JP2006051800A - Flexible laminated board and its manufacturing process - Google Patents

Flexible laminated board and its manufacturing process Download PDF

Info

Publication number
JP2006051800A
JP2006051800A JP2005149069A JP2005149069A JP2006051800A JP 2006051800 A JP2006051800 A JP 2006051800A JP 2005149069 A JP2005149069 A JP 2005149069A JP 2005149069 A JP2005149069 A JP 2005149069A JP 2006051800 A JP2006051800 A JP 2006051800A
Authority
JP
Japan
Prior art keywords
resin layer
polyimide
metal foil
resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005149069A
Other languages
Japanese (ja)
Other versions
JP4619860B2 (en
Inventor
Hiroyuki Matsuyama
浩幸 松山
Masahiko Takeuchi
正彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2005149069A priority Critical patent/JP4619860B2/en
Priority to TW094122032A priority patent/TWI344804B/en
Priority to KR1020050063142A priority patent/KR101258569B1/en
Priority to CN2005100831684A priority patent/CN1733473B/en
Publication of JP2006051800A publication Critical patent/JP2006051800A/en
Application granted granted Critical
Publication of JP4619860B2 publication Critical patent/JP4619860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible laminated board coping with mounting conditions under high temperature and high pressure while retaining characteristics possessed by the flexible laminated board. <P>SOLUTION: In the flexible laminated board having a metal foil on one surface or both surfaces of an insulating resin layer, the insulating resin layer comprises a plurality of layers of a polyimide resin provided with at least one high elastic modulus resin layer in contact with the metal foil of a polyimide resin with ≥1×10<SP>8</SP>Pa storage elastic modulus at 350°C, and at least one low thermal expansion resin layer of ≤20×10<SP>-6</SP>/K linear expansion coefficient, where the rate of thickness of the high elastic modulus layer in the insulating resin layer is in the range of 3-45%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子材料分野、特に回路を形成するために用いられる金属箔とポリイミド絶縁樹脂層からなるフレキシブル積層板に関するものである。   The present invention relates to the field of electronic materials, and more particularly to a flexible laminate comprising a metal foil and a polyimide insulating resin layer used for forming a circuit.

ポリイミドフィルムは、熱的特性、絶縁性、耐溶剤性等に優れており、携帯電話等の電気・電子機器部品の材料として広く用いられている。近年、携帯電話等の薄型化、高機能化が進むに従い、その機器部品材料に搭載される基板は、リジッド基板からフレキシブルプリント基板に移行している。このようなフレキシブルプリント基板にはフレキシブル積層板が広く用いられ、一部のフレキシブル積層板ではその金属箔と接する絶縁樹脂層にエポキシ樹脂等の接着性樹脂が用いられ、ベース部の絶縁樹脂層にはポリイミド樹脂が用いられている。ところが、近年の鉛フリーハンダ対応、半導体素子実装の時間短縮・高効率化に伴い、実装時の温度・圧力が上昇することが予想され、その場合、エポキシ樹脂を用いたフレキシブル積層板ではエポキシ樹脂の耐熱性等の熱的特性の低さから、高温実装への対応が困難であるという問題が指摘されている。   The polyimide film is excellent in thermal characteristics, insulation, solvent resistance, and the like, and is widely used as a material for electrical / electronic device parts such as mobile phones. In recent years, with the progress of thinning and high functionality of mobile phones and the like, the board mounted on the device component material has shifted from a rigid board to a flexible printed board. A flexible laminate is widely used for such a flexible printed circuit board. In some flexible laminates, an adhesive resin such as an epoxy resin is used for an insulating resin layer in contact with the metal foil, and an insulating resin layer of the base portion is used. The polyimide resin is used. However, it is expected that the temperature and pressure during mounting will increase with the recent lead-free solder compatibility, shortening of semiconductor device mounting time and higher efficiency. In that case, epoxy resin is not suitable for flexible laminates using epoxy resin. Due to the low thermal characteristics such as heat resistance, it has been pointed out that it is difficult to cope with high temperature mounting.

そこで、特許文献1で知られるように金属箔と接する絶縁樹脂層に耐熱性の高いポリイミド樹脂を用いたフレキシブル積層板が開発されてきているが、この金属箔とポリイミド樹脂層とからなる2層フレキシブル積層板においても、これまでは絶縁樹脂層に金属箔をラミネートする必要があるため金属箔に接するポリイミド樹脂層には熱可塑性ポリイミド樹脂が広く用いられてきている。しかしながら、これまでに知られている熱可塑性ポリイミド樹脂を用いたフレキシブル積層板であっても、高温・高圧条件による半導体素子実装に耐えうるような熱的特性に優れ、かつフレキシブル積層板としての諸特性を保持したものはないのが実情であった。   Therefore, as known in Patent Document 1, a flexible laminated board using a highly heat-resistant polyimide resin for an insulating resin layer in contact with a metal foil has been developed, but two layers composed of this metal foil and a polyimide resin layer. Also in a flexible laminated board, until now, it has been necessary to laminate a metal foil on an insulating resin layer, and thus a thermoplastic polyimide resin has been widely used for a polyimide resin layer in contact with the metal foil. However, even flexible laminates using thermoplastic polyimide resins known so far have excellent thermal characteristics that can withstand mounting of semiconductor elements under high temperature and high pressure conditions, and various properties as flexible laminates. The fact is that there is no one that retains the characteristics.

WO02/085616号公報WO02 / 085616 Publication 特開2003-338525号公報JP 2003-338525 A 特開2003-264374号公報JP 2003-264374 A

一方、電子機器の小型化への要求にともなって、回路を形成した配線基板の上に半導体素子を実装する技術が開発されている。例えば、特許文献2は半導体装置とその製造方法に関するものであるが、ここに記載された技術を含め、同方法に類似した技術では、半導体素子を配線基板に樹脂を介して実装する場合、介在する樹脂成分を硬化するため、あるいは軟化させるため半導体素子は封止治具とともに高温に加熱される。この加熱温度につき、特許文献2では、280〜300℃以上に加熱する旨の記載があるが、この温度は、介在する樹脂特性によっても左右されるが、通常250℃以上には加熱される。また、樹脂を介在させないで接する金属同士で共晶を形成させる方法もあるが、この場合には、更に高い温度に加熱されることになる。特許文献2にあるように、半導体素子の基板への実装は、加熱下、半導体素子のバンプを配線基板の導体層へ加圧して実装され、この場合、積層板の導体回路と接する半導体素子のバンプ等の突起部は、高温状態で基板に圧接され押し付けられるため、配線基板に接する樹脂層の耐熱性が低かったり、柔らかい材質のものであったりすると接続部分に温度とともに圧力が集中し、配線基板の樹脂層上の回路や半導体素子の一部分が基板の絶縁樹脂層に沈み込み安定した実装が行えないという不具合が生じていた。   On the other hand, with the demand for miniaturization of electronic equipment, a technique for mounting a semiconductor element on a wiring board on which a circuit is formed has been developed. For example, Patent Document 2 relates to a semiconductor device and a method for manufacturing the same. However, techniques similar to the method described here, including the technique described herein, include an interposition when a semiconductor element is mounted on a wiring board via a resin. The semiconductor element is heated to a high temperature together with the sealing jig in order to cure or soften the resin component. With respect to this heating temperature, Patent Document 2 describes that heating is performed at 280 to 300 ° C. or higher, but this temperature is usually also heated to 250 ° C. or higher, although it depends on the resin properties that are present. In addition, there is a method of forming a eutectic with metals that are in contact with each other without interposing a resin. In this case, the eutectic is heated to a higher temperature. As disclosed in Patent Document 2, the mounting of the semiconductor element on the substrate is performed by heating and pressing the bumps of the semiconductor element onto the conductor layer of the wiring board under heating. In this case, the semiconductor element in contact with the conductor circuit of the laminated board is mounted. Since bumps and other protrusions are pressed against and pressed against the board at high temperatures, if the resin layer in contact with the wiring board has low heat resistance or is made of a soft material, pressure will concentrate on the connection part with the temperature. There has been a problem that a part of a circuit or a semiconductor element on the resin layer of the substrate sinks into the insulating resin layer of the substrate and cannot be stably mounted.

