのカー
ル、加熱収縮率及び熱膨張係数を測定した。結果を第2
表に示す。
Regarding the obtained copper tension, its adhesive strength, film curl, heat shrinkage rate, and thermal expansion coefficient were measured. Second result
Shown in the table.

比較例3及び4 合成例7又は8と同様にして、厚み27虜の単一樹脂層
の銅張量を作製した。
Comparative Examples 3 and 4 In the same manner as in Synthesis Example 7 or 8, a copper-clad single resin layer having a thickness of 27 mm was produced.

得られた銅張量について、その接着ツノ、フィルムのカ
ール、加熱収縮率及び熱膨張係数を測定した。結果を第
2表に示す。
Regarding the obtained copper cladding, its adhesive horn, film curl, heat shrinkage rate, and thermal expansion coefficient were measured. The results are shown in Table 2.

比較例5 合成例1で得られた銅張量について、その接着力、フィ
ルムのカール、加熱収縮率及び熱膨張係数を測定した。
Comparative Example 5 Regarding the copper cladding obtained in Synthesis Example 1, its adhesive strength, film curl, heat shrinkage rate, and thermal expansion coefficient were measured.

結果を第2表に示す。The results are shown in Table 2.

また、このフィルムの強度は’18Kg/mm2であり
、弾性率は250Kg/mm2で必った。
Further, the strength of this film was 18 Kg/mm2, and the elastic modulus was 250 Kg/mm2.

[発明の効果] 本発明のフレキシブルプリント基板は、温度変化に対し
ての寸法安定性、接着力、エツチング後の平面性等にお
いて優れた信頼性を有し、エツチングによって作製され
た回路の保護等の作業性に優れており、工業的に極めて
有用なものである。
[Effects of the Invention] The flexible printed circuit board of the present invention has excellent reliability in terms of dimensional stability against temperature changes, adhesive strength, flatness after etching, etc., and is useful for protecting circuits fabricated by etching. It has excellent workability and is extremely useful industrially.

