JP4642479B2 - COF laminate and COF film carrier tape - Google Patents

COF laminate and COF film carrier tape Download PDF

Info

Publication number
JP4642479B2
JP4642479B2 JP2005001651A JP2005001651A JP4642479B2 JP 4642479 B2 JP4642479 B2 JP 4642479B2 JP 2005001651 A JP2005001651 A JP 2005001651A JP 2005001651 A JP2005001651 A JP 2005001651A JP 4642479 B2 JP4642479 B2 JP 4642479B2
Authority
JP
Japan
Prior art keywords
cof
layer
polyimide
thermoplastic polyimide
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005001651A
Other languages
Japanese (ja)
Other versions
JP2006190824A (en
Inventor
真理 宮本
裕一 徳田
克也 岸田
彰 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2005001651A priority Critical patent/JP4642479B2/en
Publication of JP2006190824A publication Critical patent/JP2006190824A/en
Application granted granted Critical
Publication of JP4642479B2 publication Critical patent/JP4642479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Wire Bonding (AREA)

Description

本発明は、ICあるいはLSIなど電子部品を実装するCOF(Chip on Film)用積層板及びこれを加工して得られるCOFフィルムキャリアテープに関するものである。   The present invention relates to a COF (Chip on Film) laminate on which an electronic component such as an IC or LSI is mounted, and a COF film carrier tape obtained by processing the laminate.

カメラ、パソコン、携帯電話、液晶ディスプレイなどの電子機器の普及及び発達に伴い、IC(集積回路)あるいはLSI(大規模集積回路)など電子部品を実装するプリント配線板の需要が急増しているが、近年では、電子機器の小型化、軽量化、薄型化、高精彩化、高機能化が要望され、小さいスペースで実装できる電子部品実装用フィルムキャリアテープを用いた実装方式が採用されている。   With the spread and development of electronic devices such as cameras, personal computers, mobile phones, and liquid crystal displays, the demand for printed wiring boards that mount electronic components such as ICs (integrated circuits) or LSIs (large-scale integrated circuits) is increasing rapidly. In recent years, there has been a demand for downsizing, lightening, thinning, high definition, and high functionality of electronic devices, and a mounting method using a film carrier tape for mounting electronic components that can be mounted in a small space has been adopted.

電子部品実装用フィルムキャリアテープには、TABテープやT−BGAテープがあるが、より小さいスペース、より高密度の実装をおこなう実装方式としてCOFが実用化されている。   Film carrier tapes for mounting electronic components include TAB tapes and T-BGA tapes, but COF has been put to practical use as a mounting method for mounting in a smaller space and higher density.

COFは、裸の半導体ICをフィルム状の配線板の上に直接搭載した複合部品のことであり、多くの場合、COFはより大きなリジッド配線板やディスプレイ板に接続して使用されている。そして、フィルム状の配線板は、ポリイミド等の有機ポリマーフィルムと金属箔を積層した積層板から作られる。   The COF is a composite part in which a bare semiconductor IC is directly mounted on a film-like wiring board. In many cases, the COF is used by being connected to a larger rigid wiring board or display board. And a film-like wiring board is made from the laminated board which laminated | stacked organic polymer films, such as a polyimide, and metal foil.

フィルム状の配線板は、金属箔積層板の金属箔面上に感光性樹脂層を積層し、所望の配線パターンに対応した露光を行い、必要な部分の感光性樹脂を光硬化させ、現像により、未露光部分の感光性樹脂を除去した後、エッチングにより硬化レジストに覆われていない基板の被覆金属層を除去したり、めっきにより硬化レジストに覆われていない部分にめっき金属を析出させる。最後に、剥離により、硬化レジストを除去して、所望の導体パターンを有する配線板を得るというような方法が採用される。感光性樹脂を積層する方法としては、液状レジストを塗布、乾燥する方法や感光性樹脂積層体をラミネートする方法がある。   A film-like wiring board is obtained by laminating a photosensitive resin layer on the metal foil surface of a metal foil laminate, performing exposure corresponding to the desired wiring pattern, photocuring the photosensitive resin of the required part, and developing. After removing the photosensitive resin in the unexposed portion, the coated metal layer of the substrate not covered with the cured resist is removed by etching, or the plating metal is deposited on the portion not covered with the cured resist by plating. Finally, a method is adopted in which the cured resist is removed by peeling to obtain a wiring board having a desired conductor pattern. As a method of laminating the photosensitive resin, there are a method of applying and drying a liquid resist and a method of laminating the photosensitive resin laminate.

COF用の積層板としては、主にポリイミド樹脂フィルムに銅をスパッタして得られるポリイミド銅張積層板が使用されてきた。スパッタ方式の場合、金属層のピンホールにより歩留まりが悪化しやすいため、ピンホールがないポリイミド金属積層板が望まれている。ピンホールがない金属積層板としては、ステンレス箔、圧延銅箔や電解銅箔とポリイミドを積層したものがある。この積層板はキャスティングやラミネート方式により銅箔上にポリイミドを積層して得られるが、接着力等を向上するために、熱可塑性ポリイミド層を金属箔上に形成するものがある。   As a laminate for COF, a polyimide copper clad laminate obtained mainly by sputtering copper on a polyimide resin film has been used. In the case of the sputtering method, since the yield is likely to deteriorate due to the pinhole of the metal layer, a polyimide metal laminate without a pinhole is desired. As a metal laminated board without a pinhole, there exists what laminated | stacked the stainless steel foil, the rolled copper foil, the electrolytic copper foil, and the polyimide. This laminate is obtained by laminating polyimide on a copper foil by casting or laminating methods, but there is one in which a thermoplastic polyimide layer is formed on a metal foil in order to improve adhesive strength and the like.

一方、ICチップ実装は、ACF、NCP、超音波接合など低温で実装する方式から、Au-Au接合、Au-Sn接合など300℃以上の高温で実装する方式があるが、TABラインでの実装方式や、チップと配線の接続信頼性の点から、Au-Au接合、Au-Sn接合が多く採用されている。   On the other hand, IC chip mounting can be performed at low temperatures such as ACF, NCP, and ultrasonic bonding, and mounting at high temperatures of 300 ° C or higher such as Au-Au bonding and Au-Sn bonding. Au-Au junctions and Au-Sn junctions are often used from the point of view of system and chip / wiring connection reliability.

スパッタ方式で得られるポリイミド積層板の場合、熱可塑性樹脂層がないため、300℃以上のチップ実装時に金属配線がポリイミド層に沈み込むという現象は起こらないが、導体との接着性が劣ることや上記のような問題がある。   In the case of a polyimide laminate obtained by sputtering, there is no thermoplastic resin layer, so the phenomenon that metal wiring sinks into the polyimide layer does not occur when chip mounting at 300 ° C or higher, but the adhesion to the conductor is inferior There are problems as described above.