上記問題は、配線基板に無機材料を充填させたりしたものであれば解決できる場合もあるが、その場合、配線基板の屈曲性などが保持できず、工業的にフレキシブル積層板が使われる分野とは異なる分野でしか適用できないものとなってしまう。耐熱性樹脂の高温(300℃)での弾性率に着目した耐熱性樹脂組成物とそれを用いた多層配線基板に関する技術が特許文献3に記載されている。しかし、特許文献3には、そこに記載された樹脂組成物が半導体チップの表面保護膜、半導体パッケージの層間絶縁膜、半導体素子実装のための基板の層間絶縁膜などに用いることができる旨の記載はあるが、実際にフレキシブル特性を保持した状態で半導体実装用途に適用する場合の検討は不十分であり、また、従来のフレキシブル積層板も同様に実装用途への適用を考慮した設計がされていなかった。   The above problem may be solved if the wiring board is filled with an inorganic material, but in that case, the flexibility of the wiring board cannot be maintained, and the field where flexible laminates are used industrially. Can only be applied in different fields. Patent Document 3 describes a technique relating to a heat resistant resin composition focusing on the elastic modulus of a heat resistant resin at a high temperature (300 ° C.) and a multilayer wiring board using the same. However, Patent Document 3 states that the resin composition described therein can be used for a surface protective film of a semiconductor chip, an interlayer insulating film of a semiconductor package, an interlayer insulating film of a substrate for mounting a semiconductor element, and the like. Although described, there is insufficient study when applying to semiconductor mounting applications while actually maintaining flexible characteristics, and conventional flexible laminates are similarly designed with consideration for application to mounting applications. It wasn't.

本発明は、金属箔との接着性を損なうことなく、金属箔と接するポリイミド樹脂のガラス転移温度(Tg)及び高温領域(350℃)における貯蔵弾性率を向上させることで、高温の実装条件にも耐えうる耐熱特性に優れたフレキシブル積層板を提供することにある。   The present invention improves the glass transition temperature (Tg) and storage elastic modulus in the high temperature region (350 ° C.) of the polyimide resin in contact with the metal foil without impairing the adhesiveness to the metal foil, so that the high temperature mounting condition can be achieved. Another object of the present invention is to provide a flexible laminate having excellent heat resistance characteristics that can withstand the heat.

上記課題を解決するために検討した結果、本発明者等は、フレキシブル積層板の絶縁樹脂層の構成を特定のものに設計することで、耐熱特性を向上させたフレキシブル積層板とすることができることを見出し、本発明を完成した。   As a result of studying to solve the above problems, the present inventors can design a flexible laminate having improved heat resistance by designing the insulating resin layer of the flexible laminate to a specific configuration. The present invention has been completed.

すなわち、本発明は、絶縁樹脂層の片面又は両面に金属箔を有するフレキシブル積層板であって、絶縁樹脂層は複数層のポリイミド樹脂からなり、金属箔と接する少なくとも1層のポリイミド樹脂が350℃における貯蔵弾性率が1×108〜2×109 Pa、ガラス転移温度が300〜400℃の高弾性樹脂層によって形成されており、また、高弾性樹脂層以外の樹脂層として、少なくとも1層の線膨張係数が20×10-6 /K以下の低熱膨張性樹脂層を有し、かつ、絶縁樹脂層における高弾性樹脂層の厚み割合が3〜45%の範囲にあることを特徴とするフレキシブル積層板である。 That is, the present invention is a flexible laminate having a metal foil on one or both sides of an insulating resin layer, the insulating resin layer is composed of a plurality of polyimide resins, and at least one polyimide resin in contact with the metal foil is 350 ° C. Is formed of a high elastic resin layer having a storage elastic modulus of 1 × 10 8 to 2 × 10 9 Pa and a glass transition temperature of 300 to 400 ° C., and at least one resin layer other than the high elastic resin layer Characterized by having a low thermal expansion resin layer having a linear expansion coefficient of 20 × 10 −6 / K or less and a thickness ratio of the highly elastic resin layer in the insulating resin layer in the range of 3 to 45%. It is a flexible laminate.

ここで、1)低熱膨張性樹脂層の両側が高弾性樹脂層であること、2)金属箔と接する高弾性樹脂層を構成するポリイミド樹脂が、ピロメリット酸二無水物とジアミンから製造され、ジアミンとして2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンと、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン及び4,4'-ビス(4-アミノフェノキシ)ビフェニルから選ばれる少なくとも1種のジアミンを5〜80モル%含有するものを使用すること、又は、3)ポリイミド樹脂層と接する金属箔表面の表面粗さ(Rz)が0.6〜1.0 μmの範囲にあることのいずれか1以上の要件を満足させることはより良好なフレキシブル積層板を与える。   Here, 1) both sides of the low thermal expansion resin layer are high elastic resin layers, 2) a polyimide resin constituting the high elastic resin layer in contact with the metal foil is manufactured from pyromellitic dianhydride and diamine, 2,2-bis [4- (4-aminophenoxy) phenyl] propane as a diamine, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene and 4,4 Use one containing 5 to 80 mol% of at least one diamine selected from '-bis (4-aminophenoxy) biphenyl, or 3) surface roughness of the metal foil surface in contact with the polyimide resin layer (Rz Satisfying one or more of the requirements in the range of 0.6 to 1.0 μm gives a better flexible laminate.

また、本発明は、下記工程、1)表面粗さ(Rz)が0.6〜1.0 μmの範囲にある金属箔表面に350℃における貯蔵弾性率が1×108〜2×109 Pa、ガラス転移温度が300〜400℃の高弾性樹脂層となるポリイミド前駆体樹脂を塗布する工程、2)前記ポリイミド前駆体樹脂層上に線膨張係数が20×10-6 /K以下の低熱膨張性樹脂層となるポリイミド前駆体樹脂を塗布する工程、及び3)金属箔上に複数層のポリイミド前駆体樹脂層が設けられた状態で熱硬化処理する工程、を有することを特徴とする少なくとも1層の金属箔と少なくとも2層のポリイミド樹脂とからなるフレキシブル積層板の製造方法である。 In addition, the present invention includes the following steps: 1) a storage elastic modulus at 350 ° C. of 1 × 10 8 to 2 × 10 9 Pa on a metal foil surface having a surface roughness (Rz) in the range of 0.6 to 1.0 μm, glass transition A step of applying a polyimide precursor resin to be a highly elastic resin layer having a temperature of 300 to 400 ° C., 2) a low thermal expansion resin layer having a linear expansion coefficient of 20 × 10 −6 / K or less on the polyimide precursor resin layer A step of applying a polyimide precursor resin, and 3) a step of thermosetting in a state in which a plurality of polyimide precursor resin layers are provided on a metal foil, at least one layer of metal A method for producing a flexible laminate comprising a foil and at least two layers of polyimide resin.

以下、本発明のフレキシブル積層板について詳述する。
本発明のフレキシブル積層板は、絶縁樹脂層と金属箔から構成され、絶縁樹脂層の片面又は両面に金属箔を有している。ここで、絶縁樹脂層は複数層のポリイミド樹脂から構成されており、金属箔と接する少なくとも1層のポリイミド樹脂層は、350℃における貯蔵弾性率が1×108〜2×109 Pa 、ガラス転移温度が300〜400℃の範囲にある高弾性樹脂層で形成されている。そして、絶縁樹脂層におけるこの高弾性樹脂層の厚み割合は、3〜45%の範囲にあることが必要である。また、高弾性樹脂層は、低熱膨張性樹脂層の両側に隣接して設けられていることが好ましい。
Hereinafter, the flexible laminated board of this invention is explained in full detail.
The flexible laminated board of this invention is comprised from the insulating resin layer and metal foil, and has metal foil on the single side | surface or both surfaces of an insulating resin layer. Here, the insulating resin layer is composed of a plurality of polyimide resins, and at least one polyimide resin layer in contact with the metal foil has a storage elastic modulus at 350 ° C. of 1 × 10 8 to 2 × 10 9 Pa, glass It is formed of a highly elastic resin layer having a transition temperature in the range of 300 to 400 ° C. And the thickness ratio of this highly elastic resin layer in an insulating resin layer needs to exist in the range of 3-45%. Moreover, it is preferable that the highly elastic resin layer is provided adjacent to both sides of the low thermal expansion resin layer.

本発明で使用されるポリイミド樹脂は、公知のジアミノ化合物とテトラカルボン酸又はその無水物を適宜選定し、絶縁樹脂層を構成する各層に適した特性に適合するように、これらを組み合わせて有機溶剤中で反応させて得ることができる。本発明でポリイミド樹脂という場合、分子中にイミド結合を有するポリイミド樹脂やポリアミドイミド樹脂を主成分とするものであり、必ずしも単一なポリイミド樹脂である必要はなく、場合によっては他の樹脂との混合物であってもよい。他の樹脂との混合物である場合、その他の樹脂は30%以下、好ましくは20%以下とすることがよい。また、少量であれば無機充填材を配合してもよいが、これらの配合は本発明のフレキシブル積層板の有する耐折性や回路加工性を損なうおそれがあるため、微量に留めることが好ましく。実質的には、絶縁樹脂層はポリイミド樹脂層からなるものとすることが有利である。   For the polyimide resin used in the present invention, a known diamino compound and tetracarboxylic acid or anhydride thereof are appropriately selected, and these are combined in an organic solvent so as to meet the characteristics suitable for each layer constituting the insulating resin layer. It can be obtained by reacting in. In the present invention, a polyimide resin is mainly composed of a polyimide resin or polyamide-imide resin having an imide bond in the molecule, and is not necessarily a single polyimide resin. It may be a mixture. In the case of a mixture with other resins, the other resins should be 30% or less, preferably 20% or less. In addition, an inorganic filler may be blended if the amount is small, but these blends may impair the folding resistance and circuit processability of the flexible laminate of the present invention. In practice, the insulating resin layer is advantageously made of a polyimide resin layer.

