JPH0525743U - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH0525743U JPH0525743U JP7358091U JP7358091U JPH0525743U JP H0525743 U JPH0525743 U JP H0525743U JP 7358091 U JP7358091 U JP 7358091U JP 7358091 U JP7358091 U JP 7358091U JP H0525743 U JPH0525743 U JP H0525743U
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- region
- well
- mos
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
(57)【要約】
【目的】 本考案は半導体装置に関し、その目的は、寄
生接合容量の電圧依存度の小さな半導体装置を提供する
ことにある。
【構成】 PウェルとNウェルが対称的に形成され表面
には誘電体層が形成された半導体基板に構成されるCM
OS構造の対称性を利用し、Nウェルを高電位に保持し
てPウェルを低電位に保持することにより、寄生接合容
量の電圧依存性をキャンセルするように構成する。
(57) [Summary] [Object] The present invention relates to a semiconductor device, and an object thereof is to provide a semiconductor device in which the parasitic junction capacitance has a small voltage dependence. [Composition] A CM formed on a semiconductor substrate in which a P well and an N well are formed symmetrically and a dielectric layer is formed on the surface.
By utilizing the symmetry of the OS structure and holding the N well at a high potential and the P well at a low potential, the voltage dependence of the parasitic junction capacitance is canceled.
Description
【0001】[0001]
本考案は半導体装置に関し、更に詳しくは、半導体集積回路に搭載されるMO S容量における寄生容量の電圧依存性の改善に関する。 The present invention relates to a semiconductor device, and more particularly to improvement of voltage dependence of parasitic capacitance in a MOS capacitor mounted on a semiconductor integrated circuit.
【0002】[0002]
図4は半導体集積回路に搭載される従来のMOS容量の構造例図であり、バイ ポーラプロセスによる構造を示している。図において、1はp型の半導体基板で あり、その上部近傍にはn型の拡散層2が形成され、該拡散層2の上部近傍の一 部にはn+の拡散層3が形成されている。4はこれら半導体基板1,拡散層3, 4の表面に形成されたSiO2などの誘電体層である。5,6は例えばAlより なる電極であり、電極5は誘電体層4に接続され、電極6は誘電体層4に設けら れている穴を通ってn+の拡散層3に接続されている。FIG. 4 is a structural example diagram of a conventional MOS capacitor mounted on a semiconductor integrated circuit, showing a structure by a bipolar process. In the figure, reference numeral 1 denotes a p-type semiconductor substrate, an n-type diffusion layer 2 is formed in the vicinity of the upper part thereof, and an n + diffusion layer 3 is formed in a part of the vicinity of the upper part of the diffusion layer 2. There is. Reference numeral 4 is a dielectric layer such as SiO 2 formed on the surfaces of the semiconductor substrate 1, the diffusion layers 3 and 4. Reference numerals 5 and 6 are electrodes made of, for example, Al, the electrode 5 is connected to the dielectric layer 4, and the electrode 6 is connected to the n + diffusion layer 3 through a hole provided in the dielectric layer 4. There is.
【0003】 図3は図4の等価回路図である。すなわち、電極5,6間にはMOS容量Ca b が形成される。そして、半導体基板1と拡散層3に接続されている電極6の間 には、寄生接合容量Cjも存在することになる。FIG. 3 is an equivalent circuit diagram of FIG. That is, between the electrodes 5, 6 MOS capacitance C a b are formed. Then, the parasitic junction capacitance C j also exists between the semiconductor substrate 1 and the electrode 6 connected to the diffusion layer 3.
【0004】[0004]
しかしながら、このような構造における寄生接合容量Cjの値は電圧依存性を 有する空乏層の幅に依存するものであり、信号レベルの変化に応じて容量値が比 較的大きく変化してしまうという欠点がある。However, the value of the parasitic junction capacitance C j in such a structure depends on the width of the depletion layer having voltage dependence, and the capacitance value changes relatively greatly in response to changes in the signal level. There are drawbacks.