銅箔にポリイミド層を塗布又は圧着等により積層する場合は、銅箔とポリイミド層間の接着力を高め、かつ、耐熱性を付与するためには、熱可塑性のポリイミドを用いることが一般に必要とされるが、300℃以上のチップ実装時に、熱可塑性ポリイミド層が熱変形を起こし、導体が熱可塑性ポリイミド層に沈み込む問題があった。   When a polyimide layer is laminated on a copper foil by coating or pressure bonding, it is generally necessary to use a thermoplastic polyimide in order to increase the adhesion between the copper foil and the polyimide layer and to impart heat resistance. However, when the chip was mounted at a temperature of 300 ° C. or higher, there was a problem that the thermoplastic polyimide layer was thermally deformed and the conductor was sunk into the thermoplastic polyimide layer.

特開2004−17349号公報JP 2004-17349 A 特開2000−58989号公報JP 2000-58989 A 特許2729063号公報Japanese Patent No. 2729063

特許文献1では、非熱可塑性ポリイミド層の両面に、ステンレスのエッチングストップ層として、特定の熱可塑性ポリイミド層が形成され、該熱可塑性樹脂層の両面にステンレス304が積層されたポリイミド金属積層体であって、熱可塑性ポリイミド層の厚みが0.5〜10μm(実施例7μm)であることを特徴とする金属箔との密着性に優れ、微細加工性の良いハードディスクドライブ用サスペンション用ポリイミド金属積層板が記載されている。   In Patent Document 1, a specific thermoplastic polyimide layer is formed as a stainless steel etching stop layer on both surfaces of a non-thermoplastic polyimide layer, and stainless steel 304 is laminated on both surfaces of the thermoplastic resin layer. A polyimide metal laminate for a suspension for a hard disk drive having excellent adhesion to a metal foil and a fine workability, wherein the thickness of the thermoplastic polyimide layer is 0.5 to 10 μm (Example 7 μm) Is described.

特許文献2では、絶縁層としてベースフィルムの両側に接着剤層を形成してなる3層構造の接着シートを用いる金属積層板において、ベースフィルムの吸湿膨張係数が20ppm以下であり、かつ、接着剤層の厚みが5μm以下(実施例:2〜3μm)であることを特徴とする吸湿特性が改善されたフレキシブル金属箔積層板が記載されている。   In Patent Document 2, in a metal laminate using an adhesive sheet having a three-layer structure in which an adhesive layer is formed on both sides of a base film as an insulating layer, the base film has a hygroscopic expansion coefficient of 20 ppm or less, and an adhesive. A flexible metal foil laminate having improved moisture absorption characteristics, characterized in that the layer thickness is 5 μm or less (Example: 2 to 3 μm) is described.

特許文献3では、金属箔に直接接している、ガラス転移温度が170℃以上である接着性ポリイミドフィルム層の厚さとガラス転移温度が300℃以上、500℃以下であるポリイミドフィルム層の厚さの比が0.001以上、0.2以下(実施例:4〜5μm)であり、かつ、溶媒に溶解したポリイミドまたはその前駆体を金属箔上に順次塗布した後に加熱して2種以上のフィルム層を形成することを特徴とするフレキシブル金属箔積層板の製造方法が記載されている。   In Patent Document 3, the thickness of the adhesive polyimide film layer that is in direct contact with the metal foil and has a glass transition temperature of 170 ° C. or higher and the thickness of the polyimide film layer that has a glass transition temperature of 300 ° C. or higher and 500 ° C. or lower. A ratio of 0.001 or more and 0.2 or less (Example: 4 to 5 μm), and polyimide or a precursor thereof dissolved in a solvent is sequentially applied onto a metal foil, and then heated to form two or more films. A method for producing a flexible metal foil laminate characterized by forming a layer is described.

上記のように、導体と接している熱可塑性または接着性ポリイミド層の厚みをある程度薄くすることは開示されているが、COF製造工程におけるAu-Sn共晶を用いるフリップチップ実装の場合は、300℃以上の高温、高圧にさらされるため、熱可塑性または接着性ポリイミドが熱変形を起こし、導体が沈み込むという問題があった。   As described above, it has been disclosed to reduce the thickness of the thermoplastic or adhesive polyimide layer in contact with the conductor to some extent, but in the case of flip chip mounting using Au-Sn eutectic in the COF manufacturing process, 300 Since it is exposed to high temperature and high pressure of ℃ or higher, there is a problem that the thermoplastic or adhesive polyimide is thermally deformed and the conductor sinks.

本発明は、寸法安定性、導体との密着性に優れ、COF製造工程におけるAu-Sn共晶時の導体のポリイミド層への沈み込みを防止し、電子部品とフィルムキャリアテープの接続信頼性を向上しうるCOF用積層板及びCOFフィルムキャリアテープを提供することを目的とする。   The present invention is excellent in dimensional stability and adhesion to the conductor, prevents the conductor from sinking into the polyimide layer during the Au-Sn eutectic in the COF manufacturing process, and improves the connection reliability between the electronic component and the film carrier tape. An object of the present invention is to provide an improved COF laminate and a COF film carrier tape.

本発明は、絶縁層の片面または両面に導体を積層したCOF用積層板において、上記絶縁層が複数のポリイミド系樹脂からなる多層構造であり、絶縁層は、線膨張係数が20ppm/℃以下である非熱可塑性ポリイミド層の片面または両面を、熱可塑性ポリイミド層で積層した構造であって、導体と接している熱可塑性ポリイミド層の厚みが2.0μm以下であり、且つ、この熱可塑性ポリイミド層のガラス転移温度が300℃以上であることを特徴とするCOF用積層板である。また、本発明は、上記COF用積層板を加工して得られるCOFフィルムキャリアテープである。   The present invention is a COF laminate in which a conductor is laminated on one side or both sides of an insulating layer, wherein the insulating layer has a multilayer structure composed of a plurality of polyimide resins, and the insulating layer has a linear expansion coefficient of 20 ppm / ° C. or less. The non-thermoplastic polyimide layer has a structure in which one or both sides are laminated with a thermoplastic polyimide layer, and the thickness of the thermoplastic polyimide layer in contact with the conductor is 2.0 μm or less, and this thermoplastic polyimide layer The COF laminate is characterized by having a glass transition temperature of 300 ° C. or higher. Further, the present invention is a COF film carrier tape obtained by processing the above-mentioned COF laminate.