本発明における350℃における貯蔵弾性率が1×108〜2×109 Pa 、ガラス転移温度が300〜400℃の範囲にある高弾性樹脂層(以下、単に高弾性樹脂層ともいう。)を構成するポリイミド樹脂(以下、単に高弾性ポリイミド樹脂ともいう。)は、その特性を満たせば限定されるものではないが、好ましくは下記一般式(I)で表される構造単位を有するポリイミド樹脂である。

Figure 2006051800
A high elastic resin layer (hereinafter also simply referred to as a high elastic resin layer) having a storage elastic modulus at 350 ° C. of 1 × 10 8 to 2 × 10 9 Pa and a glass transition temperature of 300 to 400 ° C. in the present invention. The polyimide resin (hereinafter also referred to simply as “highly elastic polyimide resin”) is not limited as long as it satisfies the characteristics, but is preferably a polyimide resin having a structural unit represented by the following general formula (I). is there.
Figure 2006051800

一般式(I)においてAr1、Ar3は炭素数12以上の2価の芳香族残基であり、Ar2は炭素数6以上の4価の芳香族残基であり、k,lはk+l=100とした場合の各構成単位のモル比率を表し、kは20〜95、lは80〜5の数である。 In general formula (I), Ar 1 and Ar 3 are divalent aromatic residues having 12 or more carbon atoms, Ar 2 is a tetravalent aromatic residue having 6 or more carbon atoms, and k and l are k The molar ratio of each structural unit when + l = 100 is represented, k is 20 to 95, and l is a number of 80 to 5.

ここで、Ar1としては、式(a)で表される2価の基を、好ましいものとして挙げることができる。

Figure 2006051800
Here, as Ar 1 , a divalent group represented by the formula (a) can be mentioned as a preferable one.
Figure 2006051800

また、Ar2としては、式(b)で表される4価の基を、好ましいものとして挙げることができる。

Figure 2006051800
Moreover, as Ar 2 , a tetravalent group represented by the formula (b) can be mentioned as a preferable one.
Figure 2006051800

Ar3としては、式(c)〜(g)で表される2価の基のいずれか1以上を、好ましいものとして挙げることができるが、より好ましくは(e)、(f)及び(g)のいずれか1以上である。

Figure 2006051800
As Ar 3 , any one or more of the divalent groups represented by the formulas (c) to (g) can be mentioned as preferred, and more preferably (e), (f) and (g 1) or more.
Figure 2006051800

高弾性ポリイミド樹脂は350℃での貯蔵弾性率が1×108〜2×109 Pa の範囲にあることが必要であり、1×108〜1×109の範囲にあることが好ましい。この値が1×108 Paに満たないと、例えば、高温下で半導体素子を実装した際に、その実装温度において金属箔と接する絶縁樹脂層が流動的になり、金属配線の沈み込みが発生しやすくなる。一方、高弾性樹脂の貯蔵弾性率が2×109 Paを超えることは本発明の目的とする高温での熱的特性の面からは望ましいが、フレキシブル積層板の屈曲特性を発現するための柔軟性が低下するおそれがある。また、高弾性樹脂層は、ガラス転移温度(Tg)が300〜400℃の範囲にあることが必要であり、特に好ましくは325〜380℃の範囲にすることが有利である。ガラス転移温度が、300℃に満たないと、上記したと同じように金属配線の沈み込みが発生しやすくなり、また、フレキシブル積層板のハンダ耐熱性も悪化する。また、ガラス転移温度が、400℃を超えると、ポリイミド層と金属箔間の良好な接着性が得られない。 The high elastic polyimide resin needs to have a storage elastic modulus at 350 ° C. in the range of 1 × 10 8 to 2 × 10 9 Pa, and preferably in the range of 1 × 10 8 to 1 × 10 9 . If this value is less than 1 × 10 8 Pa, for example, when a semiconductor element is mounted at a high temperature, the insulating resin layer in contact with the metal foil becomes fluid at the mounting temperature, and metal wiring sinks. It becomes easy to do. On the other hand, it is desirable that the storage elastic modulus of the high-elastic resin exceeds 2 × 10 9 Pa from the viewpoint of the thermal characteristics at high temperatures, which is the object of the present invention, but it is flexible to develop the bending characteristics of the flexible laminate. May decrease. Further, the high elastic resin layer is required to have a glass transition temperature (Tg) in the range of 300 to 400 ° C, particularly preferably in the range of 325 to 380 ° C. If the glass transition temperature is less than 300 ° C., the metal wiring is likely to sink as described above, and the solder heat resistance of the flexible laminate is also deteriorated. If the glass transition temperature exceeds 400 ° C., good adhesion between the polyimide layer and the metal foil cannot be obtained.

本発明のフレキシブル積層板の絶縁樹脂層は複数層から構成され、上記した高弾性樹脂層の他に、線膨張係数が20×10-6/K以下、好ましくは1×10-7/K〜20×10-6/Kの低熱膨張性樹脂層を有する。低熱膨張性樹脂層を構成するポリイミド樹脂(以下、低熱膨張性ポリイミド樹脂ともいう)は、その特性を満たせば限定されるものではないが、好ましくは下記一般式 (II)で表される構造単位を有するポリイミド樹脂である。 The insulating resin layer of the flexible laminate of the present invention is composed of a plurality of layers, and in addition to the above highly elastic resin layer, the linear expansion coefficient is 20 × 10 −6 / K or less, preferably 1 × 10 −7 / K˜ It has a low thermal expansion resin layer of 20 × 10 −6 / K. The polyimide resin constituting the low thermal expansion resin layer (hereinafter also referred to as low thermal expansion polyimide resin) is not limited as long as it satisfies the characteristics, but is preferably a structural unit represented by the following general formula (II) Is a polyimide resin.

Figure 2006051800
Figure 2006051800

ここで、R1、R2は互いに同じであっても異なっていてもよい低級アルキル基を示し、q、rはそれぞれ0〜4の数である。Ar4としては、下記式(h)及び(i)で示される1以上の4価の基を好ましくを挙げることができる。また式(i)において、XはSO2、CO、O又は直結合を示す。

Figure 2006051800
Wherein, R 1, R 2 represents a lower alkyl group optionally different from one another the same, q, r is the number of each 0-4. Ar 4 is preferably one or more tetravalent groups represented by the following formulas (h) and (i). In the formula (i), X represents SO 2 , CO, O or a direct bond.
Figure 2006051800

上記一般式(II)で表される単位構造の中でも、特に、下記式(III)で表される構造単位が好ましいものとして示される。

Figure 2006051800
一般式(II)又は(III)で表される構造単位は低熱膨張性ポリイミド樹脂の全ポリイミド構造単位の50モル%以上であることがよい。 Among the unit structures represented by the general formula (II), a structural unit represented by the following formula (III) is particularly preferable.
Figure 2006051800
The structural unit represented by the general formula (II) or (III) is preferably 50 mol% or more of the total polyimide structural unit of the low thermal expansion polyimide resin.

本発明で用いられる金属箔としては、銅箔、ステンレス箔、合金箔等がある。ここで、合金箔とは銅箔を必須として含有し、クロム、ニッケル、亜鉛、珪素等の元素を少なくとも1種以上含有する金属箔を示し、銅含有率90%以上の金属箔を言う。金属箔を使用する場合、亜鉛メッキ、ニッケルメッキ、シランカップリング剤等による表面処理を施してもよい。   Examples of the metal foil used in the present invention include copper foil, stainless steel foil, and alloy foil. Here, the alloy foil refers to a metal foil containing a copper foil as an essential component and containing at least one element such as chromium, nickel, zinc, silicon and the like, and means a metal foil having a copper content of 90% or more. When using metal foil, surface treatment with zinc plating, nickel plating, silane coupling agent or the like may be performed.