【0005】 本考案は、このような問題点に鑑みてなされたものであり、その目的は、寄生 接合容量の電圧依存度の小さな半導体装置を提供することにある。The present invention has been made in view of such problems, and an object thereof is to provide a semiconductor device in which the parasitic junction capacitance has a small voltage dependency.
【0006】[0006]
本考案は、 PウェルとNウェルが対称的に形成され表面には誘電体層が形成された半導体 基板と、 前記Pウェル中にN+領域とP+領域が拡散形成され、前記誘電体層を介して N+領域と対向するように第1の電極が形成され、前記誘電体層に設けられた穴 を通ってN+領域に第2の電極が接続され、前記誘電体層に設けられた穴を通っ てP+領域に第3の電極が接続された第1のMOSと、 前記Nウェル中にP+領域とN+領域が拡散形成され、前記誘電体層を介して P+領域と対向するように第1の電極が形成され、前記誘電体層に設けられた穴 を通ってP+領域に第2の電極が接続され、前記誘電体層に設けられた穴を通っ てN+領域に第3の電極が接続された第2のMOSとで構成され、 各MOSの第1の電極と第2の電極はそれぞれ共通に接続され、前記第1のM OSの第3の電極は低電圧に保持され、前記第2のMOSの第3の電極は高電圧 に保持されたことを特徴とするものである。According to the present invention, a P-well and an N-well are formed symmetrically and a dielectric layer is formed on the surface of the semiconductor substrate, and an N + region and a P + region are diffused in the P-well to form the dielectric layer. through the N + first electrode to regions facing is formed, the through holes formed in the dielectric layer and the second electrode to the N + region is connected, it is provided on the dielectric layer was first and MOS which the third electrode is connected to the P + region through the hole, the P + region and the N + region in the N well is formed diffused, P + region through said dielectric layer A first electrode is formed so as to face with the second electrode, a second electrode is connected to the P + region through a hole provided in the dielectric layer, and a N electrode is formed through a hole provided in the dielectric layer. + region third electrode is composed of a second MOS connected to the first electrode and the second of each MOS The electrodes are connected in common, the third electrode of the first MOS is held at a low voltage, and the third electrode of the second MOS is held at a high voltage. is there.
【0007】[0007]
各MOSの寄生接合容量は、各MOSの第2の電極に印加される電圧の変化に 応じて相殺する方向に変化し、第2の電極から見た合成容量の変化は従来に比べ て小さくなる。 The parasitic junction capacitance of each MOS changes in a canceling direction according to the change of the voltage applied to the second electrode of each MOS, and the change of the combined capacitance seen from the second electrode is smaller than in the conventional case. ..
【0008】[0008]
以下、図面を参照して、本考案の実施例を詳細に説明する。 図1は本考案の一実施例の構成図である。図1において、11はN型の半導体 基板であり、第1のMOSを構成するPウェル12と第2のMOSを構成するN ウェル13が対称的に形成されて表面には誘電体層14が形成されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention. In FIG. 1, 11 is an N-type semiconductor substrate, in which a P well 12 forming a first MOS and an N well 13 forming a second MOS are symmetrically formed, and a dielectric layer 14 is formed on the surface. Has been formed.
【0009】 そして、Pウェル12中の上部近傍にはN+領域15とP+領域16が拡散形 成されていて、誘電体層14を介してN+領域15と対向するように第1の電極 17が形成され、誘電体層14に設けられた穴を通ってN+領域15に第2の電 極18が接続され、誘電体層14に設けられた穴を通ってP+領域16に第3の 電極19が接続されている。これらは第1のMOSを構成する。Then, an N + region 15 and a P + region 16 are formed in the vicinity of the upper portion of the P well 12 by diffusion, and the first N + region 15 and the P + region 16 are formed so as to face the N + region 15 via the dielectric layer 14. An electrode 17 is formed, a second electrode 18 is connected to the N + region 15 through a hole provided in the dielectric layer 14, and a second electrode 18 is connected to the P + region 16 through a hole provided in the dielectric layer 14. The third electrode 19 is connected. These form the first MOS.