以下に、本発明を更に説明する。
COF用積層板は、導体となる金属箔と絶縁層となる多層構造のポリイミド層とからなり、金属箔は片面側にあっても、両面側にあってもよい。絶縁層は非熱可塑性ポリイミド層と熱可塑性ポリイミド層を各1層以上有し、導体と接しているポリイミド層は熱可塑性ポリイミド層となっている。
The present invention is further described below.
The COF laminate comprises a metal foil serving as a conductor and a multi-layered polyimide layer serving as an insulating layer, and the metal foil may be on one side or both sides. The insulating layer has at least one non-thermoplastic polyimide layer and one thermoplastic polyimide layer, and the polyimide layer in contact with the conductor is a thermoplastic polyimide layer.

使用する金属箔の材質は問わず、例えばステンレス、銅、鉄、アルミ等が挙げられるが、銅又は銅合金が優れる。金属箔の厚みには制限はないが、5〜50μmの範囲から選択することがよい。   The material of the metal foil to be used is not limited, and examples thereof include stainless steel, copper, iron, and aluminum, but copper or copper alloy is excellent. Although there is no restriction | limiting in the thickness of metal foil, It is good to select from the range of 5-50 micrometers.

非熱可塑性ポリイミド層は、線熱膨張係数が20ppm/℃以下であり、10ppm/℃以上、20ppm/℃以下が適する。線熱膨張係数はサーモメカニカルアナライザーを用い、100℃から250℃の平均線熱膨張係数により測定される。   The non-thermoplastic polyimide layer has a linear thermal expansion coefficient of 20 ppm / ° C. or less, and 10 ppm / ° C. or more and 20 ppm / ° C. or less is suitable. The linear thermal expansion coefficient is measured by an average linear thermal expansion coefficient from 100 ° C. to 250 ° C. using a thermomechanical analyzer.

非熱可塑ポリイミド層を形成する非熱可塑ポリイミドとしては、特に制限はないが、特定のジアミンと特定のテトラカルボン酸二無水物から合成されるポリイミドが好ましく利用できる。   Although there is no restriction | limiting in particular as a non-thermoplastic polyimide which forms a non-thermoplastic polyimide layer, The polyimide synthesize | combined from specific diamine and specific tetracarboxylic dianhydride can utilize preferably.

かかるジアミンとして、o-フェニレンジアミン、p-フェニレンジアミン、m-フェニレンジアミン、4,4'-ジアミノフェニルエーテル、3,4'-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルエーテル、4,4'-ジアミノ-ビフェニル、4,4'-ジアミノ-2,2'-ジメチルビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、アルキル基やアルコキシ基等の置換基を有してもよい4,4'-ジアミノ-ベンズアニリド等が挙げられる。これらは、単独又は2種類以上使用してもよい。また、その他のジアミンと併用することもできるが、上記のジアミン成分の使用量は70モル%以上であることが好ましい。   Such diamines include o-phenylenediamine, p-phenylenediamine, m-phenylenediamine, 4,4'-diaminophenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diamino. -Biphenyl, 4,4'-diamino-2,2'-dimethylbiphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, may have a substituent such as an alkyl group or an alkoxy group Good 4,4′-diamino-benzanilide and the like. These may be used alone or in combination of two or more. Moreover, although it can be used in combination with other diamines, the amount of the diamine component used is preferably 70 mol% or more.

かかるテトラカルボン酸二無水物として、ピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸等が挙げられる。これらは、単独又は2二種類以上使用してもよい。また、その他のテトラカルボン酸二無水物と併用することもできるが、上記のテトラカルボン酸成分の使用量は70モル%以上であることが好ましい。   Examples of such tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid, and the like. Can be mentioned. These may be used alone or in combination of two or more. Further, although it can be used in combination with other tetracarboxylic dianhydrides, the amount of the tetracarboxylic acid component used is preferably 70 mol% or more.

更に、非熱可塑ポリイミド層を形成する非熱可塑ポリイミドとして、市販の非熱可塑性ポリイミドフィルム、またはその中間体であるポリイミド溶液又はその前駆体溶液が使用できる。例えば、宇部興産株式会社のユーピレックス(登録商標)S、SGA、SN、東レ・デュポン株式会社のカプトン(登録商標)H、V、EN、鐘淵化学工業株式会社のアピカル(登録商標)AH、NPI、HP等のフィルムまたはその中間体が挙げられる。   Furthermore, as the non-thermoplastic polyimide for forming the non-thermoplastic polyimide layer, a commercially available non-thermoplastic polyimide film, a polyimide solution as an intermediate thereof, or a precursor solution thereof can be used. For example, Upilex (registered trademark) S, SGA, SN of Ube Industries, Ltd., Kapton (registered trademark) H, V, EN of Toray DuPont Co., Ltd., Apical (registered trademark) AH, NPI of Kaneka Corporation And films such as HP and intermediates thereof.

非熱可塑ポリイミド層の厚みは、格別な制限はないが、2〜100μm、好ましくは5〜50μmが適する。   The thickness of the non-thermoplastic polyimide layer is not particularly limited, but 2 to 100 μm, preferably 5 to 50 μm is suitable.

導体と接している熱可塑性ポリイミド層は、厚みが2.0μm以下、好ましくは0.5μm以上2.0μm以下で、且つ、動的粘弾性測定装置にて測定できるガラス転移温度が300℃以上であることが必要である。なお、熱可塑性ポリイミド層を両面に有する場合は、それらは同一であっても異なってもよいが、両面に導体を有するときは、いずれも上記物性値を満足することが望ましい。   The thermoplastic polyimide layer in contact with the conductor has a thickness of 2.0 μm or less, preferably 0.5 μm or more and 2.0 μm or less, and has a glass transition temperature of 300 ° C. or more that can be measured with a dynamic viscoelasticity measuring apparatus. It is necessary to be. In addition, when it has a thermoplastic polyimide layer on both surfaces, they may be the same or different, but when it has a conductor on both surfaces, it is desirable that all satisfy the above physical property values.

熱可塑ポリイミド層を形成する熱可塑ポリイミドとしては、特に制限はないが、特定のジアミンと特定のテトラカルボン酸二無水物から合成されるポリイミドが好ましく利用できる。   The thermoplastic polyimide forming the thermoplastic polyimide layer is not particularly limited, but a polyimide synthesized from a specific diamine and a specific tetracarboxylic dianhydride can be preferably used.

かかるジアミンとして、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4'−ビス(3-アミノフェノキシ)ビフェニル、3,3'-ジアミノベンゾフェノン、2,2-ビス(4-(4‐アミノフェノキシ)フェニル)プロパン等が挙げられる。これらは、単独又は2種類以上使用してもよい。また、その他のジアミンと併用することもできるが、上記のジアミン成分の使用量は70モル%以上であることが好ましい。   Such diamines include 1,3-bis (3-aminophenoxy) benzene, 4,4'-bis (3-aminophenoxy) biphenyl, 3,3'-diaminobenzophenone, 2,2-bis (4- (4- Aminophenoxy) phenyl) propane and the like. These may be used alone or in combination of two or more. Moreover, although it can be used in combination with other diamines, the amount of the diamine component used is preferably 70 mol% or more.