金属配線のファインピッチ化に伴い、薄い金属箔が好まれて使用されている。そのような観点から、好ましい金属箔厚みは5〜35 μm、更に好ましくは8〜18 μmの範囲である。また、使用する金属箔は、ポリイミド樹脂と接する面の表面粗度(Rz)が0.6〜1.0 μmの範囲であることが好ましい。表面粗度(Rz)が0.6 μm未満の場合、金属箔とポリイミド樹脂層との接着性が担保されず、1.0 μm以上の場合、ポリイミドフィルムの透明性が低下し、半導体素子実装の妨げとなる。また、金属箔の表面粗度(Rz)を上記範囲にすることで、回路加工時に発生するポリイミド樹脂層への金属成分の根残りも低減できる。上記のことより、表面粗度(Rz)が上記範囲の金属箔は金属配線のファインピッチ化に適したものとなる。   With the fine pitch of metal wiring, thin metal foil is preferred and used. From such a viewpoint, the preferred metal foil thickness is in the range of 5 to 35 μm, more preferably 8 to 18 μm. Moreover, it is preferable that the metal foil to be used has a surface roughness (Rz) of the surface in contact with the polyimide resin in the range of 0.6 to 1.0 μm. When the surface roughness (Rz) is less than 0.6 μm, the adhesion between the metal foil and the polyimide resin layer is not ensured. When the surface roughness is 1.0 μm or more, the transparency of the polyimide film is lowered and hinders the mounting of semiconductor elements. . In addition, by setting the surface roughness (Rz) of the metal foil within the above range, it is possible to reduce the root residue of the metal component in the polyimide resin layer generated during circuit processing. From the above, a metal foil having a surface roughness (Rz) in the above range is suitable for fine pitch metal wiring.

本発明のフレキシブル積層板は、絶縁樹脂層が複数層のポリイミド樹脂から構成され多層構造となり、金属箔と接する少なくとも1層のポリイミド樹脂層を特定厚み範囲の上記高弾性樹脂層とすることにより、高温・高圧の実装条件に耐えうるフレキシブル積層板とすることができる。ここで、金属箔の厚さとその表面粗度(Rz)を前記した範囲のものとすることで、特に高密度実装用途に適したものとすることができる。   The flexible laminate of the present invention has a multilayer structure in which the insulating resin layer is composed of a plurality of layers of polyimide resin, and the at least one polyimide resin layer in contact with the metal foil is the above highly elastic resin layer in a specific thickness range. A flexible laminate that can withstand high temperature and high pressure mounting conditions can be obtained. Here, by setting the thickness of the metal foil and its surface roughness (Rz) within the above ranges, the metal foil can be particularly suitable for high-density mounting applications.

本発明のフレキシブル積層板は、絶縁樹脂層が複数層のポリイミド樹脂から構成され多層構造となるが、好ましい層構造としては下記1)〜5)に示すような層構造が例示される。ここで、Mは金属箔を、Hは高弾性ポリイミド樹脂を、Lは低熱膨張性ポリイミド樹脂を示し、PはH又はLの貯蔵弾性率又は線膨張係数を満たすもの以外の他のポリイミド樹脂を示す。
1)M/H/L、2)M/H/L/H/M、3)M/H/L/H、4)M/H/L/P/M、5)M/H/L/P、
そして、絶縁樹脂層中のHの占める厚み割合は3〜45%、好ましくは5〜20%の範囲である。他のポリイミド樹脂Pとしては、金属箔エッチング後の反り等を制御するために設ける場合は、Hと物理的特性が近似しているものが好ましく、特に、Hと線膨張係数の差が10×10-6/K以内のものがよい。絶縁樹脂層の両面に金属箔を有するフレキシブル積層板とするためには、後に金属箔を加熱圧着する方法によるのが有利であるため、その場合には、Lと接して積層されるポリイミド樹脂Pは線膨張係数が30×10-6/K以上の熱可塑性のポリイミド樹脂であることが好ましい。
In the flexible laminate of the present invention, the insulating resin layer is composed of a plurality of polyimide resins and has a multi-layer structure. Preferred layer structures include the layer structures as shown in the following 1) to 5). Here, M represents a metal foil, H represents a highly elastic polyimide resin, L represents a low thermal expansion polyimide resin, and P represents a polyimide resin other than those satisfying the storage elastic modulus or linear expansion coefficient of H or L. Show.
1) M / H / L, 2) M / H / L / H / M, 3) M / H / L / H, 4) M / H / L / P / M, 5) M / H / L / P,
The thickness ratio of H in the insulating resin layer is 3 to 45%, preferably 5 to 20%. As other polyimide resin P, when it is provided to control warpage after metal foil etching, it is preferable that the physical characteristics are similar to H, and in particular, the difference between H and the linear expansion coefficient is 10 ×. It should be within 10 -6 / K. In order to make a flexible laminate having metal foil on both sides of the insulating resin layer, it is advantageous to use a method in which the metal foil is later heat-pressed. In this case, polyimide resin P laminated in contact with L Is preferably a thermoplastic polyimide resin having a linear expansion coefficient of 30 × 10 −6 / K or more.

次に、本発明のフレキシブル積層板の製造方法について、述べるが、既に、フレキシブル積層板で説明したと同様の内容については、簡潔な説明にとどめる。
本発明のフレキシブル積層板は、金属箔上にポリイミド前駆体樹脂を塗布、乾燥した後、熱硬化処理して金属箔の片面にポリイミド樹脂層が積層された積層板とすることができる。金属箔上に塗布されるポリイミド前駆体樹脂は溶液状態であることが好ましく、通常適当な溶媒に溶解された状態で塗布する。ポリイミド前駆体樹脂が塗布される金属箔面は表面粗さ(Rz)が0.6〜1.0μmの範囲にあることが好ましい。本発明のフレキシブル積層板の製造方法においては、金属箔上に直接塗布されるポリイミド前駆体樹脂は、硬化後の350℃における貯蔵弾性率が1×108〜2×109 Pa、ガラス転移温度が300〜400℃の高弾性樹脂層となるものである。この高弾性樹脂層となる前駆体樹脂を直接金属箔上に塗布することで、金属−ポリイミド樹脂の安定した接着強度を得ることができる。塗布する手段は特に限定されるものではなく、例えば、バーコード方式、グラビアコート方式、ロールコート方式、ダイコート方式等公知の方法を適宜選択して採用することができる。
Next, although the manufacturing method of the flexible laminated board of this invention is described, the content similar to what was already demonstrated with the flexible laminated board is only limited description.
The flexible laminate of the present invention can be a laminate in which a polyimide resin layer is laminated on one side of a metal foil by applying and drying a polyimide precursor resin on the metal foil and drying. The polyimide precursor resin applied on the metal foil is preferably in a solution state, and is usually applied in a state dissolved in an appropriate solvent. The metal foil surface to which the polyimide precursor resin is applied preferably has a surface roughness (Rz) in the range of 0.6 to 1.0 μm. In the method for producing a flexible laminate of the present invention, the polyimide precursor resin applied directly on the metal foil has a storage elastic modulus at 350 ° C. after curing of 1 × 10 8 to 2 × 10 9 Pa, a glass transition temperature. Becomes a highly elastic resin layer of 300 to 400 ° C. By applying the precursor resin to be the highly elastic resin layer directly on the metal foil, a stable adhesive strength of the metal-polyimide resin can be obtained. The means for applying is not particularly limited, and for example, a known method such as a barcode method, a gravure coating method, a roll coating method, or a die coating method can be appropriately selected and employed.

金属箔に塗布されたポリイミド前駆体樹脂層は、溶媒を含む場合には適当な範囲まで乾燥される。この際の乾燥温度は、ポリイミド前駆体樹脂層のイミド化が進行しない程度の温度で行うことが好ましく、具体的には、150℃以下であることがよく、110〜140℃の範囲が好ましい。また、この乾燥工程でポリイミド前駆体樹脂層に含まれる溶媒量をポリイミド前駆体樹脂100重量部に対して、50重量部以下にしておくことが望ましい。   The polyimide precursor resin layer applied to the metal foil is dried to an appropriate range when it contains a solvent. In this case, the drying temperature is preferably such that the imidization of the polyimide precursor resin layer does not proceed. Specifically, the drying temperature is preferably 150 ° C. or less, and preferably in the range of 110 to 140 ° C. In addition, it is desirable that the amount of the solvent contained in the polyimide precursor resin layer in this drying step is 50 parts by weight or less with respect to 100 parts by weight of the polyimide precursor resin.

本発明のフレキシブル積層板は、上記した高弾性樹脂層のポリイミド樹脂層の他に、線膨張係数が20×10-6/K以下の低熱膨張性樹脂層のポリイミド樹脂層を有する。低熱膨張性樹脂層は、上記のように形成した高弾性樹脂層となるポリイミド前駆体樹脂層の上にその前駆体状態で塗布して形成することが好ましい。この低熱膨張性樹脂の前駆体樹脂も溶液状態で塗布することが好ましく、溶媒を含む状態で塗布された場合、上記と同様な条件で乾燥することがよい。 The flexible laminated board of this invention has the polyimide resin layer of the low thermal expansion resin layer whose linear expansion coefficient is 20x10 < -6 > / K or less other than the polyimide resin layer of the above-mentioned high elastic resin layer. The low thermal expansion resin layer is preferably formed by applying the precursor precursor layer on the polyimide precursor resin layer to be a highly elastic resin layer formed as described above. This low thermal expansion resin precursor resin is also preferably applied in a solution state, and when applied in a state containing a solvent, it is preferably dried under the same conditions as described above.

