JPH06103735B2 - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH06103735B2
JPH06103735B2 JP63291326A JP29132688A JPH06103735B2 JP H06103735 B2 JPH06103735 B2 JP H06103735B2 JP 63291326 A JP63291326 A JP 63291326A JP 29132688 A JP29132688 A JP 29132688A JP H06103735 B2 JPH06103735 B2 JP H06103735B2
Authority
JP
Japan
Prior art keywords
type
insulating film
capacitance
gate electrode
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63291326A
Other languages
Japanese (ja)
Other versions
JPH02137256A (en
Inventor
弘治 寺井
初日出 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63291326A priority Critical patent/JPH06103735B2/en
Publication of JPH02137256A publication Critical patent/JPH02137256A/en
Publication of JPH06103735B2 publication Critical patent/JPH06103735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路に関し、特にMOS型容量素子
を備えた半導体集積回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit, and more particularly to a semiconductor integrated circuit including a MOS type capacitance element.

〔従来の技術〕[Conventional technology]

従来からMOS型容量素子は、2極間の電位差によりこの
容量値が変化する事が知られている。従ってこの容量が
変わっては困るスイッチドキャパシタフィルタ等の容量
素子としてはMOS型容量素子が使えなかった。従って、
従来の容量素子は、第4図に示すように、半導体基板14
の上に絶縁膜15を設け、絶縁膜15の上に多結晶シリコン
層又はアルミニウム層を堆積し、選択的にエッチングし
て下層の電極16を設ける。次に、電極16を含む表面に層
間絶縁膜17を堆積し、層間絶縁膜17の上に多結晶シリコ
ン層又はアルミニウム層を堆積して、選択的にエッチン
グし、層間絶縁膜17を介して電極16と相対する上層電極
18を設けて構成していた。
It has been conventionally known that the capacitance value of a MOS type capacitive element changes depending on the potential difference between the two poles. Therefore, the MOS type capacitance element could not be used as a capacitance element such as a switched capacitor filter in which it is difficult to change the capacitance. Therefore,
As shown in FIG. 4, the conventional capacitive element has a semiconductor substrate 14
An insulating film 15 is provided on the insulating film 15, and a polycrystalline silicon layer or an aluminum layer is deposited on the insulating film 15 and selectively etched to provide a lower electrode 16. Next, an interlayer insulating film 17 is deposited on the surface including the electrode 16, a polycrystalline silicon layer or an aluminum layer is deposited on the interlayer insulating film 17, and the layer is selectively etched to form an electrode through the interlayer insulating film 17. Upper electrode facing 16
It was constructed by providing 18.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述した従来の半導体集積回路は、相対する下層電極と
上層電極との間に介在する層間絶縁膜を誘電体として容
量素子を構成しているため、層間絶縁膜の膜厚を薄く形
成することが困難であり、その結果、容量が小さくなる
か、又は容量を大きくするために電極を形成する面積が
増大し集積度が低くなるという問題点がある。
In the above-described conventional semiconductor integrated circuit, since the capacitive element is formed by using the interlayer insulating film interposed between the opposing lower layer electrode and upper layer electrode as a dielectric, the interlayer insulating film can be formed thin. This is difficult, and as a result, there is a problem that the capacitance is reduced, or the area for forming electrodes for increasing the capacitance is increased and the integration degree is reduced.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の半導体集積回路は、一導電型半導体基板に設け
た逆導電型の第1及び第2のウェルと、前記第1および
第2のウェルの領域上にゲート絶縁膜を介してそれぞれ
設けた第1及び第2のゲート電極と、前記第1及び第2
のゲート電極に整合して前記第1及び第2のウェルのそ
れぞれに設けた一導電型の第1及び第2の拡散領域と、
前記第1のゲート電極と前記第2の拡散領域及び前記第
2のウェルを接続する配線と、前記第2のゲート電極と
前記第1の拡散領域及び前記第1のウェルを接続する配
線とを備え、実質的に同一形状のMOS容量素子を互に逆
向きに並列接続した容量素子を有する。
In the semiconductor integrated circuit of the present invention, the first and second wells of opposite conductivity type provided on the one conductivity type semiconductor substrate and the regions of the first and second wells are provided via a gate insulating film, respectively. First and second gate electrodes, and the first and second gate electrodes
First conductivity type first and second diffusion regions provided in each of the first and second wells in alignment with the gate electrode of
A wiring that connects the first gate electrode to the second diffusion region and the second well; and a wiring that connects the second gate electrode to the first diffusion region and the first well. It has a capacitive element in which MOS capacitive elements having substantially the same shape are connected in parallel in opposite directions.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を説明するための半導体チッ
プの断面図、第2図は第1図に示す実施例の等価回路図
である。
FIG. 1 is a sectional view of a semiconductor chip for explaining an embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram of the embodiment shown in FIG.

