JPH0352232B2 - - Google Patents

Info

Publication number
JPH0352232B2
JPH0352232B2 JP56052280A JP5228081A JPH0352232B2 JP H0352232 B2 JPH0352232 B2 JP H0352232B2 JP 56052280 A JP56052280 A JP 56052280A JP 5228081 A JP5228081 A JP 5228081A JP H0352232 B2 JPH0352232 B2 JP H0352232B2
Authority
JP
Japan
Prior art keywords
electrode
floating electrode
capacitance
well
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56052280A
Other languages
Japanese (ja)
Other versions
JPS57166080A (en
Inventor
Yoshio Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP5228081A priority Critical patent/JPS57166080A/en
Publication of JPS57166080A publication Critical patent/JPS57166080A/en
Publication of JPH0352232B2 publication Critical patent/JPH0352232B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/93Variable capacitance diodes, e.g. varactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は電子回路に用いられる半導体可変容量
素子の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a semiconductor variable capacitance element used in an electronic circuit.

従来、水晶発振器等に用いられる可変容量(ト
リマーコンデンサ)としてはセラミツクトリマー
コンデンサが知られていたが、半導体を用いた実
用的な可変容量素子はなかつた。本発明は、半導
体を用いた実用的な可変容量素子を実現するもの
である。第1図、第2図に本発明に関する半導体
可変容量素子の原理図を示す。
Conventionally, ceramic trimmer capacitors have been known as variable capacitors (trimmer capacitors) used in crystal oscillators, etc., but there have been no practical variable capacitors using semiconductors. The present invention realizes a practical variable capacitance element using a semiconductor. FIGS. 1 and 2 show diagrams of the principle of a semiconductor variable capacitance element according to the present invention.

半導体基板上に絶縁膜で覆われ外部より絶縁さ
れた浮遊電極を有し、浮遊電極に電荷を蓄積する
ことによつて容量を可変する半導体可変容量素子
の原理図が、第1図aとbに示される。第1図a
はその平面図、第1図bはその断面図である。こ
の構造で、容量値の最大値を大きくし、容量可変
幅を広げるには、浮遊電極3と容量電極4間の容
量を大きくする。浮遊電極3と容量電極4間の絶
縁膜は、ポリシリコンで作られる浮遊電極3を熱
酸化して作られる。ところが、ポリシリコンを熱
酸化して得られる酸化膜は絶縁性が悪く、2000Å
以下の膜厚では充分な絶縁性は得られない。した
がつて、浮遊電極3と容量電極4との間の容量を
大きくするためには電極面積を大きくする。
The principle diagram of a semiconductor variable capacitance element, which has a floating electrode covered with an insulating film on a semiconductor substrate and insulated from the outside, and whose capacitance is varied by accumulating charge in the floating electrode, is shown in Figures 1a and b. is shown. Figure 1a
1 is a plan view thereof, and FIG. 1b is a sectional view thereof. In this structure, in order to increase the maximum capacitance value and widen the capacitance variable range, the capacitance between the floating electrode 3 and the capacitive electrode 4 is increased. The insulating film between the floating electrode 3 and the capacitor electrode 4 is made by thermally oxidizing the floating electrode 3 made of polysilicon. However, the oxide film obtained by thermally oxidizing polysilicon has poor insulation properties and has a thickness of 2000 Å.
Sufficient insulation cannot be obtained with a film thickness below. Therefore, in order to increase the capacitance between the floating electrode 3 and the capacitive electrode 4, the electrode area is increased.

第1図に示される半導体可変容量素子より小型
の半導体可変容量素子の原理図が第2図a,bに
示される。
The principle diagram of a semiconductor variable capacitance element smaller than the semiconductor variable capacitance element shown in FIG. 1 is shown in FIGS. 2a and 2b.

この第2図a,bに示される構造では、n型の
容量電極26がn型の基板上のpウエル内に設け
られたn型の拡散層として形成されている。浮遊
電極23と容量電極26との間の絶縁膜は基板シ
リコンを熱酸化して得られる。基板シリコンを熱
酸化して得られる絶縁膜は絶縁性にすぐれ、50Å
程度の薄い膜でも充分な絶縁性が得られる。した
がつて、浮遊電極23と容量電極26間の電極面
積が小さくても容量の最大値の大きな可変容量素
子が得られ、小型化が可能になつた。
In the structure shown in FIGS. 2a and 2b, the n-type capacitor electrode 26 is formed as an n-type diffusion layer provided in a p-well on an n-type substrate. The insulating film between the floating electrode 23 and the capacitor electrode 26 is obtained by thermally oxidizing the silicon substrate. The insulating film obtained by thermally oxidizing the substrate silicon has excellent insulation properties and has a thickness of 50 Å.
Sufficient insulation can be obtained even with a relatively thin film. Therefore, even if the electrode area between the floating electrode 23 and the capacitive electrode 26 is small, a variable capacitance element with a large maximum capacitance can be obtained, and miniaturization has become possible.