金属箔上に、逐次に高弾性樹脂層と低熱膨張性樹脂層となる前駆体樹脂層をそれぞれ塗布、乾燥したら、金属箔エッチング後の反り等を制御するため更にもう1層のポリイミド前駆体樹脂層を設けることが望ましい。ここで、積層される層は、上記した高弾性樹脂層と同じか物理的特性が近似しているものが好ましく、特に、高弾性樹脂層と線膨張係数の差が10×10-6/K以内のものがよい。絶縁樹脂層の両面に金属箔を有するフレキシブル積層板とするためには、後に金属箔を加熱圧着する方法によるのが有利であるため、その場合には、低熱膨張性樹脂層に積層されるポリイミド層は線膨張係数が30×10-6/K以上の熱可塑性のポリイミド樹脂であることが好ましい。本発明のフレキシブル積層板で任意に設けられるポリイミド樹脂層も上記した2つのポリイミド層の形成方法と同様に、塗布、乾燥して形成することができる。 On the metal foil, a precursor resin layer that becomes a high-elasticity resin layer and a low thermal expansion resin layer is sequentially applied and dried, and then another layer of polyimide precursor resin is used to control warpage after etching the metal foil. It is desirable to provide a layer. Here, the layer to be laminated is preferably the same as the above-described highly elastic resin layer or the one having similar physical characteristics, and in particular, the difference in linear expansion coefficient from the highly elastic resin layer is 10 × 10 −6 / K. The one within is good. In order to obtain a flexible laminate having metal foil on both sides of the insulating resin layer, it is advantageous to use a method in which the metal foil is subsequently heat-pressed. In this case, polyimide laminated on the low thermal expansion resin layer The layer is preferably a thermoplastic polyimide resin having a linear expansion coefficient of 30 × 10 −6 / K or more. The polyimide resin layer optionally provided in the flexible laminate of the present invention can also be formed by coating and drying in the same manner as the two polyimide layer forming methods described above.

以上のように、金属箔上に2又は3以上のポリイミド前駆体樹脂層を塗布、乾燥したら、金属箔上の複数層のポリイミド前駆体樹脂層は加熱処理され熱硬化される。加熱処理は、複数の硬化室を通して行うことが好ましく、この場合、150℃付近から複数段、段階的に昇温させて、最終的には250℃以上、好ましくは300℃以上に達するまで加熱されイミド化される。イミド化のための最高加熱温度は高すぎると樹脂が分解するおそれがあるので、分解開始温度よりも20℃低い温度以上に加熱しないことが望ましい。なお、この加熱処理は、上記乾燥工程に続けて、同様の装置を用いてもなんら差し支えない。この工程で、ポリイミド前駆体樹脂は実質的にイミド化される。   As described above, when two or more polyimide precursor resin layers are applied and dried on the metal foil, the plurality of polyimide precursor resin layers on the metal foil are heat-treated and thermally cured. The heat treatment is preferably carried out through a plurality of curing chambers. In this case, the temperature is raised stepwise from around 150 ° C. in stages, and finally heated until reaching 250 ° C. or higher, preferably 300 ° C. or higher. Imidized. If the maximum heating temperature for imidization is too high, the resin may be decomposed. Therefore, it is desirable not to heat to a temperature 20 ° C. lower than the decomposition start temperature. Note that this heat treatment may be performed using the same apparatus following the drying step. In this step, the polyimide precursor resin is substantially imidized.

イミド化が完了した樹脂層の上には、必要により金属箔が積層される。積層方法は、所定の金属箔をプレスやロール間を加熱下、加圧して行う方法が簡便である。ここでの加熱温度は、積層される金属箔と接するポリイミド樹脂層のガラス転移温度以上であることが好ましい。また、ここで積層される金属箔は上記した金属箔と同じであってもよいが、加熱加圧処理により積層される場合、ポリイミドとの接着力保持のために、Rzが1.0μmよりも大きいことが有利である。   If necessary, a metal foil is laminated on the resin layer that has been imidized. As a laminating method, a method in which a predetermined metal foil is pressed under pressure or heated between rolls is simple. The heating temperature here is preferably equal to or higher than the glass transition temperature of the polyimide resin layer in contact with the laminated metal foil. In addition, the metal foil laminated here may be the same as the metal foil described above, but when laminated by heat and pressure treatment, Rz is larger than 1.0 μm in order to maintain adhesive strength with polyimide. It is advantageous.

本発明の金属層に接するポリイミド樹脂は、これまでの接着性ポリイミド樹脂にはない高Tg、350℃での高貯蔵弾性率を有しながら、金属箔との高接着性を保持している。したがって、本発明のフレキシブル積層板は、絶縁樹脂層の耐熱特性が優れていることから、半導体素子の高温実装に適して用いられるCOF(チップオンフィルム)用フレキシブル積層板として好適に使用することができる。また、本発明のフレキシブル積層板は、絶縁樹脂層が複数層で構成され、その絶縁樹脂層であるポリイミド樹脂の熱的特性が高いだけではなく、携帯電話等の屈曲部分に必要とされている高屈曲性も有しているので、携帯電話などの小型電子機器に使用することができ、工業的に価値のある発明である。   The polyimide resin in contact with the metal layer of the present invention has a high Tg and a high storage elastic modulus at 350 ° C. that are not found in conventional adhesive polyimide resins, while maintaining high adhesion to the metal foil. Therefore, since the flexible laminate of the present invention has excellent heat resistance characteristics of the insulating resin layer, it can be suitably used as a COF (chip-on-film) flexible laminate for use in high-temperature mounting of semiconductor elements. it can. In addition, the flexible laminate of the present invention is composed of a plurality of insulating resin layers, and not only the thermal characteristics of the polyimide resin, which is the insulating resin layer, are high, but also required for bent portions of mobile phones and the like. Since it also has high flexibility, it can be used for small electronic devices such as mobile phones and is an industrially valuable invention.

以下、本発明の一実施例を説明する。なお各フィルム物性値は、下記の方法で測定したものである。   An embodiment of the present invention will be described below. Each physical property value of the film is measured by the following method.

1)ガラス転移温度(Tg)、高温領域(350℃)の貯蔵弾性率は、各合成例のポリイミド前駆体樹脂によって得られたポリイミドフィルムを、レオメトリック・サイエンティフィック社製の動的粘弾性測定装置にて、5 ℃/minで昇温させた時の動的粘弾性を測定し、Tg(tanδの極大値)及び350℃での貯蔵弾性率を求めた。 1) The storage elastic modulus of glass transition temperature (Tg) and high temperature range (350 ° C) is the dynamic viscoelasticity of rheometric scientific company made from polyimide film obtained by polyimide precursor resin of each synthesis example. The dynamic viscoelasticity when the temperature was raised at 5 ° C./min was measured with a measuring device, and the Tg (maximum value of tan δ) and the storage elastic modulus at 350 ° C. were determined.

2)熱膨張係数は、セイコーインスツルメンツ社製のTMA100型熱機械分析装置を用い、20℃/minの昇温速度、5℃/minの降温速度で、降温時の100℃から240℃までの寸法変化から求めた。 2) The coefficient of thermal expansion was measured from 100 ° C to 240 ° C during temperature reduction using a TMA100 thermomechanical analyzer manufactured by Seiko Instruments Inc. at a temperature increase rate of 20 ° C / min and a temperature decrease rate of 5 ° C / min. Obtained from change.

3)銅箔との接着力は、東洋精器製 ストログラフ R-1を用い、常温下、ロードセル2 kg、クロスヘッドスピード50 mm/minで180度の方向に銅箔を引っ張り、測定して求めた。
評価基準は接着力に応じて以下のように判定した。
○:接着力0.8 kN/m以上
△:接着力0.5 kN/m以上0.8 kN/m未満
×:接着力0.5 kN/m未満
3) The adhesive strength with copper foil was measured by pulling the copper foil in the direction of 180 degrees at room temperature, load cell 2 kg, crosshead speed 50 mm / min, using Toyo Seiki's Strograph R-1. Asked.
Evaluation criteria were determined as follows according to adhesive strength.
○: Adhesive force 0.8 kN / m or more △: Adhesive force 0.5 kN / m or more and less than 0.8 kN / m ×: Adhesion force 0.5 kN / m or less

4)金属箔の表面粗さ(Rz)は、JIS B 0651に準じて、高感度表面プロファイラー(KLAテンコール社製P-15)を使用して、測定速度0.02 mm/sec、曲率半径2 μmの条件にて測定した。 4) The surface roughness (Rz) of the metal foil was measured according to JIS B 0651 using a high-sensitivity surface profiler (KLA Tencor P-15) with a measurement speed of 0.02 mm / sec and a radius of curvature of 2 μm. Measured under conditions.