第1図及び第2図に示すように、P型シリコン基板1の
主面に選択的に第1のN型ウェル2a及び第2のN型ウェ
ル2bを選択的に設け、N型ウェル2a,2bを含む表面にゲ
ート絶縁膜3を設ける。次に、N型ウェル2aの領域上の
ゲート絶縁膜3の上に第1のゲート電極4aを選択的に設
け、N型ウェル2bの領域上のゲート絶縁膜3の上に第2
のゲート電極4bをそれぞれ設ける。次に、ゲート電極4a
に整合してN型ウェル2aに第1のP型拡散領域5aを設
け、ゲート電極4bに整合してN型ウェル2bに第2のP型
拡散領域5bを設ける。次に、N型ウェル2aにコンタクト
用のN+型拡散領域6aとN型ウェル2bにコンタクト用のN+
型拡散領域6bとを設ける。次に、ゲート電極4a,4bを含
む表面に層間絶縁膜7を堆積し、ゲート電極4a,4b及び
P型拡散領域5a,5b及びN+型拡散領域6a,6bのそれぞれの
コンタクト用開孔部と、前記開孔部の各電極及び領域と
接続する配線8を設けて第1のゲート電極4aと第2のP
型拡散領域5b及び第2のN+型拡散領域6bを電気的に端子
9に接続し、第2のゲート電極4bと第1のP型拡散領域
5a及び第1のN+型拡散領域6aを電気的に端子10に接続
し、実質的に同一構成のMOS型容量素子を互に逆向きに
並列接続した容量素子を得る。
As shown in FIGS. 1 and 2, the first N-type well 2a and the second N-type well 2b are selectively provided on the main surface of the P-type silicon substrate 1, and the N-type well 2a, The gate insulating film 3 is provided on the surface including 2b. Next, the first gate electrode 4a is selectively provided on the gate insulating film 3 on the region of the N-type well 2a, and the second gate electrode 4a is formed on the gate insulating film 3 on the region of the N-type well 2b.
The respective gate electrodes 4b are provided. Next, the gate electrode 4a
The first P-type diffusion region 5a is provided in the N-type well 2a in alignment with the above, and the second P-type diffusion region 5b is provided in the N-type well 2b in alignment with the gate electrode 4b. Then, the N + -type diffusion region 6a and the N-type well 2b for contact N-type well 2a for contact N +
A mold diffusion region 6b is provided. Next, the interlayer insulating film 7 is deposited on the surface including the gate electrodes 4a and 4b, and the contact openings of the gate electrodes 4a and 4b and the P type diffusion regions 5a and 5b and the N + type diffusion regions 6a and 6b are formed. And a wiring 8 connected to each electrode and region of the opening is provided to connect the first gate electrode 4a and the second P electrode.
The type diffusion region 5b and the second N + type diffusion region 6b are electrically connected to the terminal 9, and the second gate electrode 4b and the first P type diffusion region are formed.
5a and the first N + type diffusion region 6a are electrically connected to the terminal 10 to obtain a capacitive element in which MOS type capacitive elements having substantially the same configuration are connected in parallel in opposite directions.

なお、P型拡散領域5a,5bはそれぞれのN型ウェル2a又
は2b内で一体化して設けても良い。
The P-type diffusion regions 5a and 5b may be integrally provided in each N-type well 2a or 2b.

第3図は本発明の半導体集積回路のMOS型容量素子のC
−V特性図である。
FIG. 3 shows C of the MOS type capacitance element of the semiconductor integrated circuit of the present invention.
It is a -V characteristic view.