ところが、前記、第2図a,bに示した構造の
半導体可変容量素子にもまだ欠点がある。浮遊電
極23の上の絶縁膜に、分極性を有する物質(そ
の大部分は水分であると考えられる)が吸着する
と、浮遊電極23の電位が影響を受け、容量値が
経時変化を起こす。
However, the semiconductor variable capacitance element having the structure shown in FIGS. 2a and 2b still has drawbacks. When a polarizable substance (most of which is considered to be water) is adsorbed to the insulating film on the floating electrode 23, the potential of the floating electrode 23 is affected and the capacitance value changes over time.

また、第2図a,bに示した半導体可変容量素
子の表面に、パツシベーシヨン膜として、PSG
膜をコーテイングした場合も、PSG膜が分極性
を有するため、容量値の経時変化を起こす。この
容量経時変化は、第2図に示した半導体可変容量
素子の非常に大きな欠点である。
In addition, PSG was applied as a passivation film on the surface of the semiconductor variable capacitance element shown in Fig. 2a and b.
Even when the membrane is coated, the capacitance value changes over time because the PSG membrane has polarizability. This change in capacitance over time is a very major drawback of the semiconductor variable capacitance element shown in FIG.

第3図は本発明の実施例を示す図である。第3
図aはその平面図、第3図bはその断面図であ
る。n型の半導体基板31上に絶縁膜32に覆わ
れ外部より絶縁された浮遊電極33がある。浮遊
電極33上に絶縁膜32をはさんで第1の容量電
極34がある。浮遊電極33に下の半導体基板3
1の表面には、基板31との分離のためのp型拡
散層35があり、さらにp型拡散層35内の基板
表面に第2の容量電極36(n型拡散層)があ
る。
FIG. 3 is a diagram showing an embodiment of the present invention. Third
Figure a is a plan view thereof, and Figure 3b is a sectional view thereof. A floating electrode 33 is provided on an n-type semiconductor substrate 31 and covered with an insulating film 32 and insulated from the outside. A first capacitor electrode 34 is provided on the floating electrode 33 with an insulating film 32 interposed therebetween. The lower semiconductor substrate 3 is placed on the floating electrode 33.
1, there is a p-type diffusion layer 35 for separation from the substrate 31, and a second capacitor electrode 36 (n-type diffusion layer) is further provided on the substrate surface within the p-type diffusion layer 35.

第1の容量電極34と第2の容量電極36は電
気的に接続されている。また、浮遊電極33の下
の基板表面には絶縁分離のためのp型拡散層37
があり、さらにp型拡散層37内に浮遊電極33
に電荷をやりとりする容量可変電極38(n型拡
散層)がある。
The first capacitor electrode 34 and the second capacitor electrode 36 are electrically connected. Further, on the substrate surface below the floating electrode 33, a p-type diffusion layer 37 for insulation isolation is provided.
In addition, there is a floating electrode 33 in the p-type diffusion layer 37.
There is a variable capacitance electrode 38 (n-type diffusion layer) that exchanges charges.

第2の容量電極36と浮遊電極33との間の絶
縁膜は、基板シリコンを熱酸化して得られる。基
板シリコンを熱酸化して得られる絶縁膜は絶縁性
にすぐれ、50Å程度の薄い膜厚でも充分の絶縁性
が得られる。したがつて、第2の容量電極36と
浮遊電極33との間の電極面積が小さくても容量
の最大値の大きな可変容量素子が得られる。さら
に、第1の容量電極34と浮遊電極33との間の
容量が加わるため、第2図に示した半導体可変容
量素子より、さらに小型で、容量最大値の大きな
半導体可変容量素子となる。
The insulating film between the second capacitor electrode 36 and the floating electrode 33 is obtained by thermally oxidizing the silicon substrate. The insulating film obtained by thermally oxidizing the silicon substrate has excellent insulating properties, and sufficient insulating properties can be obtained even with a film thickness of about 50 Å. Therefore, even if the electrode area between the second capacitance electrode 36 and the floating electrode 33 is small, a variable capacitance element with a large maximum capacitance can be obtained. Furthermore, since the capacitance between the first capacitor electrode 34 and the floating electrode 33 is added, the semiconductor variable capacitor is smaller than the semiconductor variable capacitor shown in FIG. 2 and has a larger maximum capacitance.