特許出願人   新日鐵化学株式会社Patent applicant: Nippon Steel Chemical Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] (1)導体上に樹脂層を直接塗工して形成され、少なく
とも導体と絶縁体とを有するフレキシブルプリント基板
において、上記絶縁体が互いにその線膨張係数の異なる
複数のポリイミド系樹脂層からなる多層構造であり、か
つ、その高熱膨張性樹脂層の厚み(t1)と低熱膨張性
樹脂層の厚み(t2)の比率(t2/t1)が0.01
<t2/t1<20,000(但し、t1及びt2はそ
れぞれの樹脂層の厚みの和である)の条件を満たすこと
を特徴とするフレキシブルプリント基板。
(1) In a flexible printed circuit board formed by directly coating a resin layer on a conductor and having at least a conductor and an insulator, the insulator is a multilayer consisting of a plurality of polyimide resin layers having different coefficients of linear expansion. structure, and the ratio (t2/t1) of the thickness (t1) of the high thermal expansion resin layer and the thickness (t2) of the low thermal expansion resin layer is 0.01.
A flexible printed circuit board that satisfies the following condition: <t2/t1<20,000 (where t1 and t2 are the sum of the thicknesses of the respective resin layers).
(2)高熱膨張性樹脂層の線膨張係数が20×10^−
^6(1/K)以上であり、また、低熱膨張性樹脂層の
線膨張係数が20×10^−^6(1/K)未満である
請求項1記載のフレキシブルプリント基板。
(2) The linear expansion coefficient of the high thermal expansion resin layer is 20×10^-
The flexible printed circuit board according to claim 1, wherein the linear expansion coefficient of the low thermal expansion resin layer is less than 20 x 10^-^6 (1/K).
(3)絶縁体か導体と接する高熱膨張性樹脂層とそれに
接する低熱膨張性樹脂層の2層からなる請求項1又は2
記載のフレキシブルプリント基板。
(3) Claim 1 or 2 consisting of two layers: a high thermal expansion resin layer in contact with the insulator or the conductor and a low thermal expansion resin layer in contact with it.
The flexible printed circuit board described.
(4)絶縁体が導体と接する低熱膨張性樹脂層とそれに
接する高熱膨張性樹脂層の2層からなる請求項1又は2
記載のフレキシブルプリント基板。
(4) Claim 1 or 2 in which the insulator consists of two layers: a low thermal expansion resin layer in contact with the conductor and a high thermal expansion resin layer in contact with it.
The flexible printed circuit board described.
(5)絶縁体が導体と接する第1の高熱膨張性樹脂層と
、この第1の高熱膨張性樹脂層に接する低熱膨張性樹脂
層と、この低熱膨張性樹脂層に接する第2の高熱膨張性
樹脂層で構成された3層構造であるからなる特許請求の
範囲第1項記載のフレキシブルプリント基板。
(5) A first high thermal expansion resin layer in which the insulator is in contact with the conductor, a low thermal expansion resin layer in contact with the first high thermal expansion resin layer, and a second high thermal expansion resin layer in contact with the low thermal expansion resin layer. 2. The flexible printed circuit board according to claim 1, which has a three-layer structure composed of flexible resin layers.
(6)高熱膨張性樹脂層が下記一般式( I )▲数式、
化学式、表等があります▼( I ) (但し、式中Ar_1は炭素数12以上の2価の芳香族
基である)で示される構成単位を含むポリイミド樹脂で
あることを特徴とする請求項1〜5のいずれかに記載の
フレキシブルプリント基板。
(6) The high thermal expansion resin layer has the following general formula (I)▲mathematical formula,
There are chemical formulas, tables, etc. ▼ (I) Claim 1 characterized in that it is a polyimide resin containing a structural unit represented by (wherein Ar_1 in the formula is a divalent aromatic group having 12 or more carbon atoms). 6. The flexible printed circuit board according to any one of 5 to 5.
(7)低熱膨張性樹脂層が下記一般式(II)▲数式、化
学式、表等があります▼(II) (但し、式中Arは4価の芳香族基を示し、R1及びR
2は互いに同じであっても異なっていてもよい低級アル
キル基、低級アルコキシ基又はハロゲンのいずれかを示
し、l及びmは0〜4の整数であり、少なくとも1つの
低級アルコキシ基を有する)で示される構成単位を含む
ポリアミドイミド樹脂である請求項1〜6のいずれかに
記載のフレキシブルプリント基板。
(7) The low thermal expansion resin layer has the following general formula (II) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (II) (However, in the formula, Ar represents a tetravalent aromatic group, and R1 and R
2 represents either a lower alkyl group, a lower alkoxy group, or a halogen, which may be the same or different from each other, l and m are integers of 0 to 4, and have at least one lower alkoxy group) The flexible printed circuit board according to any one of claims 1 to 6, which is a polyamideimide resin containing the structural units shown.
(8)低熱膨張性樹脂層が下記一般式(III)▲数式、
化学式、表等があります▼(III) で示される構成単位を含むポリイミド樹脂である請求項
1〜6のいずれかに記載のフレキシブルプリント基板。
(8) The low thermal expansion resin layer has the following general formula (III)▲mathematical formula,
7. The flexible printed circuit board according to claim 1, which is a polyimide resin containing a structural unit represented by the chemical formula, table, etc. ▼(III).
JP63071818A 1988-03-28 1988-03-28 Flexible printed board Granted JPH01245586A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63071818A JPH01245586A (en) 1988-03-28 1988-03-28 Flexible printed board
US07/329,139 US4937133A (en) 1988-03-28 1989-03-27 Flexible base materials for printed circuits
EP19890105469 EP0335337B1 (en) 1988-03-28 1989-03-28 Flexible base materials for printed circuits
DE68925490T DE68925490T2 (en) 1988-03-28 1989-03-28 Flexible basic materials for printed circuit boards
KR1019890003943A KR930010058B1 (en) 1988-03-28 1989-03-28 Flexible base materials for printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071818A JPH01245586A (en) 1988-03-28 1988-03-28 Flexible printed board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7294465A Division JP2746555B2 (en) 1995-11-13 1995-11-13 Flexible printed circuit board

Publications (2)

Publication Number Publication Date
JPH01245586A true JPH01245586A (en) 1989-09-29
JPH0522399B2 JPH0522399B2 (en) 1993-03-29

Family

ID=13471515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071818A Granted JPH01245586A (en) 1988-03-28 1988-03-28 Flexible printed board

Country Status (1)