第3図に示すように、第1のMOS型容量素子のC−V特
性11は、ゲート電極4aに正極性電圧を印加したときに
は、ゲート絶縁膜3を介してN型ウェル2の表面に電子
が集まり、容量はゲート絶縁膜容量Coxのみとなるが、
印加電圧を下げてゲートしきい電圧近傍の電圧をゲート
電極4aに印加している時は、N型ウェル2の表面に空乏
領域が形成される為、MOS容量はゲート絶縁膜容量Cox
空乏層容量CDが直列に接続された状態になり減少してい
く。そして更にゲート電極4aにかける電圧を下げるとN
型ウェル4の表面には、反対層が形成されMOS容量は再
びゲート絶縁膜容量Coxのみで支配されるようになる。
また、これと逆極性の第2のMOS型容量素子のC−V特
性12はOV点を中心に第1のMOS型容量素子のC−V曲線
を反転した形つまり破線で表わした曲線となる。従って
合成された容量素子のC−V特性13はOV点を中心に左右
対称となる。このため、MOS型容量素子の合成された容
量値は2倍でOV点付近のバイアス電圧による変動値はMO
S型容量素子1個の場合と同じとなり、容量値に対する
変動値の比が低減し、電圧依存性の小さいMOS型容量素
子が得られる。
As shown in FIG. 3, the CV characteristic 11 of the first MOS-type capacitance element is such that when a positive voltage is applied to the gate electrode 4a, electrons are transferred to the surface of the N-type well 2 through the gate insulating film 3. And the capacitance is only the gate insulating film capacitance C ox ,
When the applied voltage is lowered and a voltage near the gate threshold voltage is applied to the gate electrode 4a, a depletion region is formed on the surface of the N-type well 2, so that the MOS capacitance is depleted with the gate insulating film capacitance C ox. The layer capacitance C D is connected in series and decreases. When the voltage applied to the gate electrode 4a is further lowered, N
An opposite layer is formed on the surface of the mold well 4, and the MOS capacitance is again dominated by the gate insulating film capacitance C ox .
Further, the CV characteristic 12 of the second MOS type capacitance element having the opposite polarity is a curve obtained by inverting the CV curve of the first MOS type capacitance element centering on the OV point, that is, a curve represented by a broken line. . Therefore, the C-V characteristic 13 of the combined capacitive element is symmetrical with respect to the OV point. Therefore, the combined capacitance value of the MOS type capacitance element is twice, and the fluctuation value due to the bias voltage near the OV point is MO.
This is the same as in the case of one S-type capacitance element, the ratio of the variation value to the capacitance value is reduced, and a MOS-type capacitance element having a small voltage dependence can be obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、第1,第2のMOS型容量素
子を逆向きに並列接続して容量素子を構成する事によ
り、従来に比べて容量値の電圧依存性を軽減できるの
で、高精度の回路に使用でき、容量素子を有する半導体
集積回路のコスト低減又は集積度の改善ができる効果が
ある。
As described above, according to the present invention, the voltage dependency of the capacitance value can be reduced as compared with the related art by forming the capacitance element by connecting the first and second MOS type capacitance elements in parallel in opposite directions. It can be used for high-precision circuits, and has an effect of reducing the cost or improving the degree of integration of a semiconductor integrated circuit having a capacitive element.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を説明するための半導体チッ
プの断面図、第2図は第1図に示す実施例の等価回路
図、第3図は本発明の半導体集積回路のMOS型容量素子
のC−V特性図、第4図は従来の半導体集積回路の一例
を示す半導体チップの断面図である。 1…P型シリコン基板、2a,2b…N型ウェル、3…ゲー
ト絶縁膜、4a,4b…ゲート電極、5a,5b…P型拡散領域、
6a,6b…N+型拡散領域、7…層間絶縁膜、8…配線、9,1
0…端子、11…第1のMOS型容量素子のC−V特性、12…
第2のMOS型容量素子のC−V特性、13…合成した容量
素子のC−V特性、14…半導体基板、15…絶縁膜、16…
電極、17…層間絶縁膜、18…電極。
FIG. 1 is a sectional view of a semiconductor chip for explaining an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram of the embodiment shown in FIG. 1, and FIG. 3 is a MOS type semiconductor integrated circuit of the present invention. FIG. 4 is a CV characteristic diagram of the capacitive element, and FIG. 4 is a sectional view of a semiconductor chip showing an example of a conventional semiconductor integrated circuit. 1 ... P-type silicon substrate, 2a, 2b ... N-type well, 3 ... Gate insulating film, 4a, 4b ... Gate electrode, 5a, 5b ... P-type diffusion region,
6a, 6b ... N + type diffusion region, 7 ... Interlayer insulating film, 8 ... Wiring, 9,1
0 ... Terminal, 11 ... CV characteristic of the first MOS type capacitive element, 12 ...
CV characteristics of second MOS type capacitance element, 13 ... CV characteristics of synthesized capacitance element, 14 ... Semiconductor substrate, 15 ... Insulating film, 16 ...
Electrodes, 17 ... Interlayer insulating film, 18 ... Electrodes.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一導電型半導体基板に設けた逆導電型の第
1及び第2のウェルと、前記第1および第2のウェルの
領域上にゲート絶縁膜を介してそれぞれ設けた第1及び
第2のゲート電極と、前記第1及び第2のゲート電極に
整合して前記第1及び第2のウェルのそれぞれに設けた
一導電型の第1及び第2の拡散領域と、前記第1のゲー
ト電極と前記第2の拡散領域及び前記第2のウェルを接
続する配線と、前記第2のゲート電極と前記第1の拡散
領域及び前記第1のウェルを接続する配線とを備え、実
質的に同一形状のMOS容量素子を互に逆向きに並列接続
した容量素子を有することを特徴とする半導体集積回
路。
1. A first and second wells of opposite conductivity type provided on a semiconductor substrate of one conductivity type, and first and second wells respectively provided on the regions of the first and second wells via a gate insulating film. A second gate electrode; first and second diffusion regions of one conductivity type which are provided in the first and second wells in alignment with the first and second gate electrodes; A wiring connecting the gate electrode to the second diffusion region and the second well, and a wiring connecting the second gate electrode to the first diffusion region and the first well. A semiconductor integrated circuit having a capacitive element in which MOS capacitive elements having the same shape are connected in parallel in mutually opposite directions.
JP63291326A 1988-11-17 1988-11-17 Semiconductor integrated circuit Expired - Lifetime JPH06103735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291326A JPH06103735B2 (en) 1988-11-17 1988-11-17 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291326A JPH06103735B2 (en) 1988-11-17 1988-11-17 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH02137256A JPH02137256A (en) 1990-05-25
JPH06103735B2 true JPH06103735B2 (en) 1994-12-14