5)フレキシブル積層板のハンダ耐熱性は、所定温度のハンダ槽に10秒間浸漬して、金属箔の剥がれ・樹脂の膨れ等がない温度のうち最高温度をハンダ耐熱温度とした。 5) Solder heat resistance of the flexible laminate was immersed in a solder bath at a predetermined temperature for 10 seconds, and the highest temperature among the temperatures at which there was no peeling of the metal foil or swelling of the resin was defined as the solder heat resistance temperature.

実施例中での略号を説明する。
DMAc:N,N'-ジメチルアセトアミド
PMDA:ピロメリット酸二無水物
BPDA:3,3'4,4'-ビフェニルテトラカルボン酸二無水物
DSDA:ジフェニルスルホン-3,4,3',4',-テトラカルボン酸二無水物
BTDA:ベンゾフェノン-3,4,3',4'-テトラカルボン酸二無水物
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
BAPB:4,4'-ビス(4-アミノフェノキシ)ビフェニル
TPE-Q:1,4-ビス(4-アミノフェノキシ)ベンゼン
TPE-R:1,3-ビス(4-アミノフェノキシ)ベンゼン
m-TB:2,2'-ジメチル-4,4'-ジアミノビフェニル
Abbreviations in the examples will be described.
DMAc: N, N'-dimethylacetamide
PMDA: pyromellitic dianhydride
BPDA: 3,3'4,4'-biphenyltetracarboxylic dianhydride
DSDA: Diphenylsulfone-3,4,3 ', 4',-tetracarboxylic dianhydride
BTDA: Benzophenone-3,4,3 ', 4'-tetracarboxylic dianhydride
BAPP: 2,2-bis [4- (4-aminophenoxy) phenyl] propane
BAPB: 4,4'-bis (4-aminophenoxy) biphenyl
TPE-Q: 1,4-bis (4-aminophenoxy) benzene
TPE-R: 1,3-bis (4-aminophenoxy) benzene
m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl

合成例1〜3
BAPPとBAPBをDMAc中に供給して溶解させ、続いてPMDAを供給し、室温で、約3時間攪拌し、表1に示す組成の成分からなるポリイミド前駆体樹脂溶液を調製した。
なお、全合成例において、テトラカルボン酸二無水物成分とジアミン成分の割合は、約100モル%化学量論とした。また、表1中の樹脂原料組成欄の数値はモル比率を表す。
得られたポリイミド前駆体樹脂溶液を銅箔上に塗布、140℃以下の温度で前駆体樹脂層の表面がタックフリーの状態になるまで乾燥した後、150〜360℃の温度範囲で数段階に分けて昇温加熱して、イミド化して厚さ25 μmのポリイミドフィルムとした。このポリイミドフィルムについて、350℃における貯蔵弾性率、ガラス転移温度(Tg)、線膨張係数を測定した。結果を表1に示す。
Synthesis Examples 1 to 3
BAPP and BAPB were supplied and dissolved in DMAc, and then PMDA was supplied and stirred at room temperature for about 3 hours to prepare a polyimide precursor resin solution composed of components having the compositions shown in Table 1.
In all synthesis examples, the ratio of the tetracarboxylic dianhydride component and the diamine component was about 100 mol% stoichiometry. Moreover, the numerical value of the resin raw material composition column in Table 1 represents a molar ratio.
Apply the resulting polyimide precursor resin solution on copper foil, dry at a temperature of 140 ° C or less until the surface of the precursor resin layer is tack-free, and then in several stages at a temperature range of 150 to 360 ° C Separately, the mixture was heated and heated to imidize to obtain a polyimide film having a thickness of 25 μm. About this polyimide film, the storage elastic modulus in 350 degreeC, the glass transition temperature (Tg), and the linear expansion coefficient were measured. The results are shown in Table 1.

合成例4、5
BAPPとTPE-QをDMAc中に供給して溶解させ、続いてPMDAを供給し、室温で、約3時間攪拌し、表1に示す組成の成分からなるポリイミド前駆体樹脂溶液を調製した。このポリイミド前駆体樹脂溶液を合成例1と同じ方法で処理して、ポリイミドフィルムを形成し、その物性を評価した。結果を表1に示す。
Synthesis Examples 4 and 5
BAPP and TPE-Q were supplied and dissolved in DMAc, and then PMDA was supplied and stirred at room temperature for about 3 hours to prepare a polyimide precursor resin solution having the components shown in Table 1. This polyimide precursor resin solution was treated in the same manner as in Synthesis Example 1 to form a polyimide film, and its physical properties were evaluated. The results are shown in Table 1.

合成例6、7
BAPPとTPE-RをDMAc中に供給して溶解させ、続いてPMDAを供給し、室温で、約3時間攪拌し、表1に示す組成の成分からなるポリイミド前駆体樹脂溶液を調製した。このポリイミド前駆体樹脂溶液を合成例1と同じ方法で処理して、ポリイミドフィルムを形成し、その物性を評価した。結果を表1に示す。
Synthesis Examples 6 and 7
BAPP and TPE-R were supplied and dissolved in DMAc, then PMDA was supplied, and stirred at room temperature for about 3 hours to prepare a polyimide precursor resin solution composed of the components shown in Table 1. This polyimide precursor resin solution was treated in the same manner as in Synthesis Example 1 to form a polyimide film, and its physical properties were evaluated. The results are shown in Table 1.

合成例8
BAPPをDMAc中に供給して溶解させ、続いてPMDA、DSDAを順次供給し、室温で、約3時間攪拌し、表1に示す組成の成分からなるポリイミド前駆体樹脂溶液を調製した。このポリイミド前駆体樹脂溶液を合成例1と同じ方法で処理して、ポリイミドフィルムを形成し、その物性を評価した。結果を表1に示す。
Synthesis example 8
BAPP was supplied and dissolved in DMAc, then PMDA and DSDA were sequentially supplied, and the mixture was stirred at room temperature for about 3 hours to prepare a polyimide precursor resin solution composed of the components shown in Table 1. This polyimide precursor resin solution was treated in the same manner as in Synthesis Example 1 to form a polyimide film, and its physical properties were evaluated. The results are shown in Table 1.

合成例9
BAPPをDMAc中に供給して溶解させ、続いてPMDA、BTDAを順次供給し、室温で、約3時間攪拌し、表1に示す組成の成分からなるポリイミド前駆体樹脂溶液を調製した。このポリイミド前駆体樹脂溶液を合成例1と同じ方法で処理して、ポリイミドフィルムを形成し、その物性を評価した。結果を表1に示す。
Synthesis Example 9
BAPP was supplied and dissolved in DMAc, then PMDA and BTDA were sequentially supplied, and the mixture was stirred at room temperature for about 3 hours to prepare a polyimide precursor resin solution composed of the components shown in Table 1. This polyimide precursor resin solution was treated in the same manner as in Synthesis Example 1 to form a polyimide film, and its physical properties were evaluated. The results are shown in Table 1.

合成例10
BAPPをDMAc中に供給して溶解させ、続いてPMDAを供給し、室温で、約3時間攪拌し、表1に示す組成の成分からなるポリイミド前駆体樹脂溶液を調製した。このポリイミド前駆体樹脂溶液を合成例1と同じ方法で処理して、ポリイミドフィルムを形成し、その物性を評価した。結果を表1に示す。
Synthesis Example 10
BAPP was supplied and dissolved in DMAc, and then PMDA was supplied and stirred at room temperature for about 3 hours to prepare a polyimide precursor resin solution composed of components having the compositions shown in Table 1. This polyimide precursor resin solution was treated in the same manner as in Synthesis Example 1 to form a polyimide film, and its physical properties were evaluated. The results are shown in Table 1.

合成例11
BAPBをDMAc中に供給して溶解させ、続いてPMDAを供給し、室温で、約3時間攪拌し、表1に示す組成の成分からなるポリイミド前駆体樹脂溶液を調製した。このポリイミド前駆体樹脂溶液を合成例1と同じ方法で処理して、ポリイミドフィルムを形成し、その物性を評価した。結果を表1に示す。
Synthesis Example 11
BAPB was supplied and dissolved in DMAc, and then PMDA was supplied and stirred at room temperature for about 3 hours to prepare a polyimide precursor resin solution composed of components having the compositions shown in Table 1. This polyimide precursor resin solution was treated in the same manner as in Synthesis Example 1 to form a polyimide film, and its physical properties were evaluated. The results are shown in Table 1.