Country Link
JP (1) JPH01245586A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126974A (en) * 1988-06-23 1990-05-15 Toray Ind Inc Production of polyimide laminated film
WO1992004811A1 (en) * 1990-09-04 1992-03-19 Chisso Corporation Flexible printed circuit board and its manufacturing
EP0499986A3 (en) * 1991-02-18 1995-03-08 Hitachi Ltd
JPH09148695A (en) * 1995-11-24 1997-06-06 Mitsui Toatsu Chem Inc Flexible printed circuit board and its manufacture
WO1998008216A1 (en) * 1996-08-19 1998-02-26 Nippon Steel Chemical Co., Ltd. Laminate for hdd suspension and its manufacture
JP2000096010A (en) * 1998-09-22 2000-04-04 Toray Ind Inc Adhesive tape for semiconductor device
US6344308B1 (en) 1998-11-20 2002-02-05 Sony Chemicals Corp. Method of manufacturing a flexible circuit board
US6346298B1 (en) 1998-12-21 2002-02-12 Sony Chemicals Corp. Flexible board
JP2003080630A (en) * 2001-09-11 2003-03-19 Mitsui Chemicals Inc Polyimide metallic foil laminate
US6658722B1 (en) 1998-12-28 2003-12-09 Sony Chemicals Corporation Process for producing magnetic head suspension
US6705007B1 (en) 1998-12-28 2004-03-16 Sony Chemicals Corp. Method for manufacturing double-sided flexible printed board
JP2005186274A (en) * 2003-12-24 2005-07-14 Kaneka Corp Flexible laminated sheet and its manufacturing method
US6962726B2 (en) * 2000-06-16 2005-11-08 Unitika Ltd. Method for preparing substrate for flexible print wiring board, and substrate for flexible print wiring board
JP2006051824A (en) * 1999-10-21 2006-02-23 Nippon Steel Chem Co Ltd Laminated body and its manufacturing method
JP2006051800A (en) * 2004-07-13 2006-02-23 Nippon Steel Chem Co Ltd Flexible laminated board and its manufacturing process
US7060784B2 (en) 2003-06-25 2006-06-13 Shin-Etsu Chemical Co., Ltd. Polyimide precursor resin solution composition sheet
JP2006272683A (en) * 2005-03-29 2006-10-12 Tomoegawa Paper Co Ltd Flexible metal laminate and flexible printed circuit board
JP2006272886A (en) * 2005-03-30 2006-10-12 Tomoegawa Paper Co Ltd Flexible metal laminate and flexible printed circuit board
JP2006306086A (en) * 2005-03-31 2006-11-09 Nippon Steel Chem Co Ltd Multi-layer laminate and flexible copper-clad laminated substrate
JP2008074084A (en) * 2006-09-18 2008-04-03 Chang Chun Plastics Co Ltd Polyimide compound flexible sheet and its manufacturing process
JP2008166554A (en) * 2006-12-28 2008-07-17 Du Pont Toray Co Ltd Flexible printed wiring board
JP2009101706A (en) * 1999-10-21 2009-05-14 Nippon Steel Chem Co Ltd Polyimide film and method for production thereof
JP2009528933A (en) * 2006-03-06 2009-08-13 エルジー・ケム・リミテッド Metal laminate and manufacturing method thereof
WO2009110387A1 (en) * 2008-03-06 2009-09-11 新日鐵化学株式会社 Laminate for flexible board and heat conductive polyimide film
US7947332B2 (en) 2004-06-23 2011-05-24 Hitachi Chemical Company, Ltd. Prepreg for printed wiring board, metal foil clad laminate and printed wiring board, and, method for manufacturing multi-layer printed wiring board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276324B2 (en) 2005-10-21 2013-08-28 日本化薬株式会社 Thermosetting resin composition and use thereof
JPWO2007148666A1 (en) * 2006-06-20 2009-11-19 日本化薬株式会社 Copper foil with primer resin layer and laminate using the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179634A (en) * 1962-01-26 1965-04-20 Du Pont Aromatic polyimides and the process for preparing them
US3179614A (en) * 1961-03-13 1965-04-20 Du Pont Polyamide-acids, compositions thereof, and process for their preparation
JPS5548473A (en) * 1978-10-02 1980-04-07 Messer Griesheim Gmbh Flame treating method of work and its device
JPS6119352A (en) * 1984-06-30 1986-01-28 アクゾ・エヌ・ヴエー Flexible multilayer laminate and manufacture thereof
JPS61111359A (en) * 1984-11-06 1986-05-29 Ube Ind Ltd Polyamic acid solution composition and polyimide film
JPS62104840A (en) * 1985-10-31 1987-05-15 Mitsui Toatsu Chem Inc Production of flexible printed circuit board
JPS62140822A (en) * 1985-12-17 1987-06-24 Ube Ind Ltd Polyimide laminated sheet and its manufacture
US4690999A (en) * 1983-08-01 1987-09-01 Hitachi, Ltd. Low thermal expansion resin material and composite shaped article
JPS6367145A (en) * 1986-09-09 1988-03-25 三菱化学株式会社 Laminated polyimide film
JPS6482928A (en) * 1987-09-25 1989-03-28 Mitsui Toatsu Chemicals Flexible laminated plate of metal and plastic
JPH01225540A (en) * 1988-03-07 1989-09-08 Hitachi Ltd Novel coefficient of thermal expansion distribution type film
US4937133A (en) * 1988-03-28 1990-06-26 Nippon Steel Chemical Co., Ltd. Flexible base materials for printed circuits