かかるテトラカルボン酸二無水物として、ピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸等が挙げられる。これらは、単独又は2二種類以上使用してもよい。また、その他のテトラカルボン酸二無水物と併用することもできるが、上記のテトラカルボン酸の使用量は70モル%以上であることが好ましい。   Examples of such tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid, and the like. Can be mentioned. These may be used alone or in combination of two or more. Moreover, although it can be used in combination with other tetracarboxylic dianhydrides, the amount of the tetracarboxylic acid used is preferably 70 mol% or more.

本発明のCOF用積層板は、金属箔表面に、熱可塑性ポリイミド又はその前駆体溶液を塗布し、次に非熱可塑性ポリイミド又はその前駆体溶液(以下、ワニスともいう)を塗布し、乾燥、硬化する方法で製造することができる。ワニスを塗布する方法としては、ダイコーター、コンマコータ、ロールコータ、グラビアコータ、カーテンコーター、スプレーコーター等の公知の方法が採用できる。この場合、必要によりさらに熱可塑性ポリイミド又はその前駆体溶液(以下、ワニスともいう)を多層に塗布することができる。塗布したワニスを乾燥、硬化する方法は、通常の加熱乾燥炉が利用できる。乾燥炉の雰囲気としては、空気、イナートガス(窒素、アルゴン)等が利用できる。乾燥、硬化の温度としては、60℃〜400℃程度の温度範囲が好適に利用される。硬化はポリイミド前駆体がポリイミドとなるまで行う。なお、銅箔厚みが大きい場合は、必要によりエッチング処理等により、銅箔厚みを所定の厚みとする。   The laminated sheet for COF of the present invention is applied to the surface of the metal foil with a thermoplastic polyimide or a precursor solution thereof, then applied with a non-thermoplastic polyimide or a precursor solution thereof (hereinafter also referred to as a varnish), dried, It can be produced by a curing method. As a method for applying the varnish, known methods such as a die coater, a comma coater, a roll coater, a gravure coater, a curtain coater, and a spray coater can be employed. In this case, if necessary, thermoplastic polyimide or a precursor solution thereof (hereinafter also referred to as varnish) can be applied in multiple layers. As a method for drying and curing the applied varnish, a normal heating and drying furnace can be used. As the atmosphere in the drying furnace, air, inert gas (nitrogen, argon), or the like can be used. As the drying and curing temperature, a temperature range of about 60 ° C to 400 ° C is preferably used. Curing is performed until the polyimide precursor becomes polyimide. In addition, when copper foil thickness is large, copper foil thickness is made into predetermined thickness by an etching process etc. as needed.

両面に金属箔を有する積層板は、絶縁層を3層以上とし、最外層を熱可塑性ポリイミド層とし、この最外層の熱可塑性ポリイミド層の表面に金属箔を熱圧着すること等により製造される。   A laminated board having metal foils on both sides is manufactured by making the insulating layer into three or more layers, using the outermost layer as a thermoplastic polyimide layer, and thermocompression bonding the metal foil to the surface of the outermost thermoplastic polyimide layer. .

また、本発明のCOF用積層板は、非熱可塑性ポリイミドフィルムの片面または両面に熱可塑性ポリイミド又はその前駆体溶液を塗布し、上記方法と同様にして、多層のポリイミドフィルムを得て、熱可塑性ポリイミド層の表面に金属箔を熱圧着することにより製造することができる。   In addition, the COF laminate of the present invention is obtained by applying a thermoplastic polyimide or a precursor solution thereof on one or both sides of a non-thermoplastic polyimide film, and obtaining a multilayer polyimide film in the same manner as described above. It can be manufactured by thermocompression bonding a metal foil to the surface of the polyimide layer.

熱圧着する方法については、特に制限はないが、例えば加熱プレス法、熱ラミネート法などの公知の方法が採用できる。   Although there is no restriction | limiting in particular about the method of carrying out thermocompression bonding, For example, well-known methods, such as a hot press method and a thermal laminating method, are employable.

COF用積層板から、COF用フィルムキャリアテープを製造する方法は、公知でありこれらの方法を適宜選択使用することができる。例えば、COF用積層板を所定幅のフィルムに切断し、フィルムの両側にはスプロケットを設けたのち、金属箔面側に感光性樹脂層を設け、所定の回路が得られるようなマスクを通して露光し、次いで、エッチング処理して、未露光部分又は露光部分のいずれかを除去する。次に、残った樹脂層をレジストとして露出した金属箔をエッチング処理して回路パターンを形成し、更に必要によりレジストを除去することによりCOF用フィルムキャリアテープとするなどの方法がある。   Methods for producing a COF film carrier tape from a COF laminate are known, and these methods can be appropriately selected and used. For example, a COF laminate is cut into a film with a predetermined width, sprockets are provided on both sides of the film, a photosensitive resin layer is provided on the metal foil side, and exposure is performed through a mask that provides a predetermined circuit. Then, an etching process is performed to remove either the unexposed part or the exposed part. Next, there is a method of forming a circuit pattern by etching the exposed metal foil using the remaining resin layer as a resist, and further removing the resist as necessary to obtain a COF film carrier tape.

本発明により、耐熱性、接着性に優れ、ピンホールが無く、Au-Au接合あるいはAu-Sn接合によるチップ実装時でも配線ずれが少なく、アンダーフィル充填が可能で、電子部品とフィルムキャリアテープの接続信頼性を向上しうるCOF用積層板及びCOFフィルムキャリアテープを提供することができる。
すなわち、絶縁層は、非熱可塑性ポリイミド層の片面または両面を熱可塑性ポリイミド層で積層した構造であって、導体と接している熱可塑性ポリイミド層の厚みが2.0μm以下であるため、ICチップ実装時においても、寸法安定性、導体との密着性に優れ、300℃以上のAu-Sn共晶を用いるフリップチップ実装においても、熱変形が発生せず、導体のポリイミド層への沈み込みを防止し、電子部品とフィルムキャリアテープの接続信頼性を向上させる。
With the present invention, heat resistance and adhesiveness are excellent, there is no pinhole, wiring displacement is small even during chip mounting by Au-Au bonding or Au-Sn bonding, underfill filling is possible, and electronic components and film carrier tapes It is possible to provide a COF laminate and a COF film carrier tape that can improve connection reliability.
In other words, the insulating layer has a structure in which one or both sides of a non-thermoplastic polyimide layer are laminated with a thermoplastic polyimide layer, and the thickness of the thermoplastic polyimide layer in contact with the conductor is 2.0 μm or less. Even in the case of flip chip mounting using Au-Sn eutectic at 300 ° C or higher, it prevents thermal deformation and prevents the conductor from sinking into the polyimide layer. And improving the connection reliability between the electronic component and the film carrier tape.