Figure 2006051800
Figure 2006051800

合成例12
m-TBをDMAc中に供給して溶解させ、続いてPMDAを供給し、室温で、約3時間攪拌し、ポリイミド前駆体樹脂溶液を調製した。このポリイミド前駆体樹脂溶液を合成例1と同じ方法で処理して、ポリイミドフィルムを形成し、線膨張係数を測定したところ2.5 ppmであった。
Synthesis Example 12
m-TB was supplied and dissolved in DMAc, and then PMDA was supplied, followed by stirring at room temperature for about 3 hours to prepare a polyimide precursor resin solution. This polyimide precursor resin solution was treated in the same manner as in Synthesis Example 1 to form a polyimide film. The linear expansion coefficient was measured and found to be 2.5 ppm.

厚さ12 μm、表面粗さRz 0.7 μmの銅箔上に、合成例1で調製したポリイミド前駆体樹脂溶液を硬化後の厚みが6 μmとなるように塗布し、140℃未満で5分間乾燥した。この上から、合成例12で調製したポリイミド前駆体樹脂溶液を硬化後の厚みが29 μmとなるように塗布し、140℃未満で15分間乾燥した。更に、これら2層のポリイミド前駆体樹脂層の上に、合成例1で調整したポリイミド前駆体樹脂溶液を硬化後の厚みが6 μmとなるように塗布し、140℃未満で5分間乾燥し、150〜360℃の温度範囲で数段階に分けて、段階的に15分かけて昇温加熱して、絶縁樹脂層の片面に銅箔を有するフレキシブル積層板を得た。
得られたフレキシブル積層板の銅箔をエッチングにより所定の回路に加工した。このフレキシブル積層板について、銅箔との接着性評価、ハンダ耐熱性の評価を行ったところ、銅箔との接着性が0.8 kN/m以上、ハンダ耐熱温度が400℃以上と良好な結果を示した。評価結果を表2に示す。
The polyimide precursor resin solution prepared in Synthesis Example 1 is applied onto a copper foil having a thickness of 12 μm and a surface roughness Rz of 0.7 μm so that the thickness after curing is 6 μm and dried at less than 140 ° C. for 5 minutes. did. From this, the polyimide precursor resin solution prepared in Synthesis Example 12 was applied so that the thickness after curing was 29 μm, and dried at less than 140 ° C. for 15 minutes. Further, on the two polyimide precursor resin layers, the polyimide precursor resin solution prepared in Synthesis Example 1 was applied so that the thickness after curing was 6 μm, and dried at less than 140 ° C. for 5 minutes. It was divided into several stages in a temperature range of 150 to 360 ° C., and heated and heated stepwise over 15 minutes to obtain a flexible laminate having a copper foil on one side of the insulating resin layer.
The copper foil of the obtained flexible laminate was processed into a predetermined circuit by etching. When this flexible laminate was evaluated for adhesion to copper foil and solder heat resistance, it showed good results with adhesion to copper foil of 0.8 kN / m or higher and solder heat resistance of 400 ° C or higher. It was. The evaluation results are shown in Table 2.

実施例2〜7
実施例1において、第1層目、及び第3層目の高弾性樹脂層として形成するポリイミド前駆体樹脂層の種類を合成例2〜7のものに変えてフレキシブル積層板を作製した。このフレキシブル積層板の高弾性樹脂層面について、銅箔との接着性、ハンダ耐熱性の評価を行った。評価結果を表2に示す。
Examples 2-7
In Example 1, the type of the polyimide precursor resin layer formed as the first and third high-elasticity resin layers was changed to those of Synthesis Examples 2 to 7 to produce flexible laminates. About the highly elastic resin layer surface of this flexible laminated board, adhesiveness with copper foil and solder heat resistance were evaluated. The evaluation results are shown in Table 2.

比較例1〜4
実施例1において、第1層目、及び第3層目の樹脂層として形成するポリイミド前駆体樹脂層の種類を合成例8〜11のものに変えてフレキシブル積層板を作製した。このフレキシブル積層板について、第1層目の樹脂を評価面として銅箔との接着性、ハンダ耐熱性の評価を行った。評価結果を表2に示す。
Comparative Examples 1-4
In Example 1, the type of the polyimide precursor resin layer formed as the first layer and the third layer resin layer was changed to those of Synthesis Examples 8 to 11 to produce flexible laminates. This flexible laminate was evaluated for adhesion to copper foil and solder heat resistance using the first layer of resin as an evaluation surface. The evaluation results are shown in Table 2.

Figure 2006051800
Figure 2006051800

Claims (4)

絶縁樹脂層の片面又は両面に金属箔を有するフレキシブル積層板であって、絶縁樹脂層は複数層のポリイミド樹脂からなり、金属箔と接する少なくとも1層のポリイミド樹脂が350℃における貯蔵弾性率が1×108〜2×109 Pa、ガラス転移温度が300〜400℃の高弾性樹脂層によって形成されており、また、高弾性樹脂層以外の樹脂層として、少なくとも1層の線膨張係数が20×10-6 /K以下の低熱膨張性樹脂層を有し、かつ、絶縁樹脂層における高弾性樹脂層の厚み割合が3〜45%の範囲にあることを特徴とするフレキシブル積層板。 A flexible laminate having a metal foil on one or both sides of an insulating resin layer, the insulating resin layer comprising a plurality of polyimide resins, and at least one polyimide resin in contact with the metal foil has a storage elastic modulus at 350 ° C. of 1 × 10 8 to 2 × 10 9 Pa, formed of a highly elastic resin layer having a glass transition temperature of 300 to 400 ° C. Further, as a resin layer other than the highly elastic resin layer, the linear expansion coefficient of at least one layer is 20 A flexible laminate having a low thermal expansion resin layer of × 10 -6 / K or less and a thickness ratio of a highly elastic resin layer in an insulating resin layer in a range of 3 to 45%. 金属箔と接する高弾性樹脂層を構成するポリイミド樹脂が、ピロメリット酸二無水物とジアミンから製造され、ジアミンとして2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンと、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン及び4,4'-ビス(4-アミノフェノキシ)ビフェニルから選ばれる少なくとも1種のジアミンを5〜80モル%含有するものを使用する請求項1記載のフレキシブル積層板。   A polyimide resin constituting a highly elastic resin layer in contact with the metal foil is produced from pyromellitic dianhydride and diamine, and 2,2-bis [4- (4-aminophenoxy) phenyl] propane as the diamine, 5 to 80 mol of at least one diamine selected from 4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene and 4,4′-bis (4-aminophenoxy) biphenyl The flexible laminate according to claim 1, wherein the one containing% is used. ポリイミド樹脂層と接する金属箔表面の表面粗さ(Rz)が0.6〜1.0 μmの範囲にある請求項1又は2のいずれかに記載のフレキシブル積層板。   The flexible laminate according to claim 1 or 2, wherein the surface roughness (Rz) of the surface of the metal foil in contact with the polyimide resin layer is in the range of 0.6 to 1.0 µm. 下記工程、
1)表面粗さ(Rz)が0.6〜1.0 μmの範囲にある金属箔表面に350℃における貯蔵弾性率が1×108〜2×109 Pa、ガラス転移温度が300〜400℃の高弾性樹脂層となるポリイミド前駆体樹脂を塗布する工程、
2)前記ポリイミド前駆体樹脂層上に線膨張係数が20×10-6 /K以下の低熱膨張性樹脂層となるポリイミド前駆体樹脂を塗布する工程、及び
3)金属箔上に複数層のポリイミド前駆体樹脂層が設けられた状態で熱硬化処理する工程、
を有することを特徴とする少なくとも1層の金属箔と少なくとも2層のポリイミド樹脂とからなるフレキシブル積層板の製造方法。
The following process,
1) High elasticity with a storage elastic modulus of 1 × 10 8 to 2 × 10 9 Pa and a glass transition temperature of 300 to 400 ° C. at 350 ° C. on the surface of the metal foil having a surface roughness (Rz) of 0.6 to 1.0 μm. A step of applying a polyimide precursor resin to be a resin layer;
2) A step of applying a polyimide precursor resin to be a low thermal expansion resin layer having a linear expansion coefficient of 20 × 10 −6 / K or less on the polyimide precursor resin layer, and 3) a plurality of layers of polyimide on the metal foil. A step of thermosetting with the precursor resin layer provided,
A method for producing a flexible laminate comprising at least one metal foil and at least two polyimide resins.
JP2005149069A 2004-07-13 2005-05-23 Flexible laminate and method for manufacturing the same Active JP4619860B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005149069A JP4619860B2 (en) 2004-07-13 2005-05-23 Flexible laminate and method for manufacturing the same
TW094122032A TWI344804B (en) 2004-07-13 2005-06-30 Flexible laminate board and process
KR1020050063142A KR101258569B1 (en) 2004-07-13 2005-07-13 Flexible laminating board and its manufacture method
CN2005100831684A CN1733473B (en) 2004-07-13 2005-07-13 Flexible laminose plate and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004206016 2004-07-13
JP2005149069A JP4619860B2 (en) 2004-07-13 2005-05-23 Flexible laminate and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2006051800A true JP2006051800A (en) 2006-02-23
JP4619860B2 JP4619860B2 (en) 2011-01-26