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179614A (en) * 1961-03-13 1965-04-20 Du Pont Polyamide-acids, compositions thereof, and process for their preparation
US3179634A (en) * 1962-01-26 1965-04-20 Du Pont Aromatic polyimides and the process for preparing them
JPS5548473A (en) * 1978-10-02 1980-04-07 Messer Griesheim Gmbh Flame treating method of work and its device
US4690999A (en) * 1983-08-01 1987-09-01 Hitachi, Ltd. Low thermal expansion resin material and composite shaped article
JPS6119352A (en) * 1984-06-30 1986-01-28 アクゾ・エヌ・ヴエー Flexible multilayer laminate and manufacture thereof
JPS61111359A (en) * 1984-11-06 1986-05-29 Ube Ind Ltd Polyamic acid solution composition and polyimide film
JPS62104840A (en) * 1985-10-31 1987-05-15 Mitsui Toatsu Chem Inc Production of flexible printed circuit board
JPS62140822A (en) * 1985-12-17 1987-06-24 Ube Ind Ltd Polyimide laminated sheet and its manufacture
JPS6367145A (en) * 1986-09-09 1988-03-25 三菱化学株式会社 Laminated polyimide film
JPS6482928A (en) * 1987-09-25 1989-03-28 Mitsui Toatsu Chemicals Flexible laminated plate of metal and plastic
JPH01225540A (en) * 1988-03-07 1989-09-08 Hitachi Ltd Novel coefficient of thermal expansion distribution type film
US4937133A (en) * 1988-03-28 1990-06-26 Nippon Steel Chemical Co., Ltd. Flexible base materials for printed circuits