【0010】 一方、Nウェル13中の上部近傍にはP+領域20とN+領域21が拡散形成 されていて、誘電体層14を介してP+領域20と対向するように第1の電極2 2が形成され、誘電体層14に設けられた穴を通ってP+領域20に第2の電極 23が接続され、誘電体層14に設けられた穴を通ってN+領域21に第3の電 極24が接続されている。これらは第2のMOSを構成する。On the other hand, a P + region 20 and an N + region 21 are diffused and formed near the upper part of the N well 13, and the first electrode is formed so as to face the P + region 20 via the dielectric layer 14. 22 is formed, the second electrode 23 is connected to the P + region 20 through the hole provided in the dielectric layer 14, and the second electrode 23 is connected to the N + region 21 through the hole provided in the dielectric layer 14. Three electrodes 24 are connected. These form the second MOS.
【0011】 そして、各MOSの第1の電極17と22は共通にA端子に接続され、第2の 電極18と23は共通にB端子に接続されている。また、第1のMOSの第3の 電極19は低電位VSSに保持され、第2のMOSの第3の電極24は高電位V DD に保持されている。The first electrodes 17 and 22 of each MOS are commonly connected to the A terminal, and the second electrodes 18 and 23 of each MOS are commonly connected to the B terminal. The third electrode 19 of the first MOS has a low potential VSSAnd the third electrode 24 of the second MOS is held at DD Held in.
【0012】 図2は図1の等価回路図である。すなわち、A端子とB端子の間には、第1の MOSを構成する第1の電極17と第2の電極18間の容量Cmnと第2のMO Sを構成する第1の電極22と第2の電極23間の容量Cmpが並列に接続され ている。そして、第1のMOSを構成する第2の電極18と第3の電極19の間 にはPウェル12と第3の電極19の間の寄生接合容量Cjnが接続され、第2 のMOSを構成する第2の電極23と第3の電極24の間にはNウェル13と第 3の電極24の間の寄生接合容量Cjpが接続されている。FIG. 2 is an equivalent circuit diagram of FIG. That is, between the A terminal and the B terminal, the capacitance C mn between the first electrode 17 and the second electrode 18 forming the first MOS and the first electrode 22 forming the second MO S. The capacitance C mp between the second electrodes 23 is connected in parallel. Then, the parasitic junction capacitance C jn between the P well 12 and the third electrode 19 is connected between the second electrode 18 and the third electrode 19 which form the first MOS, and the second MOS is connected to the parasitic junction capacitance C jn. A parasitic junction capacitance C jp between the N well 13 and the third electrode 24 is connected between the constituent second electrode 23 and the third electrode 24.
【0013】 このような構成において、端子Bの電位が上昇すると、Nウェル13と第3の 電極24の間の電位差が小さくなって接合部分の空乏層の幅が狭くなることから 寄生接合容量Cjpが大きくなるとともにPウェル12と第3の電極19の間の 電位差が大きくなって接合部分の空乏層の幅が広くなることから寄生接合容量C jn が大きくなる。また、端子Bの電位が下降すると、Nウェル13と第3の電 極24の間の電位差が大きくなって接合部分の空乏層の幅が広くなることから寄 生接合容量Cjpが小さくなるとともにPウェル12と第3の電極19の間の電 位差が小さくなって接合部分の空乏層の幅が狭くなることから寄生接合容量Cj n が大きくなる。In such a configuration, when the potential of the terminal B rises, the potential difference between the N well 13 and the third electrode 24 becomes smaller and the width of the depletion layer at the junction portion becomes narrower. Therefore, the parasitic junction capacitance CjpBecomes larger, the potential difference between the P well 12 and the third electrode 19 becomes larger, and the width of the depletion layer at the junction becomes wider. Therefore, the parasitic junction capacitance C jn Becomes bigger. Further, when the potential of the terminal B decreases, the potential difference between the N well 13 and the third electrode 24 increases, and the width of the depletion layer in the junction portion widens.jpBecomes smaller, the potential difference between the P well 12 and the third electrode 19 becomes smaller, and the width of the depletion layer at the junction becomes narrower. Therefore, the parasitic junction capacitance Cj n Becomes bigger.