第1の容量電極34と浮遊電極33との間の絶
縁膜は、ポリシリコンで作られた浮遊電極33を
熱酸化して得られるため、絶縁性が悪く、2000Å
以上の膜厚でなければ充分な絶縁性は得られず、
面積も小さいため容量としては小さい。しかし、
第2図に示した構造に比べて、数割、小型にでき
る。
The insulating film between the first capacitor electrode 34 and the floating electrode 33 is obtained by thermally oxidizing the floating electrode 33 made of polysilicon, so it has poor insulation properties and has a thickness of 2000 Å.
Sufficient insulation cannot be obtained unless the film is thicker than this.
Since the area is small, the capacity is small. but,
Compared to the structure shown in FIG. 2, it can be made several times smaller.

また、第1の容量電極34は、浮遊電極33を
覆つているため、半導体可変容量素子の表面に付
着した分極物質の水分やPSGによつて、浮遊電
極33の電位の変動を防ぐシールド板の役目をは
たし、分極物質の付着による容量の経時変化はま
つたくみられなくなる。この効果は、非常に顕著
である。
In addition, since the first capacitor electrode 34 covers the floating electrode 33, a shield plate is used to prevent the potential of the floating electrode 33 from changing due to moisture or PSG of the polarized substance adhering to the surface of the semiconductor variable capacitor. It fulfills its role, and changes in capacitance over time due to the attachment of polarized substances are no longer observed. This effect is very noticeable.

第4図は、本発明の他の実施例を示む図であ
る。第4図aはその平面図、第4図bはその断面
図である。n型の半導体基板41上に絶縁膜42
に覆われ外部より絶縁された浮遊電極43があ
る。半導体基板41の表面には浮遊電極43に蓄
積した電荷によつて表面の状態が蓄積または空
乏、反転するp型拡散層のpウエル49が形成さ
れている。浮遊電極43の上に絶縁膜42をはさ
んで第1の容量電極44がある。浮遊電極43の
下の半導体基板41の表面には第2の容量電極4
6(p型拡散層)がある。第2の容量電極46の
不純物濃度を充分濃くすれば、第2の容量電極4
6の基板表面領域を浮遊電極43の帯電によつて
空乏もしくは反転しないようにすることもでき
る。
FIG. 4 is a diagram showing another embodiment of the present invention. FIG. 4a is a plan view thereof, and FIG. 4b is a sectional view thereof. An insulating film 42 is formed on an n-type semiconductor substrate 41.
There is a floating electrode 43 that is covered with and insulated from the outside. A p-well 49 is formed on the surface of the semiconductor substrate 41, which is a p-type diffusion layer whose surface state is accumulated, depleted, or reversed by the charges accumulated in the floating electrode 43. A first capacitor electrode 44 is provided on the floating electrode 43 with an insulating film 42 interposed therebetween. A second capacitor electrode 4 is provided on the surface of the semiconductor substrate 41 below the floating electrode 43.
6 (p-type diffusion layer). If the impurity concentration of the second capacitor electrode 46 is made high enough, the second capacitor electrode 4
It is also possible to prevent the surface region of the substrate No. 6 from being depleted or inverted by the charging of the floating electrode 43.

第1の容量電極44と第2の容量電極46は電
気的に接続されている。また、浮遊電極43の下
の半導体基板41の表面には浮遊電極43に電荷
をやりとりする容量可変電極48(n型拡散層)
がある。さらに、容量可変電極48を半導体基板
41から電気的に分離するためのp型拡散層47
がある。
The first capacitor electrode 44 and the second capacitor electrode 46 are electrically connected. Further, on the surface of the semiconductor substrate 41 under the floating electrode 43, a capacitance variable electrode 48 (n-type diffusion layer) that exchanges charge with the floating electrode 43 is provided.
There is. Further, a p-type diffusion layer 47 for electrically separating the variable capacitance electrode 48 from the semiconductor substrate 41
There is.