図1は、片面導体のCOF用積層板の層構造を説明するための断面図であり、絶縁層10と導体20とからなっている。絶縁層10は熱可塑性ポリイミド層11、非熱可塑性ポリイミド層12及び熱可塑性ポリイミド層13の3層から構成されており、熱可塑性ポリイミド層13が導体20と接している。
図2は、ICチップをCOF用フィルムキャリアテープに実装する例を示す概念図であり、ICチップ1の金メッキされたバンブ2が、COF用フィルムキャリアテープのポリイミド層3上に形成されている回路4に接合する状態を示す。この際、350〜400℃程度の高温で熱圧着されるため、圧着部のポリイミド層3厚みが当初厚みT1から、T2に沈み込むことになる。この厚みの差T1-T2を可及的に小さくすることが望まれている。
FIG. 1 is a cross-sectional view for explaining the layer structure of a single-sided conductor COF laminate, which includes an insulating layer 10 and a conductor 20. The insulating layer 10 is composed of three layers of a thermoplastic polyimide layer 11, a non-thermoplastic polyimide layer 12, and a thermoplastic polyimide layer 13. The thermoplastic polyimide layer 13 is in contact with the conductor 20.
FIG. 2 is a conceptual diagram showing an example in which an IC chip is mounted on a COF film carrier tape. A circuit in which a gold-plated bump 2 of an IC chip 1 is formed on a polyimide layer 3 of a COF film carrier tape. 4 shows the state of joining. At this time, since the thermocompression bonding is performed at a high temperature of about 350 to 400 ° C., the thickness of the polyimide layer 3 in the crimping portion sinks from the initial thickness T1 to T2. It is desired to reduce this thickness difference T1-T2 as much as possible.

以下に、本発明を実施例により更に詳細に説明する。
実施例に用いられる略語は、次の通りである。
PMDA・・・・・無水ピロメリット酸
BPDA・・・・・3,3',4,4'-ビフェニルテトラカルボン酸
DAPE・・・・・4,4'-ジアミノ-ジフェニルエーテル
MT・・・・・・4,4'-ジアミノ-2,2'-ジメチルビフェニル
BAPP・・・・・2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン
TPE・・・・・・1,3-ビス(4-アミノフェノキシ)ベンゼン
DMAc・・・・・ジメチルアセトアミド
Hereinafter, the present invention will be described in more detail with reference to examples.
Abbreviations used in the examples are as follows.
PMDA: pyromellitic anhydride
BPDA ... 3,3 ', 4,4'-biphenyltetracarboxylic acid
DAPE ... 4,4'-diamino-diphenyl ether
MT ・ ・ ・ ・ ・ ・ 4,4'-Diamino-2,2'-dimethylbiphenyl
BAPP ... 2,2-bis (4- (4-aminophenoxy) phenyl) propane
TPE ・ ・ ・ 1,3-bis (4-aminophenoxy) benzene
DMAc ... dimethylacetamide

実施例1
DMAc425gに、MT18.719g及びDAPE11.760gを1Lのセパラブルフラスコの中で撹拌しながら溶解させた。次に、PMDA25.305gとBPDA8.532gをこの溶液に少しずつ投入して、重合反応をおこない、高粘度の非熱可塑性ポリイミド前駆体溶液Aを得た。B型粘度計で、粘度を測定した結果、23℃で255ポイズであった。
同様に、DMAc425gにBAPP43.150gを溶解させた後、この溶液に、PMDA19.087gとBPDA4.543gを投入して、重合反応をおこない、高粘度の熱可塑性ポリイミド前駆体溶液Bを得た。粘度を測定した結果、23℃で40ポイズであった。
Example 1
In DMAc425g, MT18.719g and DAPE11.760g were dissolved in a 1 L separable flask with stirring. Next, 25.305 g of PMDA and 8.532 g of BPDA were added little by little to this solution, and a polymerization reaction was performed to obtain a high-viscosity non-thermoplastic polyimide precursor solution A. As a result of measuring the viscosity with a B-type viscometer, it was 255 poise at 23 ° C.
Similarly, after 43.150 g of BAPP was dissolved in 425 g of DMAc, PMDA 19.087 g and BPDA 4.543 g were added to this solution, and a polymerization reaction was performed to obtain a high-viscosity thermoplastic polyimide precursor solution B. As a result of measuring the viscosity, it was 40 poise at 23 ° C.

次に、上記で得られたポリイミド前駆体溶液Bを、厚みが18μmの電解銅箔(三井金属鉱山(株)製NA-VLP)上にイミド転化後のフィルム厚みが1μmになるようにバーコートした。その後、130℃で5min乾燥した。その後、乾燥したポリイミド層の上に、積層するようにポリイミド前駆体溶液Aをイミド転化後のフィルム厚みが37μmになるようにバーコートして、130℃で5min乾燥した。さらに同様にして、このフィルムの上にポリイミド前駆体溶液Bをイミド転化後の厚みが1μmになるようにバーコートして、130℃で5min乾燥した。
次に、乾燥した積層体を真空恒温槽に投入して200℃で30min、300℃で30min、350℃で30min熱処理をして、ポリイミド層の厚みが39μmのCOF用積層板を得た。ここで、ポリイミド前駆体溶液Aから得られた非熱可塑性ポリイミドA層の線膨張係数は15ppm/℃であった。また、ポリイミド前駆体溶液Bから得られた熱可塑性ポリイミドB層のガラス転移温度は310℃であった。ガラス転移温度は、動的粘弾性で測定して、損失弾性率のピーク値をガラス転移温度とした
Next, the polyimide precursor solution B obtained above was bar-coated on an electrolytic copper foil with a thickness of 18 μm (NA-VLP manufactured by Mitsui Metal Mine Co., Ltd.) so that the film thickness after imide conversion would be 1 μm. did. Thereafter, it was dried at 130 ° C. for 5 minutes. Thereafter, the polyimide precursor solution A was bar-coated on the dried polyimide layer so as to be laminated so that the film thickness after imide conversion was 37 μm, and dried at 130 ° C. for 5 minutes. Similarly, the polyimide precursor solution B was bar-coated on this film so that the thickness after imide conversion was 1 μm, and dried at 130 ° C. for 5 minutes.
Next, the dried laminate was put into a vacuum thermostat and subjected to heat treatment at 200 ° C. for 30 min, 300 ° C. for 30 min, and 350 ° C. for 30 min to obtain a COF laminate having a polyimide layer thickness of 39 μm. Here, the linear expansion coefficient of the non-thermoplastic polyimide A layer obtained from the polyimide precursor solution A was 15 ppm / ° C. The glass transition temperature of the thermoplastic polyimide B layer obtained from the polyimide precursor solution B was 310 ° C. The glass transition temperature was measured by dynamic viscoelasticity, and the peak value of the loss modulus was taken as the glass transition temperature.