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126974A (en) * 1988-06-23 1990-05-15 Toray Ind Inc Production of polyimide laminated film
WO1992004811A1 (en) * 1990-09-04 1992-03-19 Chisso Corporation Flexible printed circuit board and its manufacturing
EP0498898A4 (en) * 1990-09-04 1994-01-05 Chisso Corporation
EP0499986A3 (en) * 1991-02-18 1995-03-08 Hitachi Ltd
JPH09148695A (en) * 1995-11-24 1997-06-06 Mitsui Toatsu Chem Inc Flexible printed circuit board and its manufacture
US6203918B1 (en) 1996-08-19 2001-03-20 Nippon Steel Chemical Co., Ltd. Laminate for HDD suspension and its manufacture
WO1998008216A1 (en) * 1996-08-19 1998-02-26 Nippon Steel Chemical Co., Ltd. Laminate for hdd suspension and its manufacture
JP2000096010A (en) * 1998-09-22 2000-04-04 Toray Ind Inc Adhesive tape for semiconductor device
US6344308B1 (en) 1998-11-20 2002-02-05 Sony Chemicals Corp. Method of manufacturing a flexible circuit board
US6346298B1 (en) 1998-12-21 2002-02-12 Sony Chemicals Corp. Flexible board
US7213334B2 (en) 1998-12-28 2007-05-08 Sony Corporation Method for manufacturing double-sided flexible printed board
US6658722B1 (en) 1998-12-28 2003-12-09 Sony Chemicals Corporation Process for producing magnetic head suspension
US6705007B1 (en) 1998-12-28 2004-03-16 Sony Chemicals Corp. Method for manufacturing double-sided flexible printed board
JP2006051824A (en) * 1999-10-21 2006-02-23 Nippon Steel Chem Co Ltd Laminated body and its manufacturing method
JP4571043B2 (en) * 1999-10-21 2010-10-27 新日鐵化学株式会社 Laminated body and method for producing the same
JP2009101706A (en) * 1999-10-21 2009-05-14 Nippon Steel Chem Co Ltd Polyimide film and method for production thereof
US6962726B2 (en) * 2000-06-16 2005-11-08 Unitika Ltd. Method for preparing substrate for flexible print wiring board, and substrate for flexible print wiring board
KR100820221B1 (en) * 2000-06-16 2008-04-07 유니티카 가부시끼가이샤 Method for preparing substrate for flexible print wiring board and substrate for flexible print wiring board
JP4667675B2 (en) * 2001-09-11 2011-04-13 三井化学株式会社 Polyimide metal foil laminate
JP2003080630A (en) * 2001-09-11 2003-03-19 Mitsui Chemicals Inc Polyimide metallic foil laminate
US7060784B2 (en) 2003-06-25 2006-06-13 Shin-Etsu Chemical Co., Ltd. Polyimide precursor resin solution composition sheet
JP2005186274A (en) * 2003-12-24 2005-07-14 Kaneka Corp Flexible laminated sheet and its manufacturing method
US7947332B2 (en) 2004-06-23 2011-05-24 Hitachi Chemical Company, Ltd. Prepreg for printed wiring board, metal foil clad laminate and printed wiring board, and, method for manufacturing multi-layer printed wiring board
JP2006051800A (en) * 2004-07-13 2006-02-23 Nippon Steel Chem Co Ltd Flexible laminated board and its manufacturing process
JP4619860B2 (en) * 2004-07-13 2011-01-26 新日鐵化学株式会社 Flexible laminate and method for manufacturing the same
JP2006272683A (en) * 2005-03-29 2006-10-12 Tomoegawa Paper Co Ltd Flexible metal laminate and flexible printed circuit board
JP2006272886A (en) * 2005-03-30 2006-10-12 Tomoegawa Paper Co Ltd Flexible metal laminate and flexible printed circuit board
JP2006306086A (en) * 2005-03-31 2006-11-09 Nippon Steel Chem Co Ltd Multi-layer laminate and flexible copper-clad laminated substrate
JP4699261B2 (en) * 2005-03-31 2011-06-08 新日鐵化学株式会社 Multilayer laminate and flexible copper-clad laminate
JP2009528933A (en) * 2006-03-06 2009-08-13 エルジー・ケム・リミテッド Metal laminate and manufacturing method thereof
US8221842B2 (en) 2006-03-06 2012-07-17 Lg Chem, Ltd. Metallic laminate and method for preparing the same
US8426029B2 (en) 2006-03-06 2013-04-23 Lg Chem, Ltd. Metallic laminate and method for preparing the same
JP2008074084A (en) * 2006-09-18 2008-04-03 Chang Chun Plastics Co Ltd Polyimide compound flexible sheet and its manufacturing process
JP2008166554A (en) * 2006-12-28 2008-07-17 Du Pont Toray Co Ltd Flexible printed wiring board
WO2009110387A1 (en) * 2008-03-06 2009-09-11 新日鐵化学株式会社 Laminate for flexible board and heat conductive polyimide film

Also Published As

Publication number Publication date
JPH0522399B2 (en) 1993-03-29

Similar Documents

Publication Publication Date Title
JPH01245586A (en) Flexible printed board
KR930010058B1 (en) Flexible base materials for printed circuit board
JP4528093B2 (en) Multilayer substrate having at least two dissimilar polyamide layers and a conductive layer and useful for electronics-type applications, and compositions related thereto
JP2746555B2 (en) Flexible printed circuit board
KR100657729B1 (en) Laminate and Process for Producing the Same
TWI526125B (en) Flexible circuit boards for repeated buckling applications, using their electronic machines and mobile phones
JPH0354971B2 (en)
US4939039A (en) Flexible base materials for printed circuits and method of making same
JP5163126B2 (en) Flexible laminated board, manufacturing method thereof, and flexible printed wiring board
JP2738453B2 (en) Manufacturing method of copper clad laminate
KR20040030536A (en) Polyimide Film For Flexible Printed Board and Flexible Printed Board Using the Same
KR20080011095A (en) Coverlay
EP1292177A1 (en) Method for preparing substrate for flexible print wiring board and substrate for flexible print wiring board
JP2001270039A (en) Flexible metal foil laminate and manufacturing method for the same
JPS63264632A (en) Low-thermal expansion resin
JPH0543314B2 (en)
JP2007189011A (en) Substrate for flexible printed wiring board and its production process
JPS63245988A (en) Flexible printed circuit and manufacture of the same
JP2000299359A (en) Tape for tab
JPS6384188A (en) Manufacture of flexible printed circuit substrate
JPH0955567A (en) Production of flexible printed wiring board
JP2023006387A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit board
JP3205588B2 (en) Manufacturing method of printed wiring board
JPS63234589A (en) Multilayer interconnection board
KR100822840B1 (en) Flexible Copper-Clad Laminate

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term