第4図に示した実施例も第3図に示した実施例
と同じく、第1の容量電極44が浮遊電極43を
シールドし、分極性物質の付着による容量の経時
変化を防ぎ、第2の容量電極46を半導体基板4
1の表面に拡散層として形成したため、浮遊電極
43との間の絶縁膜は50Å程度の薄い膜厚でも充
分な絶縁性が得られる。したがつて小型で、か
つ、容量安定性にすぐれた半導体可変容量素子が
できる。
The embodiment shown in FIG. 4 is similar to the embodiment shown in FIG. Capacitor electrode 46 is connected to semiconductor substrate 4
Since the insulating film is formed as a diffusion layer on the surface of the floating electrode 43, sufficient insulation can be obtained even with a thin film thickness of about 50 Å. Therefore, a semiconductor variable capacitance element that is small and has excellent capacitance stability can be produced.

なお、第4図に示した実施例では、利用する容
量は容量電極(第1の容量電極44と第2の容量
電極46を合わせたもの)とpウエル49間の容
量である。
In the embodiment shown in FIG. 4, the capacitance used is the capacitance between the capacitor electrode (the combination of the first capacitor electrode 44 and the second capacitor electrode 46) and the p-well 49.

また、第3図に示した実施例、第4図に示した
実施例の双方とも、p型をn型、n型をp型にお
きかえても同等であることは自明である。
Furthermore, it is obvious that both the embodiment shown in FIG. 3 and the embodiment shown in FIG. 4 are equivalent even if the p-type is replaced with an n-type, and the n-type is replaced with a p-type.

以上の説明で明らかなように、本発明によれ
ば、小型で、かつ、容量可変幅が大きく、容量の
経時変化のない半導体可変容量素子が実現でき
る。
As is clear from the above description, according to the present invention, it is possible to realize a semiconductor variable capacitance element that is small in size, has a wide capacitance variable range, and has no change in capacitance over time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明に関する半導体可変容量素子
の第1原理図の平面図であり、第1図bはその断
面図である。第2図aは本発明に関する半導体可
変容量素子の第2原理図の平面図であり、第2図
bはその断面図である。第3図aは本発明の一実
施例の平面図であり、第3図bはその断面図であ
る。第4図aは本発明の他の実施例の平面図であ
り、第4図bはその断面図である。 1……半導体基板、2……絶縁酸化膜、3……
浮遊電極、4……容量電極、21……半導体基
板、22……絶縁酸化膜、23……浮遊電極、2
6……容量電極、31……半導体基板、32……
絶縁酸化膜、33……浮遊電極、34……第1容
量電極、36……第2容量電極、49……pウエ
ル。
FIG. 1a is a plan view of a first principle diagram of a semiconductor variable capacitance element according to the present invention, and FIG. 1b is a sectional view thereof. FIG. 2a is a plan view of a second principle diagram of a semiconductor variable capacitance element according to the present invention, and FIG. 2b is a sectional view thereof. FIG. 3a is a plan view of an embodiment of the present invention, and FIG. 3b is a sectional view thereof. FIG. 4a is a plan view of another embodiment of the invention, and FIG. 4b is a sectional view thereof. 1... Semiconductor substrate, 2... Insulating oxide film, 3...
Floating electrode, 4... Capacitive electrode, 21... Semiconductor substrate, 22... Insulating oxide film, 23... Floating electrode, 2
6... Capacitive electrode, 31... Semiconductor substrate, 32...
Insulating oxide film, 33... floating electrode, 34... first capacitor electrode, 36... second capacitor electrode, 49... p-well.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁膜で囲まれた浮遊電極と、前記浮遊電極
下の第1導電型の半導体基板の表面部分に第2導
電型の第1のウエルを形成すると共に前記第1の
ウエル内の表面部分に前記浮遊電極と容量結合を
なす前記第1導電型の第1の拡散領域と、前記絶
縁膜の一部を介して前記浮遊電極上に延在して設
けられて前記第1の拡散領域に接続される容量電
極と、前記浮遊電極下の前記半導体基板の前記第
1のウエル外の表面部分に前記第2導電型の第2
のウエルを形成すると共に前記第2のウエル内の
表面部分に前記第1導電型の第2の拡散領域を形
成して成る容量可変電極とから成り、前記容量可
変電極に正負の容量可変電圧を印加することによ
り、前記浮遊電極に電荷を注入するまたは引き出
して浮遊電極下の前記半導体基板の前記第1およ
び第2のウエル外の表面部分に形成される空乏層
の容量を増減させて、前記容量電極と前記空乏層
が形成される領域との間から正負にアナログ的に
変化する種々の容量値を得る半導体可変容量素
子。
1. A floating electrode surrounded by an insulating film, a first well of a second conductivity type is formed in a surface portion of a semiconductor substrate of a first conductivity type under the floating electrode, and a first well of a second conductivity type is formed in a surface portion of the first well. a first diffusion region of the first conductivity type that forms capacitive coupling with the floating electrode; and a first diffusion region extending over the floating electrode through a part of the insulating film and connected to the first diffusion region. a second capacitor electrode of the second conductivity type on a surface portion of the semiconductor substrate outside the first well below the floating electrode;
a capacitance variable electrode formed by forming a well and a second diffusion region of the first conductivity type in the surface portion of the second well, and applying a positive and negative capacitance variable voltage to the capacitance variable electrode. By applying a voltage, charges are injected into or extracted from the floating electrode to increase or decrease the capacitance of a depletion layer formed in a surface portion of the semiconductor substrate outside the first and second wells under the floating electrode, and A semiconductor variable capacitance element that obtains various capacitance values that change in an analog manner between a capacitance electrode and a region where the depletion layer is formed.
JP5228081A 1981-04-07 1981-04-07 Semiconductor variable capacity element Granted JPS57166080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5228081A JPS57166080A (en) 1981-04-07 1981-04-07 Semiconductor variable capacity element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5228081A JPS57166080A (en) 1981-04-07 1981-04-07 Semiconductor variable capacity element