【0014】 このように、端子Bに接続される寄生接合容量Cjn,Cjpの変化は相殺さ れる方向にあり、端子Bから見た合成容量の変化は従来の接続構造に比べて小さ くなる。As described above, the changes in the parasitic junction capacitances C jn and C jp connected to the terminal B tend to be offset, and the change in the combined capacitance seen from the terminal B is smaller than that in the conventional connection structure. Become.
【0015】 なお、各ウェル12,13の濃度,電極面積を調整することにより、寄生接合 容量Cjn,Cjpの電圧依存性を最適値に設計することが可能である。 また、意図的に、寄生接合容量Cjn,Cjpの電圧依存性を正や負にするこ とも可能である。By adjusting the concentration of each well 12 and the electrode area, it is possible to design the voltage dependence of the parasitic junction capacitances C jn and C jp to the optimum values. It is also possible to intentionally make the voltage dependence of the parasitic junction capacitances C jn and C jp positive or negative.
【0016】[0016]
以上詳細に説明した本考案によれば、以下のような効果が得られる。 寄生接合容量の電圧依存性が小さくなるので、信号レベルによる容量値の変化 は少なくなり、MOS容量を高性能化できる。 According to the present invention described in detail above, the following effects can be obtained. Since the voltage dependence of the parasitic junction capacitance is reduced, the change in capacitance value due to the signal level is reduced, and the MOS capacitance can be improved in performance.
【0017】 この結果、高周波特性における設計値と実測値の差が小さくなる、積分用容量 としての精度が向上する等の利点が得られ、設計の困難さを軽減できる。As a result, the difference between the design value and the actually measured value in the high-frequency characteristics is reduced, the accuracy of the integrating capacitor is improved, and the like, and the design difficulty can be reduced.
【図1】本考案の一実施例の構成図である。FIG. 1 is a block diagram of an embodiment of the present invention.
【図2】図1の等価回路図である。FIG. 2 is an equivalent circuit diagram of FIG.
【図3】従来の半導体集積回路に搭載されるMOS容量
の構造例図である。FIG. 3 is a structural example diagram of a MOS capacitor mounted in a conventional semiconductor integrated circuit.
【図4】図3の等価回路図である。FIG. 4 is an equivalent circuit diagram of FIG.
11 半導体基板 12 Pウェル 13 Nウェル 14 誘電体層 15,21 N+領域 16,20 P+領域 17,22 第1電極 18,23 第2電極 19,24 第3電極11 Semiconductor Substrate 12 P Well 13 N Well 14 Dielectric Layer 15,21 N + Region 16,20 P + Region 17,22 First Electrode 18,23 Second Electrode 19,24 Third Electrode
Claims (1)
表面には誘電体層が形成された半導体基板と、 前記Pウェル中にN+領域とP+領域が拡散形成され、
前記誘電体層を介してN+領域と対向するように第1の
電極が形成され、前記誘電体層に設けられた穴を通って
N+領域に第2の電極が接続され、前記誘電体層に設け
られた穴を通ってP+領域に第3の電極が接続された第
1のMOSと、 前記Nウェル中にP+領域とN+領域が拡散形成され、
前記誘電体層を介してP+領域と対向するように第1の
電極が形成され、前記誘電体層に設けられた穴を通って
P+領域に第2の電極が接続され、前記誘電体層に設け
られた穴を通ってN+領域に第3の電極が接続された第
2のMOSとで構成され、 各MOSの第1の電極と第2の電極はそれぞれ共通に接
続され、前記第1のMOSの第3の電極は低電圧に保持
され、前記第2のMOSの第3の電極は高電圧に保持さ
れたことを特徴とする半導体装置。1. A semiconductor substrate in which a P well and an N well are formed symmetrically and a dielectric layer is formed on the surface, and N + regions and P + regions are diffused and formed in the P well.