Family

ID=17767464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291326A Expired - Lifetime JPH06103735B2 (en) 1988-11-17 1988-11-17 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH06103735B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631492A (en) * 1994-01-21 1997-05-20 Motorola Standard cell having a capacitor and a power supply capacitor for reducing noise and method of formation
WO1997032343A1 (en) * 1996-02-28 1997-09-04 Sierra Semiconductor Coporation High-precision, linear mos capacitor
JP2795259B2 (en) * 1996-04-17 1998-09-10 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP3592028B2 (en) * 1997-04-03 2004-11-24 富士通株式会社 Booster circuit and semiconductor integrated circuit
DE10207739A1 (en) * 2002-02-22 2003-09-11 Infineon Technologies Ag Integrated semiconductor circuit with a parallel connection of coupled capacitances

Also Published As

Publication number Publication date
JPH02137256A (en) 1990-05-25

Similar Documents

Publication Publication Date Title
JP3057661B2 (en) Semiconductor device
KR0142575B1 (en) Semiconductor memory and its manufacturing method
JPH02246261A (en) Capacitor structure and monolithic voltage maltiplier
JPS63308366A (en) Semiconductor integrated circuit
JPH01283863A (en) Mos type semiconductor device
US4720467A (en) Method of forming a capacitor-transistor integrated circuit
JPH06103735B2 (en) Semiconductor integrated circuit
US4704625A (en) Capacitor with reduced voltage variability
JP2001036015A (en) On-chip capacitor
JP2003243521A (en) Capacity element and semiconductor integrated circuit using it
JPH0744256B2 (en) Semiconductor integrated circuit
JPS58213460A (en) Semiconductor integrated circuit device
JPH0396267A (en) Semiconductor integrated circuit device
JP3019038B2 (en) Semiconductor device
JPS6244427B2 (en)
JPH02240958A (en) Semiconductor integrated circuit device
JPH0745789A (en) Mos capacitance of semiconductor device
JP2563456B2 (en) MIS type capacitive element
JPH0473960A (en) Integrated circuit
JPH0525743U (en) Semiconductor device
JPH07135296A (en) Semiconductor integrated circuit device
JP2826239B2 (en) Capacitor
JPS6328500B2 (en)
JP2000058877A (en) Variable capacitance semiconductor element
JP2590867B2 (en) Manufacturing method of memory device