Family

ID=36029559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005149069A Active JP4619860B2 (en) 2004-07-13 2005-05-23 Flexible laminate and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JP4619860B2 (en)
KR (1) KR101258569B1 (en)
CN (1) CN1733473B (en)
TW (1) TWI344804B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091431A (en) * 2006-09-29 2008-04-17 Nippon Steel Chem Co Ltd Method for manufacturing flexible copper clad laminated plate
JP2008238572A (en) * 2007-03-27 2008-10-09 Nippon Steel Chem Co Ltd Method of manufacturing flexible laminate plate
KR100926884B1 (en) * 2006-04-27 2009-11-16 에스케이에너지 주식회사 Flexible Metal Foil Laminate
JP2012134478A (en) * 2010-12-20 2012-07-12 Sk Innovation Co Ltd Method for manufacturing thick polyimide flexible metal-clad laminate
US20130161065A1 (en) * 2011-12-22 2013-06-27 Hitachi Cable, Ltd. Insulated wire and coil
CN104070772A (en) * 2014-06-30 2014-10-01 铜陵浩荣华科复合基板有限公司 Production process of high-thermal conductivity resin glued copper foil
JP2015515402A (en) * 2012-04-24 2015-05-28 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Flexible metal-clad laminate
KR20190114820A (en) * 2018-03-31 2019-10-10 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate and circuit board
KR20200080154A (en) 2018-12-26 2020-07-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate and circuit board
WO2020145695A1 (en) 2019-01-11 2020-07-16 주식회사 엘지화학 Film, metal-clad laminate, flexible substrate, manufacturing method for film, manufacturing method for metal-clad laminate, and manufacturing method for flexible substrate
KR20220136222A (en) 2021-03-30 2022-10-07 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyimide, metal-clad laminate plate and circuit board
KR20230047000A (en) 2021-09-30 2023-04-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate, circuit substrate, electronic device and electronic apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550005B1 (en) * 2007-08-03 2015-09-03 가부시키가이샤 가네카 Multilayer polyimide film, laminate and metal-clad laminate
CN101724266B (en) * 2008-10-20 2012-07-04 比亚迪股份有限公司 Polyimide material, preparation method thereof, metal laminated plate containing same and preparation method thereof
KR20100048474A (en) * 2008-10-31 2010-05-11 에스케이에너지 주식회사 Flexible metal-clad laminate and a method of manufacturing the same
KR101514221B1 (en) * 2011-12-07 2015-04-23 에스케이이노베이션 주식회사 manufacturing method of multi layer polyimide flexible metal-clad laminate
JP7446741B2 (en) * 2018-09-28 2024-03-11 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245586A (en) * 1988-03-28 1989-09-29 Nippon Steel Chem Co Ltd Flexible printed board
JP2002240193A (en) * 2001-02-16 2002-08-28 Nippon Steel Chem Co Ltd Laminate and method for manufacturing the same
WO2002085616A1 (en) * 2001-04-19 2002-10-31 Nippon Steel Chemical Co., Ltd. Laminate for electronic material
JP2003071982A (en) * 2001-06-22 2003-03-12 Ube Ind Ltd Copper-clad sheet for protection against heat
JP2003103738A (en) * 2001-09-28 2003-04-09 Du Pont Toray Co Ltd Multi-layer polyimide film, polyimide laminate and polymer light guide path

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239637A (en) * 1991-01-23 1992-08-27 Chisso Corp Flexible double-side metal clad substrate and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245586A (en) * 1988-03-28 1989-09-29 Nippon Steel Chem Co Ltd Flexible printed board
JP2002240193A (en) * 2001-02-16 2002-08-28 Nippon Steel Chem Co Ltd Laminate and method for manufacturing the same
WO2002085616A1 (en) * 2001-04-19 2002-10-31 Nippon Steel Chemical Co., Ltd. Laminate for electronic material
JP2003071982A (en) * 2001-06-22 2003-03-12 Ube Ind Ltd Copper-clad sheet for protection against heat
JP2003103738A (en) * 2001-09-28 2003-04-09 Du Pont Toray Co Ltd Multi-layer polyimide film, polyimide laminate and polymer light guide path

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926884B1 (en) * 2006-04-27 2009-11-16 에스케이에너지 주식회사 Flexible Metal Foil Laminate
JP2008091431A (en) * 2006-09-29 2008-04-17 Nippon Steel Chem Co Ltd Method for manufacturing flexible copper clad laminated plate
JP2008238572A (en) * 2007-03-27 2008-10-09 Nippon Steel Chem Co Ltd Method of manufacturing flexible laminate plate
JP2012134478A (en) * 2010-12-20 2012-07-12 Sk Innovation Co Ltd Method for manufacturing thick polyimide flexible metal-clad laminate
US20130161065A1 (en) * 2011-12-22 2013-06-27 Hitachi Cable, Ltd. Insulated wire and coil
US9343197B2 (en) * 2011-12-22 2016-05-17 Hitachi Metals, Ltd. Insulated wire and coil
JP2015515402A (en) * 2012-04-24 2015-05-28 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Flexible metal-clad laminate
CN104070772A (en) * 2014-06-30 2014-10-01 铜陵浩荣华科复合基板有限公司 Production process of high-thermal conductivity resin glued copper foil
KR20190114820A (en) * 2018-03-31 2019-10-10 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate and circuit board
JP2019186534A (en) * 2018-03-31 2019-10-24 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate sheet and circuit board
JP7356243B2 (en) 2018-03-31 2023-10-04 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards
KR102647086B1 (en) * 2018-03-31 2024-03-14 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate and circuit board
KR20200080154A (en) 2018-12-26 2020-07-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate and circuit board
JP2020104340A (en) * 2018-12-26 2020-07-09 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate and circuit board
JP7212515B2 (en) 2018-12-26 2023-01-25 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards
WO2020145695A1 (en) 2019-01-11 2020-07-16 주식회사 엘지화학 Film, metal-clad laminate, flexible substrate, manufacturing method for film, manufacturing method for metal-clad laminate, and manufacturing method for flexible substrate
US11845246B2 (en) 2019-01-11 2023-12-19 Lg Chem, Ltd. Film, metal-clad laminate, flexible substrate, manufacturing method for film, manufacturing method for metal-clad laminate, and manufacturing method for flexible substrate
KR20220136222A (en) 2021-03-30 2022-10-07 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyimide, metal-clad laminate plate and circuit board
KR20230047000A (en) 2021-09-30 2023-04-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate, circuit substrate, electronic device and electronic apparatus

Also Published As

Publication number Publication date
TW200603687A (en) 2006-01-16
CN1733473A (en) 2006-02-15
CN1733473B (en) 2010-10-13
TWI344804B (en) 2011-07-01
KR101258569B1 (en) 2013-05-02
KR20060050123A (en) 2006-05-19
JP4619860B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4619860B2 (en) Flexible laminate and method for manufacturing the same
JP4528093B2 (en) Multilayer substrate having at least two dissimilar polyamide layers and a conductive layer and useful for electronics-type applications, and compositions related thereto
JP4540964B2 (en) Low temperature polyimide adhesive composition
TWI716524B (en) Copper clad laminate and printed circuit board
TWI500501B (en) Second layer double sided flexible metal laminated board and manufacturing method thereof
JP2011514266A (en) High adhesion polyimide copper clad laminate and method for producing the same
JP7229725B2 (en) Metal-clad laminate, circuit board, multi-layer circuit board and manufacturing method thereof
JP5168009B2 (en) Polyimide and process for producing the same
JP2008265069A (en) Insulating adhesion sheet, laminate, and printed wiring board
JP4642479B2 (en) COF laminate and COF film carrier tape
JP2012233198A (en) Polyamic acid and non-thermoplastic polyimide resin
KR102647086B1 (en) Metal-clad laminate and circuit board
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP7378908B2 (en) multilayer circuit board
KR101257413B1 (en) Double-sided metallic laminate having superior heat-resisting property and process for preparing the same
JP4763964B2 (en) Method for producing polyimide metal laminate
JP2003155343A (en) Polyimide resin and polyimide resin composition
WO2007114081A1 (en) Metal laminate
JP5055244B2 (en) Polyimide metal laminate
JP4684601B2 (en) Manufacturing method of flexible laminated substrate
JP2005288811A (en) Flexible laminated sheet and method for manufacturing flexible laminate
JP4409898B2 (en) Polyimide metal laminate
JP4923678B2 (en) Flexible substrate with metal foil and flexible printed wiring board
JP2005329641A (en) Substrate for flexible printed circuit board and its production method
KR20040030225A (en) Polyimide resin and polyimide-metal clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4619860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250