得られたCOF用積層板に、60μmピッチの配線パターンを形成してCOFフィルムキャリアテープとした。なお、インナーリード部には錫メッキを施してある。その後、COFフィルムキャリアテープのインナーリード部へ金バンプを有するICを実装した。実装は、フリップチップボンダー「TFC-2100」芝浦メカトロニクス(株)製を使用し、ボンディングヘッドツール温度は400℃、ステージ温度は100℃、接合圧力は1バンプ当たりの荷重が20gfになるようにおこなった。   A 60 μm pitch wiring pattern was formed on the obtained COF laminate and used as a COF film carrier tape. The inner lead portion is tinned. Thereafter, an IC having gold bumps was mounted on the inner lead portion of the COF film carrier tape. For mounting, flip chip bonder “TFC-2100” manufactured by Shibaura Mechatronics Co., Ltd. is used, bonding head tool temperature is 400 ° C, stage temperature is 100 ° C, and bonding pressure is 20 gf per bump. It was.

次にICを実装したCOFフィルムキャリアテープの断面を観察して、図2に示すT1(フィルム厚み)−T2(実装部フィルム厚み)=T3(実装による樹脂変形量)として、測定した。本実施例では、T3は1μmであり、インナーリードとバンプの接続状態は良好であった。   Next, the cross section of the COF film carrier tape on which the IC was mounted was observed and measured as T1 (film thickness) −T2 (mounting part film thickness) = T3 (resin deformation amount due to mounting) shown in FIG. In this example, T3 was 1 μm, and the connection between the inner lead and the bump was good.

実施例2
DMAc425gにMT28.078gとTPE4.297gを1Lのセパラブルフラスコの中で撹拌しながら溶解させた。次に、PMDA25.305gとBPDA8.532gをこの溶液に少しずつ投入して、重合反応をおこない、高粘度の非熱可塑性ポリイミド前駆体溶液Cを得た。B型粘度計で、粘度を測定した結果、23℃で320ポイズであった。
Example 2
MT28.078g and TPE4.297g were dissolved in DMAc425g with stirring in a 1 L separable flask. Next, 25.305 g of PMDA and 8.532 g of BPDA were added little by little to this solution, and a polymerization reaction was performed to obtain a high viscosity non-thermoplastic polyimide precursor solution C. As a result of measuring the viscosity with a B-type viscometer, it was 320 poise at 23 ° C.

同様にDMAc425gにBAPP43.150gを溶解させた後、この溶液に、PMDA21.333gとBPDA1.514gを投入して、重合反応をおこない、高粘度の熱可塑性ポリイミド前駆体溶液Dを得た。粘度を測定した結果、23℃で20ポイズであった。   Similarly, after 43.150 g of BAPP was dissolved in 425 g of DMAc, 21.333 g of PMDA and 1.514 g of BPDA were added to this solution, and a polymerization reaction was performed to obtain a thermoplastic polyimide precursor solution D having a high viscosity. As a result of measuring the viscosity, it was 20 poise at 23 ° C.

その後、実施例1と同様な操作をおこない、ポリイミド層の厚みが39μmのCOF用積層板を得た。得られた非熱可塑性ポリイミドC層の線膨張係数は13ppm/℃、熱可塑性ポリイミド層D のガラス転移温度は310℃であった。COFフィルムキャリアテープに加工し、ICを実装した結果、T3は0.5μmであり、インナーリードとバンプの接続状態は良好であった。なお、ポリイミド層の厚みは、D/C/Dの順に1μm/37μm/1μmである。   Thereafter, the same operation as in Example 1 was performed to obtain a COF laminate having a polyimide layer thickness of 39 μm. The obtained non-thermoplastic polyimide C layer had a linear expansion coefficient of 13 ppm / ° C., and the thermoplastic polyimide layer D had a glass transition temperature of 310 ° C. As a result of processing into a COF film carrier tape and mounting the IC, T3 was 0.5 μm, and the connection between the inner lead and the bump was good. The thickness of the polyimide layer is 1 μm / 37 μm / 1 μm in the order of D / C / D.

実施例3
非熱可塑性ポリイミドA層が21μm、両側の熱可塑性ポリイミドB層が2μmである以外は、実施例1と同様にしてCOFフィルムキャリアテープに加工し、ICを実装した結果、T3は1.5μmであり、インナーリードとバンプの接続状態は良好であった。
Example 3
Except that the non-thermoplastic polyimide A layer was 21 μm and the thermoplastic polyimide B layers on both sides were 2 μm, it was processed into a COF film carrier tape in the same manner as in Example 1 and the IC was mounted.As a result, T3 was 1.5 μm. The connection between the inner lead and the bump was good.

比較例1
非熱可塑性ポリイミドA層が30μm、両側の熱可塑性ポリイミドB層がそれぞれ5μmである以外は、実施例1と同様にしてCOFフィルムキャリアテープに加工し、ICを実装した結果、T3は4μmであって、インナーリード近辺の樹脂の変形が大きく、インナーリードとバンプの接続状態は不良であった。
Comparative Example 1
Except that the non-thermoplastic polyimide A layer was 30 μm and the thermoplastic polyimide B layers on both sides were 5 μm, respectively, the COF film carrier tape was processed in the same manner as in Example 1 and the IC was mounted.As a result, T3 was 4 μm. Thus, the deformation of the resin in the vicinity of the inner lead was large, and the connection state between the inner lead and the bump was poor.

比較例2
DMAc425gにMT23.781gとTPE8.594gを1Lのセパラブルフラスコの中で撹拌しながら溶解させた。次にPMDA25.305gとBPDA8.532gをこの溶液に少しずつ投入して、重合反応をおこない、高粘度の非熱可塑性ポリイミド前駆体溶液Eを得た。B型粘度計で、粘度を測定した結果、23℃で230ポイズであった。次に、実施例2で得られた熱可塑性ポリイミド前駆体溶液Dと上記の非熱可塑性ポリイミド前駆体溶液Eを用い、実施例1と同様な操作をおこない、ポリイミド層の厚みが39μmのCOF用積層板を得た。得られた非熱可塑性ポリイミドE層の線膨張係数は30ppm/℃であった。COFフィルムキャリアテープに実装した結果、T3は0.5μmであったが、テープの熱寸法変化のためにインナーリードとバンプの位置がずれており、接続状態は不良であった。
Comparative Example 2
MT23.781g and TPE8.594g were dissolved in DMAc425g with stirring in a 1 L separable flask. Next, 25.305 g of PMDA and 8.532 g of BPDA were added little by little to this solution, and a polymerization reaction was performed to obtain a high-viscosity non-thermoplastic polyimide precursor solution E. As a result of measuring the viscosity with a B-type viscometer, it was 230 poise at 23 ° C. Next, using the thermoplastic polyimide precursor solution D obtained in Example 2 and the non-thermoplastic polyimide precursor solution E described above, the same operation as in Example 1 was performed, and the thickness of the polyimide layer was 39 μm for COF. A laminate was obtained. The obtained non-thermoplastic polyimide E layer had a linear expansion coefficient of 30 ppm / ° C. As a result of mounting on the COF film carrier tape, T3 was 0.5 μm, but the inner leads and bumps were misaligned due to the thermal dimension change of the tape, and the connection state was poor.