A first electrode is formed so as to face the N + region through the dielectric layer, and a second electrode is connected to the N + region through a hole provided in the dielectric layer. A first MOS having a third electrode connected to the P + region through a hole formed in the layer, and a P + region and an N + region formed by diffusion in the N well,
A first electrode is formed so as to face the P + region through the dielectric layer, and a second electrode is connected to the P + region through a hole provided in the dielectric layer. A second MOS in which a third electrode is connected to the N + region through a hole provided in the layer, and the first electrode and the second electrode of each MOS are connected in common, and A semiconductor device, wherein the third electrode of the first MOS is held at a low voltage, and the third electrode of the second MOS is held at a high voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7358091U JPH0525743U (en) | 1991-09-12 | 1991-09-12 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7358091U JPH0525743U (en) | 1991-09-12 | 1991-09-12 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0525743U true JPH0525743U (en) | 1993-04-02 |
Family
ID=13522384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7358091U Withdrawn JPH0525743U (en) | 1991-09-12 | 1991-09-12 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0525743U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998043298A1 (en) * | 1997-03-24 | 1998-10-01 | Seiko Epson Corporation | Semiconductor capacitance device and semiconductor device made by using the same |
JP2002158331A (en) * | 2000-11-21 | 2002-05-31 | Mitsumi Electric Co Ltd | Semiconductor capacitive element and semiconductor integrated circuit comprising it |
JP2008258538A (en) * | 2007-04-09 | 2008-10-23 | Toshiba Corp | Semiconductor integrated circuit device |
-
1991
- 1991-09-12 JP JP7358091U patent/JPH0525743U/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998043298A1 (en) * | 1997-03-24 | 1998-10-01 | Seiko Epson Corporation | Semiconductor capacitance device and semiconductor device made by using the same |
US6303957B1 (en) | 1997-03-24 | 2001-10-16 | Seiko Epson Corporation | Semiconductor capacitance device and semiconductor devices using the same |
JP2002158331A (en) * | 2000-11-21 | 2002-05-31 | Mitsumi Electric Co Ltd | Semiconductor capacitive element and semiconductor integrated circuit comprising it |
JP2008258538A (en) * | 2007-04-09 | 2008-10-23 | Toshiba Corp | Semiconductor integrated circuit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3057661B2 (en) | Semiconductor device | |
JPS6048106B2 (en) | semiconductor integrated circuit | |
US6143614A (en) | Monolithic inductor | |
JPH0577340B2 (en) | ||
JPH02228063A (en) | Radio frequency integrated circuit channel capacitor | |
JPH0525743U (en) | Semiconductor device | |
JPS6386465A (en) | Method of forming capacitor on substrate | |
JPH0936307A (en) | Mos capacitor | |
JP2001028423A (en) | Semiconductor integrated circuit device | |
JPH06103735B2 (en) | Semiconductor integrated circuit | |
JPH01214055A (en) | Electrostatic breakdown protective device | |
JPH0744256B2 (en) | Semiconductor integrated circuit | |
JPH02240958A (en) | Semiconductor integrated circuit device | |
JPH0745789A (en) | Mos capacitance of semiconductor device | |
JP2563456B2 (en) | MIS type capacitive element | |
KR0183046B1 (en) | Gate electrode and method thereof | |
JP2789916B2 (en) | Varactor diode | |
JPS62245683A (en) | Constant voltage diode | |
KR970053932A (en) | Capacitance Improvement Morse Capacitor Using Latch Voltage of Transistor | |
JP2655595B2 (en) | Complementary semiconductor integrated circuit device | |
JPS58122766A (en) | Semiconductor device | |
JP2002158331A (en) | Semiconductor capacitive element and semiconductor integrated circuit comprising it | |
JPH01146351A (en) | Semiconductor device | |
JPS6246984B2 (en) | ||
JPH07221330A (en) | Varactor diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19951130 |