Publications (2)

Publication Number Publication Date
JPS57166080A JPS57166080A (en) 1982-10-13
JPH0352232B2 true JPH0352232B2 (en) 1991-08-09

Family

ID=12910376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5228081A Granted JPS57166080A (en) 1981-04-07 1981-04-07 Semiconductor variable capacity element

Country Status (1)

Country Link
JP (1) JPS57166080A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105378A (en) * 1982-12-09 1984-06-18 Seiko Instr & Electronics Ltd Semiconductor variable capacitance element
JPS60147169A (en) * 1984-01-10 1985-08-03 Seiko Instr & Electronics Ltd Semiconductor variable capacitance element
JPS62179162A (en) * 1986-01-31 1987-08-06 Seiko Instr & Electronics Ltd Semiconductor variable capacity element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115185A (en) * 1977-03-17 1978-10-07 Sanyo Electric Co Ltd Memory type variable capacitive device
JPS53135235A (en) * 1977-04-30 1978-11-25 Toshiba Corp Nonvolatile memory array

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115185A (en) * 1977-03-17 1978-10-07 Sanyo Electric Co Ltd Memory type variable capacitive device
JPS53135235A (en) * 1977-04-30 1978-11-25 Toshiba Corp Nonvolatile memory array

Also Published As

Publication number Publication date
JPS57166080A (en) 1982-10-13

Similar Documents

Publication Publication Date Title
JP2826149B2 (en) Capacitor structure and monolithic voltage multiplier
US5341009A (en) Fast charging MOS capacitor structure for high magnitude voltage of either positive or negative polarity
JPH0736437B2 (en) Method of manufacturing semiconductor memory
US4704625A (en) Capacitor with reduced voltage variability
JPH0352232B2 (en)
JPS58213460A (en) Semiconductor integrated circuit device
JPS6258550B2 (en)
JPH06103735B2 (en) Semiconductor integrated circuit
JPH05315587A (en) Semiconductor device
JPH0213465B2 (en)
JPH0744256B2 (en) Semiconductor integrated circuit
JPS62248248A (en) Semiconductor memory
JP2917428B2 (en) Semiconductor integrated circuit device
JPH0138375B2 (en)
JPS5853864A (en) Seiconductor variable capacitance element
JPH0745789A (en) Mos capacitance of semiconductor device
JPH0576770B2 (en)
JPS6361790B2 (en)
JPH06105761B2 (en) Method of manufacturing integrated circuit device
JPS6347354B2 (en)
JPS6190455A (en) Capacitor
JPH06291276A (en) Semiconductor memory and its manufacture
JPS6118344B2 (en)
JPS59210663A (en) Semiconductor memory device
JPH03155659A (en) Semiconductor device