比較例3
DMAc425gにTPE37.621gを1Lのセパラブルフラスコの中で撹拌しながら溶解させた。次に、BPDA37.379gをこの溶液に少しずつ投入して、重合反応をおこない、高粘度の熱可塑性ポリイミド前駆体溶液Fを得た。B型粘度計で、粘度を測定した結果、23℃で120ポイズであった。次に、上記で得られたポリイミド前駆体溶液Fを、厚みが18μmの電解銅箔NA-VLP(三井金属鉱山(株)製)上にイミド転化後のフィルム厚みが1μmになるようにバーコートした。その後、130℃で5min乾燥した。その後、乾燥したポリイミド層の上に、積層するように実施例1のポリイミド前駆体溶液Aをイミド転化後のフィルム厚みが37μmになるようにバーコートして、130℃で5min乾燥した。さらに同様にして、このフィルムの上にポリイミド前駆体溶液Fをイミド転化後の厚みが1μmになるようにバーコートして、130℃で5min乾燥した。
このようにして得られた積層体を真空恒温槽に投入して200℃で30min、300℃で30min、350℃で30min熱処理をして、ポリイミド層の厚みが39μmのCOF用積層基板を得た。
Comparative Example 3
37.621 g of TPE was dissolved in 425 g of DMAc with stirring in a 1 L separable flask. Next, 37.379 g of BPDA was gradually added to this solution to carry out a polymerization reaction, and a high-viscosity thermoplastic polyimide precursor solution F was obtained. As a result of measuring the viscosity with a B-type viscometer, it was 120 poise at 23 ° C. Next, the polyimide precursor solution F obtained above is bar-coated on an electrolytic copper foil NA-VLP (made by Mitsui Mining Co., Ltd.) having a thickness of 18 μm so that the film thickness after imide conversion becomes 1 μm. did. Thereafter, it was dried at 130 ° C. for 5 minutes. Thereafter, the polyimide precursor solution A of Example 1 was bar-coated so as to be laminated on the dried polyimide layer so that the film thickness after imide conversion was 37 μm, and dried at 130 ° C. for 5 minutes. Similarly, the polyimide precursor solution F was bar-coated on this film so that the thickness after imide conversion was 1 μm, and dried at 130 ° C. for 5 minutes.
The laminated body thus obtained was put into a vacuum thermostat and subjected to heat treatment at 200 ° C. for 30 minutes, 300 ° C. for 30 minutes, and 350 ° C. for 30 minutes to obtain a multilayer substrate for COF with a polyimide layer thickness of 39 μm. .

ポリイミド前駆体溶液Fから生じる熱可塑性ポリイミドFのガラス転移温度は220℃であった。実施例1と同様にしてCOFフィルムキャリアテープに加工し、ICを実装した結果、T3は2.0μmであったが、インナーリード近辺の樹脂の変形が大きく、一部のインナーリードがフィルムから剥れており、インナーリードとバンプの接続状態は不良であった。   The glass transition temperature of the thermoplastic polyimide F produced from the polyimide precursor solution F was 220 ° C. The COF film carrier tape was processed in the same manner as in Example 1 and the IC was mounted. As a result, T3 was 2.0 μm, but the resin deformation near the inner leads was large, and some inner leads were peeled off from the film. The connection between the inner lead and the bump was poor.

COF用積層板の断面図Cross section of laminated sheet for COF ICチップをCOFフィルムキャリアテープに実装する例を示す概念図Conceptual diagram showing an example of mounting an IC chip on a COF film carrier tape

符号の説明Explanation of symbols

1:ICチップ、2:バンブ、3:ポリイミド層、4:回路、10:絶縁層、11、13:熱可塑性ポリイミド層、12:非熱可塑性ポリイミド層、20:導体 1: IC chip, 2: Bamboo, 3: Polyimide layer, 4: Circuit, 10: Insulating layer, 11, 13: Thermoplastic polyimide layer, 12: Non-thermoplastic polyimide layer, 20: Conductor

Claims (4)

絶縁層の片面または両面に導体を積層したCOF用積層板において、上記絶縁層が複数のポリイミド系樹脂からなる多層構造であり、絶縁層は、線膨張係数が20ppm/℃以下である非熱可塑性ポリイミド層の片面または両面を熱可塑性ポリイミド層で積層した構造であって、導体と接している熱可塑性ポリイミド層の厚みが2.0μm以下であり、且つ、熱可塑性ポリイミド層のガラス転移温度が300℃以上であることを特徴とするCOF用積層板。   In a COF laminate in which a conductor is laminated on one or both sides of an insulating layer, the insulating layer has a multilayer structure composed of a plurality of polyimide resins, and the insulating layer has a linear expansion coefficient of 20 ppm / ° C. or less. A structure in which one or both sides of a polyimide layer are laminated with a thermoplastic polyimide layer, the thickness of the thermoplastic polyimide layer in contact with the conductor is 2.0 μm or less, and the glass transition temperature of the thermoplastic polyimide layer is 300 COF laminates that are at or above ℃. 絶縁層が、ポリイミドの前駆体溶液を直接導体に塗布し、熱硬化、イミド転化して得られるものであることを特徴とする請求項1に記載のCOF用積層板。   2. The COF laminate according to claim 1, wherein the insulating layer is obtained by directly applying a polyimide precursor solution to a conductor, thermosetting and imide conversion. 絶縁層が、ポリイミド系樹脂フィルムを導体に熱圧着して得られることを特徴とする請求項1に記載のCOF用積層板。   The laminate for COF according to claim 1, wherein the insulating layer is obtained by thermocompression bonding a polyimide resin film to a conductor. 請求項1〜3のいずれかに記載のCOF用積層板を加工して得られるCOFフィルムキャリアテープ。   The COF film carrier tape obtained by processing the laminated board for COF in any one of Claims 1-3.
JP2005001651A 2005-01-06 2005-01-06 COF laminate and COF film carrier tape Expired - Fee Related JP4642479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001651A JP4642479B2 (en) 2005-01-06 2005-01-06 COF laminate and COF film carrier tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001651A JP4642479B2 (en) 2005-01-06 2005-01-06 COF laminate and COF film carrier tape

Publications (2)

Publication Number Publication Date
JP2006190824A JP2006190824A (en) 2006-07-20
JP4642479B2 true JP4642479B2 (en) 2011-03-02

Family

ID=36797751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001651A Expired - Fee Related JP4642479B2 (en) 2005-01-06 2005-01-06 COF laminate and COF film carrier tape

Country Status (1)

Country Link
JP (1) JP4642479B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214555A (en) * 2006-01-12 2007-08-23 Nippon Steel Chem Co Ltd Laminate for cof, cof film carrier tape, and electronic device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035869A (en) * 2005-07-26 2007-02-08 Nitto Denko Corp Tape carrier for tab
JP4777206B2 (en) * 2006-09-29 2011-09-21 新日鐵化学株式会社 Method for producing flexible copper-clad laminate
JP5133724B2 (en) * 2008-02-04 2013-01-30 新日鉄住金化学株式会社 Method for producing polyimide resin laminate and method for producing metal-clad laminate
TWI412818B (en) * 2009-09-15 2013-10-21 Chunghwa Picture Tubes Ltd Wiring structure for liquid crystal display panel
JP6839594B2 (en) * 2016-04-27 2021-03-10 日鉄ケミカル&マテリアル株式会社 Polyimide film and copper-clad laminate
TWI762725B (en) * 2017-09-29 2022-05-01 日商日鐵化學材料股份有限公司 Metal clad laminate and circuit substrate

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154795A (en) * 1979-05-21 1980-12-02 Kanegafuchi Chemical Ind Flexible circuit substrate
JP2729063B2 (en) * 1988-11-01 1998-03-18 三井東圧化学株式会社 Method of manufacturing flexible metal foil laminate
JP2000052483A (en) * 1998-08-05 2000-02-22 Mitsui Chemicals Inc Polyimide metal foil laminated sheet and production thereof
JP2000058989A (en) * 1998-08-13 2000-02-25 Mitsui Chemicals Inc Flexible metal wheel laminate plate
JP2001072781A (en) * 1998-11-05 2001-03-21 Kanegafuchi Chem Ind Co Ltd Polyimide film and substrate for electric and electronic apparatus using same
JP2003340961A (en) * 2002-05-24 2003-12-02 Mitsui Chemicals Inc Polyimide metal laminate having excellent dimensional stability and its manufacturing method
JP2004006523A (en) * 2002-05-31 2004-01-08 Mitsui Mining & Smelting Co Ltd Cof type film carrier tape
JP2004017377A (en) * 2002-06-14 2004-01-22 Mitsui Chemicals Inc Polyimide metal laminate
JP2004025757A (en) * 2002-06-28 2004-01-29 Mitsui Chemicals Inc Polyimide metallic laminated sheet
JP2004142183A (en) * 2002-10-23 2004-05-20 Mitsui Chemicals Inc Polyimide metallic foil laminate
JP2004153194A (en) * 2002-11-01 2004-05-27 Mitsui Mining & Smelting Co Ltd Manufacturing method of cof film carrier tape

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154795A (en) * 1979-05-21 1980-12-02 Kanegafuchi Chemical Ind Flexible circuit substrate
JP2729063B2 (en) * 1988-11-01 1998-03-18 三井東圧化学株式会社 Method of manufacturing flexible metal foil laminate
JP2000052483A (en) * 1998-08-05 2000-02-22 Mitsui Chemicals Inc Polyimide metal foil laminated sheet and production thereof
JP2000058989A (en) * 1998-08-13 2000-02-25 Mitsui Chemicals Inc Flexible metal wheel laminate plate
JP2001072781A (en) * 1998-11-05 2001-03-21 Kanegafuchi Chem Ind Co Ltd Polyimide film and substrate for electric and electronic apparatus using same
JP2003340961A (en) * 2002-05-24 2003-12-02 Mitsui Chemicals Inc Polyimide metal laminate having excellent dimensional stability and its manufacturing method
JP2004006523A (en) * 2002-05-31 2004-01-08 Mitsui Mining & Smelting Co Ltd Cof type film carrier tape
JP2004017377A (en) * 2002-06-14 2004-01-22 Mitsui Chemicals Inc Polyimide metal laminate
JP2004025757A (en) * 2002-06-28 2004-01-29 Mitsui Chemicals Inc Polyimide metallic laminated sheet
JP2004142183A (en) * 2002-10-23 2004-05-20 Mitsui Chemicals Inc Polyimide metallic foil laminate
JP2004153194A (en) * 2002-11-01 2004-05-27 Mitsui Mining & Smelting Co Ltd Manufacturing method of cof film carrier tape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214555A (en) * 2006-01-12 2007-08-23 Nippon Steel Chem Co Ltd Laminate for cof, cof film carrier tape, and electronic device

Also Published As

Publication number Publication date
JP2006190824A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
US8426029B2 (en) Metallic laminate and method for preparing the same
JP4619860B2 (en) Flexible laminate and method for manufacturing the same
KR101219065B1 (en) Double-layered, double sided flexible metal laminate and method for manufacturing the same
JP4642479B2 (en) COF laminate and COF film carrier tape
JP5000310B2 (en) COF laminate, COF film carrier tape, and electronic device
US20020086171A1 (en) Laminate for electronic circuit
KR20060052481A (en) Copper-clad laminate for cof and carrier tape for cof
KR100793177B1 (en) Double side conductor laminates and its manufacture
JP5064035B2 (en) Manufacturing method of laminate for COF substrate
JP2005144816A (en) Flexible metal laminate
JP2006272886A (en) Flexible metal laminate and flexible printed circuit board
TWI397136B (en) Laminate for cof and cof film carrier tape,and electronic device
JP4763964B2 (en) Method for producing polyimide metal laminate
JP5055244B2 (en) Polyimide metal laminate
JP2005271449A (en) Laminate for flexible printed circuit board
JP4328138B2 (en) Polyimide metal laminate
JP2008168582A (en) Manufacturing method of flexible laminated plate
KR20080041855A (en) Double side conductor laminates
JP2001212904A (en) Adhesive applied conductor-polyimide laminated sheet
JP4409898B2 (en) Polyimide metal laminate
JP2000167979A (en) Flexible double-sided copper-clad board with adhesive
JP2002307609A (en) Polyimide metal foil laminated sheet and method for manufacturing the same
JP2003327931A (en) Adhesive substrate having heat radiation plate for fixing lead frame
JP2000216302A (en) Interposer with reinforced plate and its manufacture
JP2002285110A (en) Adhesive tape for semiconductor device and copper-clad laminate, substrate for semiconductor bonding and semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees