JPS6048106B2 - semiconductor integrated circuit - Google Patents

semiconductor integrated circuit

Info

Publication number
JPS6048106B2
JPS6048106B2 JP54167825A JP16782579A JPS6048106B2 JP S6048106 B2 JPS6048106 B2 JP S6048106B2 JP 54167825 A JP54167825 A JP 54167825A JP 16782579 A JP16782579 A JP 16782579A JP S6048106 B2 JPS6048106 B2 JP S6048106B2
Authority
JP
Japan
Prior art keywords
transistor
gate
voltage
input terminal
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54167825A
Other languages
Japanese (ja)
Other versions
JPS5690555A (en
Inventor
伸夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP54167825A priority Critical patent/JPS6048106B2/en
Priority to EP80304549A priority patent/EP0032018B1/en
Priority to DE8080304549T priority patent/DE3064607D1/en
Priority to US06/219,893 priority patent/US4423431A/en
Publication of JPS5690555A publication Critical patent/JPS5690555A/en
Publication of JPS6048106B2 publication Critical patent/JPS6048106B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electronic Switches (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、絶縁基板上に島状の半導体領域(アイランド
)を形成して所要とする回路素子を構成した505構造
の半導体集積回路、特にその内部回路入力段に設けられ
る絶縁ゲート型トランジスタのゲートを高電圧から保護
する保護回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit having a 505 structure in which required circuit elements are formed by forming island-shaped semiconductor regions (islands) on an insulating substrate. The present invention relates to a protection circuit that protects the gate of an insulated gate transistor from high voltage.

一般にバルク型つまりシリコン(Si)基板使用のMO
SICでは、第1図に示すように、内部回路Aの入力端
INから高電圧が加わるのを防止するために、保護回路
Bを設ける。
Generally, bulk-type MOs, that is, MOs using silicon (Si) substrates.
In the SIC, as shown in FIG. 1, a protection circuit B is provided to prevent high voltage from being applied from the input terminal IN of the internal circuit A.

これはMOSトランジスタT。のゲート絶縁膜(例えば
SiO。)が700A程度と薄く、入力端INからの静
電気等による高電圧でそのゲートが絶縁破壊する虞れが
あるためで、これを防止するために保護回路Bに抵抗値
IKΩ程度の直列抵抗R、および、トランジスタT2の
ゲートとアース間に接続される保護用のトランジスタT
iを設ける。トランジスタTlもMOS構造であるが、
このゲート絶縁膜には厚さ7000A程度のフィールド
酸化膜を用い、且つゲート電極には配線系統に用いられ
るアルミニウム層を用いる。従つて、保護用のトランジ
スタTlのしきい値はシリコンゲートを用いた内部トラ
ンジスタT2の1晧程度となり、(TlのVthは10
〜15〔V〕、T2のそれは0.8〔V〕程度)、通常
動作時にはトランジスタTlはオフであるが入力端■に
異常な電圧が印加されるとオンとなつて抵抗R、に電圧
降下を生じさせ、トランジスタLのゲートを低電位に保
つてこれを保護する。ところでSOSICでは第2図に
示すように、サファイア等の絶縁基板2上にシリコン半
導体層を成長し活性領域つまり素子形成領域の周囲のフ
ィールド部分はエッチングして除去するか又は半分程エ
ッチングしたのち酸化して二酸化シリコンの絶縁層14
として活性領域をアイランド化し、該アイランド4表面
中央部にゲート絶縁膜10および多結晶シリコンのゲー
ト電極12を設け、これ″をマスクとして不純物拡散ま
たはイオン打込みしてソース、ドレイン領域6、8を形
成して1つのMOSトランジスタを形成する。
This is a MOS transistor T. This is because the gate insulating film (for example, SiO) is as thin as about 700A, and there is a risk that the gate may suffer dielectric breakdown due to high voltage caused by static electricity from the input terminal IN.To prevent this, a resistor is installed in the protection circuit B. A series resistance R with a value of about IKΩ, and a protection transistor T connected between the gate of the transistor T2 and the ground.
Set i. Although the transistor Tl also has a MOS structure,
A field oxide film with a thickness of about 7000 Å is used for this gate insulating film, and an aluminum layer used for wiring systems is used for the gate electrode. Therefore, the threshold value of the protection transistor Tl is about 1 day that of the internal transistor T2 using a silicon gate (Vth of Tl is 10
~15 [V], that of T2 is about 0.8 [V]). During normal operation, the transistor Tl is off, but when an abnormal voltage is applied to the input terminal (■), it turns on, causing a voltage drop across the resistor R. is generated and the gate of transistor L is kept at a low potential to protect it. By the way, in SOSIC, as shown in FIG. 2, a silicon semiconductor layer is grown on an insulating substrate 2 made of sapphire or the like, and the active region, that is, the field area around the element formation region, is removed by etching or is etched by half and then oxidized. an insulating layer 14 of silicon dioxide;
The active region is made into an island, a gate insulating film 10 and a polycrystalline silicon gate electrode 12 are provided at the center of the surface of the island 4, and source and drain regions 6 and 8 are formed by impurity diffusion or ion implantation using this as a mask. Thus, one MOS transistor is formed.

このトランジスタを第1図の内部回路Aのトランジスタ
T。として用いることに問題はないが、保護回路Bのト
ラiンジスタT、としてはゲート絶縁膜10が薄くゲー
ト耐圧が低いので自身が破壊してしまう恐れがあり、不
適当である。そこでバルク型のMOSICと同様にアイ
ランド4周囲の厚いフィールド酸化膜14を利用して第
1図と同様のトランジスタT1を形成したいところであ
るが、SOS構造では酸化膜14の直下は絶縁基板2で
あつてシリコン半導体部分が存在しないため、これは不
可能である。このためSOSMOSICの保護回路Bと
しては一般に第3図のような回路が用いられる。
This transistor is called the transistor T of the internal circuit A in FIG. However, since the gate insulating film 10 is thin and the gate withstand voltage is low, it is unsuitable for use as the transistor T of the protection circuit B, since there is a risk that the gate insulating film 10 may be destroyed. Therefore, we would like to form a transistor T1 similar to that shown in FIG. 1 by using the thick field oxide film 14 around the island 4 as in the case of a bulk MOSIC, but in the SOS structure, the insulating substrate 2 is directly under the oxide film 14. This is not possible since there are no silicon semiconductor parts present in the semiconductor. For this reason, a circuit as shown in FIG. 3 is generally used as the protection circuit B of the SOSMOSIC.

これは直列抵抗R1の他に、内部回路Aと同様の2つの
シリコンゲートMOSトランジスタT3,T4(いずれ
もpチャネルを想定する)を用いたもので、トランジス
タT3は、入力端1Nへ抵抗R1を介して接続されたト
ランジスタT2のゲートG2と正電湧■Ccとの間に、
またトランジスタT4は該ゲートG2とアースとの間に
接続される。そして、トランジスタT3のゲートはその
ソースと共に電源Vccへ、トランジスタT4のゲート
はそのソースと共にゲートG2へ接続される。従つて正
常時つまり入力端INの電圧Viが電源Vccとグラン
ドとの間のレベルにある状態ではトランジスタT3,T
4はいずれもオフである。電圧VjがVi>Vcc〉0
またはViがVi(0になると、詳しくは電圧ViがV
cc+1Vth31(■Th3はトランジスタT3のし
きい値電圧)を越えた時にトランジスタT3はオンにな
り入力端1Nからの電圧Viを電源Vcc側へ落し、ま
た入力端1Nの電圧が−1Vth4!(Vth4はトラ
ンジスタT4のしきい値電圧)以下に低下した時はトラ
ンジスタT,がオンになつて入力端1Nへ電圧をアース
へ落す。トランジスタT3,T4としてはnチャネル型
としてもよく、その場合はゲートをT3ではG2側へ、
T,ではアース側へ接続すればよい。このようにして内
部回路AのトランジスタT2のゲートを保護するのであ
るが、トランジスタT3,T,のゲート絶縁膜は内部回
路のトランジスタT2と同様に薄いので、入力端1Nに
高電圧が加わればトランジスタT3,T4のドレイン、
ゲート間が絶縁破壊される虞れが多分にある。本発明は
フィールド酸化膜を利用できないというSOS構造特有
の問題点を処理して保護用トランジスタを製造工程を複
雑化することなく構成しようとするもので、入力端子と
被保護素子の入力端子との間に挿入された第1の抵抗と
、ドレイン又クはソースが前記被保護素子の入力端子に
接続され、ソース又はドレインが基準電位に接続された
MIS型トランジスタと、前記MIS型トランジスタの
ゲートと前記入力端子との間に挿入された容量と、前記
MIS型トランジスタのゲートと前記基準電位との間に
挿入された第2の抵抗又はダイオードとを備えてなるこ
とを特徴とするが、以下図示の実施例を参照しながらこ
れを詳細に説明する。
In addition to the series resistor R1, this uses two silicon gate MOS transistors T3 and T4 (assumed to be p-channel) similar to the internal circuit A. The transistor T3 connects the resistor R1 to the input terminal 1N. Between the gate G2 of the transistor T2 and the positive electric current Cc connected through the
Also, transistor T4 is connected between the gate G2 and ground. The gate of the transistor T3 and its source are connected to the power supply Vcc, and the gate of the transistor T4 and its source are connected to the gate G2. Therefore, under normal conditions, that is, when the voltage Vi at the input terminal IN is at a level between the power supply Vcc and the ground, the transistors T3 and T
4 are all off. Voltage Vj is Vi>Vcc>0
Or, when Vi becomes Vi (0, more specifically, the voltage Vi becomes V
When the voltage exceeds cc+1Vth31 (■Th3 is the threshold voltage of transistor T3), transistor T3 turns on and drops the voltage Vi from input terminal 1N to the power supply Vcc side, and the voltage at input terminal 1N becomes -1Vth4! (Vth4 is the threshold voltage of transistor T4) When the voltage drops below (Vth4 is the threshold voltage of transistor T4), transistor T is turned on and drops the voltage to the input terminal 1N to ground. The transistors T3 and T4 may be n-channel type, in which case the gate of T3 is moved to the G2 side,
T, you just need to connect it to the ground side. In this way, the gate of transistor T2 of internal circuit A is protected, but since the gate insulating film of transistors T3, T, is thin like transistor T2 of the internal circuit, if a high voltage is applied to input terminal 1N, the gate of transistor T2 is protected. Drain of T3, T4,
There is a high risk of dielectric breakdown between the gates. The present invention attempts to solve the problem peculiar to the SOS structure that a field oxide film cannot be used and to configure a protection transistor without complicating the manufacturing process. a first resistor inserted between; a MIS transistor whose drain or source is connected to the input terminal of the protected element; and whose source or drain is connected to a reference potential; and the gate of the MIS transistor. It is characterized by comprising a capacitor inserted between the input terminal and a second resistor or a diode inserted between the gate of the MIS type transistor and the reference potential, as shown below. This will be explained in detail with reference to an example.

第4図a−cは本発明の一実施例を示す等価回路図、断
面図および平面図である。第4図aにおけるトランジス
タT5は内部回路AのトランジスタT2と同一工程で形
成された通常のエンハンスメント形のシリケコンゲート
MOSトランジスタ)で、そのゲート絶縁膜は特に厚く
したものではない。しかし、そのゲートを1MΩ程度の
抵抗R2を介して接地し、且つコンデンサC1を介して
入力端1Nに接続してあり、か)る構造によりトランジ
スタT5に第1図のトランジスタT1と同等の機・能を
持たせてある。つまり、トランジスタT5のゲートは抵
抗R2を介して接続されているため、定常的にはトラン
ジスタT5はオフ状態を保つが、入力端1Nに高電圧が
加わると該電圧はコンデンサC1と、点線で示すトラン
ジスタT,のゲート・ソース間容量q等で分圧されて該
トランジスタT5のゲートに加わり、これをオンにする
。トランジスタT5をオンにする入力過電圧は従つて容
量Q,C2等の分圧比とトランジスタT5のしきい値電
圧により定まるから、これらを適当に設定する。トラン
ジスタT5がオンになれば、内部回路Aのトランジスタ
T2のゲートへ向かう電圧はRl,T5を通してアース
へ落される。この結果、トランジスタT2のゲートは保
護され、且つトランジスタT5本来のゲート絶縁膜(第
4図bの10)に加わる電圧は小さいので、トランジス
タT5も破壊されずに済む。この素子の具体的な構造は
第4図B,eに示す通りである。
FIGS. 4a to 4c are an equivalent circuit diagram, a sectional view, and a plan view showing an embodiment of the present invention. The transistor T5 in FIG. 4a is an ordinary enhancement type silica gate MOS transistor formed in the same process as the transistor T2 of the internal circuit A, and its gate insulating film is not particularly thick. However, its gate is grounded through a resistor R2 of about 1 MΩ and connected to the input terminal 1N through a capacitor C1, and due to this structure, the transistor T5 has the same function as the transistor T1 in FIG. It is equipped with abilities. In other words, since the gate of the transistor T5 is connected through the resistor R2, the transistor T5 normally remains off, but when a high voltage is applied to the input terminal 1N, the voltage is transferred to the capacitor C1 as shown by the dotted line. The voltage is divided by the gate-source capacitance q of the transistor T, and applied to the gate of the transistor T5, turning it on. The input overvoltage that turns on the transistor T5 is therefore determined by the voltage dividing ratio of the capacitors Q, C2, etc. and the threshold voltage of the transistor T5, so these are set appropriately. When transistor T5 is turned on, the voltage towards the gate of transistor T2 of internal circuit A is dropped to ground through Rl, T5. As a result, the gate of the transistor T2 is protected, and the voltage applied to the original gate insulating film of the transistor T5 (10 in FIG. 4b) is small, so that the transistor T5 is also not destroyed. The specific structure of this element is as shown in FIGS. 4B and 4e.

第4図bに示すようにトランジスタT5は第2図と同様
の断面構造を有するが、そのシリコンゲート12上には
PSG(リンシリケートガラス)膜16が被着され、更
に該膜上にアルミニウム電極18が設けられる。PSG
膜16はIC製造工程においてアルミニウム配線の下地
絶縁層として一般的に用いられるもので、これを誘電体
として用いそしてアルミウム配線の一部を電極18とす
ることで該電極18とゲート電極12との間にコンデン
サC1を形成する。トランジスタT5のソース6はアル
ミニウム配線20で接地(GND)一般化して言えは基
準電位され、またドレイン8は抵抗R1を通してアルミ
ウム配線22で入力端1Nに接続されると共にアルミニ
ウム配線24で内部回路のトランジスタT2のゲートに
接続される。
As shown in FIG. 4b, the transistor T5 has a cross-sectional structure similar to that in FIG. 18 are provided. P.S.G.
The film 16 is generally used as a base insulating layer for aluminum wiring in the IC manufacturing process, and by using this as a dielectric and using a part of the aluminum wiring as the electrode 18, the electrode 18 and the gate electrode 12 are connected. A capacitor C1 is formed between them. The source 6 of the transistor T5 is grounded (GND) through an aluminum wiring 20, which is generally referred to as a reference potential, and the drain 8 is connected to the input terminal 1N through an aluminum wiring 22 through a resistor R1, and connected to the transistor in the internal circuit through an aluminum wiring 24. Connected to the gate of T2.

トランジスタT5のゲートは抵抗R2を介して接地され
るが、第4図bではこれを省略してある。第4図cはこ
れを平面的に示すもので、抵抗R1はドレイン8につら
なる拡散抵抗であり、その両端は点Pl,P2で配線2
2,24にコンタクトされる。また抵抗R2は多結晶シ
リコンゲート12の一部を延長した拡散抵抗であり、そ
の一端は点P,で配線20にコンタクトされる。そして
、アルミニウム電極18は配線22の一端部をゲート1
2上に、且つソースおよびドレイン6,8と一部重複す
るように延ばしたものである。尚、点P4はソース6と
配線20をコンタクトする部分てあり、またゲート酸化
膜10およびPSG膜18は図面上省略されている。抵
抗Rl,R2は高抵抗金属材料を蒸着、パターニングし
てなるものでもよい。この第4図bを見ると、ゲート電
極12を除去して高いPSG膜16のみとし、この上に
電極18を取付けても第1図のフィード絶縁膜利用の高
■Th保護用トランジスタが得られることが分る。
The gate of transistor T5 is grounded via resistor R2, but this is omitted in FIG. 4b. FIG. 4c shows this in a plan view, where the resistor R1 is a diffused resistor connected to the drain 8, and its both ends are connected to the wiring 2 at points Pl and P2.
Contacted on 2nd and 24th. Further, the resistor R2 is a diffused resistor that is an extension of a part of the polycrystalline silicon gate 12, and one end thereof is contacted to the wiring 20 at a point P. The aluminum electrode 18 connects one end of the wiring 22 to the gate 1.
2 and so as to partially overlap the source and drains 6 and 8. Note that the point P4 is a portion where the source 6 and the wiring 20 are in contact, and the gate oxide film 10 and the PSG film 18 are omitted in the drawing. The resistors Rl and R2 may be formed by depositing and patterning a high-resistance metal material. Looking at FIG. 4b, even if the gate electrode 12 is removed to leave only the high PSG film 16 and the electrode 18 is attached thereon, the high Th protection transistor using the feed insulating film as shown in FIG. 1 can be obtained. I understand.

しかし前述のようにソース・ドレイン拡散はゲート電極
をマスクとしてセルフアラインで行なつており、ゲート
電極12を除去したのではソース・ドレイン拡散が不可
能となり、又はそのための特別の工程を必要としてSO
SMOSIC製造工程を乱すことになる。従つてこの第
4図bに示すスタツクドゲート型の保護用トランジスタ
は、その4,6,8,10,12各部分は内部回路のト
ランジスタ素子と全く同じであり、PSG膜16も配線
絶縁用に被着されるものであり、電極18は該配線の一
部であり、SOSMOSIC製造工程を全く乱すことが
ない。第5図A,bは本発明の他の実施例を示す等価回
路図および要部断面図である。
However, as mentioned above, source/drain diffusion is performed in self-alignment using the gate electrode as a mask, and removing the gate electrode 12 may make source/drain diffusion impossible or require a special process for SO.
This will disturb the SMOSIC manufacturing process. Therefore, in the stacked gate type protection transistor shown in FIG. The electrode 18 is part of the wiring and does not disturb the SOSMOSIC manufacturing process at all. FIGS. 5A and 5B are an equivalent circuit diagram and a sectional view of essential parts showing another embodiment of the present invention.

この実施例は第4図aの抵抗R2をダイオードD1に置
き換えたもので、同図bのようにダイオードD1のアノ
ード側(p+型領域26)を配線20(第4図c参照)
を通して接地し、且つそのカソード側(n+型領域28
)をゲート電極を構成する酎型多結晶シリコン層12の
端部に接続したものである。なおフィールド絶縁として
アイランドと同じ厚みの二酸化シリコンを用いる場合は
、n+層12等は当然該二酸化シリコン層上にのること
になる。このダイオードD1はリークが多くかつ低電圧
で簡単にブレークダウンするので、トランジスタT5の
ゲートは定常的には接地電位に保たれた該トランジスタ
T5はオフにとどまり、そして入力端1Nに高電圧が加
わればダイオードD1はブレークダウンし、そのカソー
ド・アノード間電圧をトランジスタT5のゲートへ印加
するので第4図と同様の動作が行なわれる。以上述べた
ように本発明によれば、SOSMOSICの内部回路を
保護する回路を、内部回路形成時の工程を何ら変更する
ことなく該工程で同時に、且つバルク型のMOSICに
おける保護回路と等価に形成できる利点がある。
In this embodiment, the resistor R2 in FIG. 4a is replaced with a diode D1, and as shown in FIG. 4b, the anode side (p+ type region 26) of the diode D1 is connected to the wiring 20 (see FIG.
and ground through the cathode side (n+ type region 28
) is connected to the end of the bulge-shaped polycrystalline silicon layer 12 constituting the gate electrode. Note that when silicon dioxide having the same thickness as the island is used as the field insulation, the n+ layer 12 and the like naturally lie on the silicon dioxide layer. Since this diode D1 has a lot of leakage and easily breaks down at a low voltage, the gate of the transistor T5 is constantly kept at ground potential, and the transistor T5 remains off, and when a high voltage is applied to the input terminal 1N. For example, diode D1 breaks down and its cathode-anode voltage is applied to the gate of transistor T5, so that the same operation as in FIG. 4 is performed. As described above, according to the present invention, a circuit that protects the internal circuit of an SOSMOSIC can be formed simultaneously in the process of forming the internal circuit without changing the process, and in a manner equivalent to the protection circuit in a bulk MOSIC. There are advantages that can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシリコン基板使用のMOSICにおける保護回
路の回路図、第2図はSOS構造のMOSト・ランジス
タを示す断面図、第3図はSOSICにおける従来の保
護回路の一例を示す回路図、第4図A,b,cは本発明
の一実施例を示す等価回路図、断面図および平面図、第
5図A,bは本発明の他の実施例を示す等価回路図およ
び要部面図でフある。 図中、Aは内部回路、T2はその入力段のMOSトラン
ジスタ、Bは保護回路、Rl,R2は抵抗、C1はPS
G膜を用いたコンデンサ、T5は内部回路と同様のトラ
ンジスタ、2は絶縁基板、4はシリ5コンアイランド、
10はゲート絶縁膜、12はシリコンゲート、16はP
SG膜、18はアルミニウム電極である。
Fig. 1 is a circuit diagram of a protection circuit in MOSIC using a silicon substrate, Fig. 2 is a cross-sectional view showing a MOS transistor with an SOS structure, Fig. 3 is a circuit diagram showing an example of a conventional protection circuit in SOSIC, 4A, b, and c are equivalent circuit diagrams, cross-sectional views, and plan views showing one embodiment of the present invention, and FIGS. 5A, b are equivalent circuit diagrams and principal part views showing other embodiments of the present invention. There is no problem. In the figure, A is the internal circuit, T2 is the MOS transistor at its input stage, B is the protection circuit, Rl and R2 are resistors, and C1 is the PS
A capacitor using G film, T5 is a transistor similar to the internal circuit, 2 is an insulating substrate, 4 is a silicon island,
10 is a gate insulating film, 12 is a silicon gate, 16 is P
The SG film 18 is an aluminum electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 入力端子と被保護素子の入力端子との間に挿入され
た第1の抵抗と、ドレイン又はソースが前記被保護素子
の入力端子に接続され、ソース又はドレインが基準電位
に接続されたMIS型トランジスタと、前記MIS型ト
ランジスタのゲートと前記入力端子との間に挿入された
容量と、前記MIS型トランジスタのゲートと前記基準
電位との間に挿入された第2の抵抗又はダイオードを備
えてなることを特徴とする半導体集積回路。
1 MIS type in which a first resistor is inserted between an input terminal and an input terminal of a protected element, a drain or source is connected to the input terminal of the protected element, and a source or drain is connected to a reference potential. A transistor, a capacitor inserted between the gate of the MIS transistor and the input terminal, and a second resistor or diode inserted between the gate of the MIS transistor and the reference potential. A semiconductor integrated circuit characterized by:
JP54167825A 1979-12-24 1979-12-24 semiconductor integrated circuit Expired JPS6048106B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP54167825A JPS6048106B2 (en) 1979-12-24 1979-12-24 semiconductor integrated circuit
EP80304549A EP0032018B1 (en) 1979-12-24 1980-12-17 Semiconductor integrated circuit device
DE8080304549T DE3064607D1 (en) 1979-12-24 1980-12-17 Semiconductor integrated circuit device
US06/219,893 US4423431A (en) 1979-12-24 1980-12-24 Semiconductor integrated circuit device providing a protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54167825A JPS6048106B2 (en) 1979-12-24 1979-12-24 semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS5690555A JPS5690555A (en) 1981-07-22
JPS6048106B2 true JPS6048106B2 (en) 1985-10-25

Family

ID=15856786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54167825A Expired JPS6048106B2 (en) 1979-12-24 1979-12-24 semiconductor integrated circuit

Country Status (4)

Country Link
US (1) US4423431A (en)
EP (1) EP0032018B1 (en)
JP (1) JPS6048106B2 (en)
DE (1) DE3064607D1 (en)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533846A (en) * 1979-01-24 1985-08-06 Xicor, Inc. Integrated circuit high voltage clamping systems
JPS5780774A (en) * 1980-11-07 1982-05-20 Hitachi Ltd Semiconductor integrated circuit device
JPS57211272A (en) * 1981-06-23 1982-12-25 Toshiba Corp Semiconductor device
IT1211141B (en) * 1981-12-04 1989-09-29 Ates Componenti Elettron CIRCUIT LIMITER-TRANSDUCER ALTERNATE SIGNALS CODED IN BINARY FORM, AS THE INPUT STAGE OF AN IGFET INTEGRATED CIRCUIT.
JPS58119670A (en) * 1982-01-11 1983-07-16 Nissan Motor Co Ltd Semiconductor device
US4480196A (en) * 1982-05-21 1984-10-30 Northern Telecom Limited Input protection circuits for integrated circuit devices
DE3378807D1 (en) * 1982-10-20 1989-02-02 Philips Nv Integrated circuit comprising an input protection device
US4786956A (en) * 1982-10-20 1988-11-22 North American Philips Corporation, Signetics Division Input protection device for integrated circuits
JPS59181679A (en) * 1983-03-31 1984-10-16 Nippon Denso Co Ltd Semiconductor device
US4581672A (en) * 1983-08-31 1986-04-08 National Semiconductor Corporation Internal high voltage (Vpp) regulator for integrated circuits
JPS60170965A (en) * 1984-02-16 1985-09-04 Seiko Instr & Electronics Ltd Protective circuit
US4605980A (en) * 1984-03-02 1986-08-12 Zilog, Inc. Integrated circuit high voltage protection
US4745450A (en) * 1984-03-02 1988-05-17 Zilog, Inc. Integrated circuit high voltage protection
JPS60246665A (en) * 1984-05-22 1985-12-06 Nec Corp Protective device for input
IT1214606B (en) * 1985-05-13 1990-01-18 Ates Componenti Elettron INTEGRATED DYNAMIC PROTECTION DEVICE, IN PARTICULAR FOR INTEGRATED CIRCUITS WITH INPUT IN MOS TECHNOLOGY.
US4808861A (en) * 1986-08-29 1989-02-28 Texas Instruments Incorporated Integrated circuit to reduce switching noise
USRE37477E1 (en) * 1987-11-06 2001-12-18 Sgs-Thomson Microelectronics, Inc. Integrated circuit protected against electrostatic discharges, with variable protection threshold
FR2623018B1 (en) * 1987-11-06 1990-02-09 Thomson Semiconducteurs INTEGRATED CIRCUIT PROTECTED AGAINST ELECTROSTATIC DISCHARGES WITH VARIABLE PROTECTION THRESHOLD
US4855620A (en) * 1987-11-18 1989-08-08 Texas Instruments Incorporated Output buffer with improved ESD protection
US5687109A (en) * 1988-05-31 1997-11-11 Micron Technology, Inc. Integrated circuit module having on-chip surge capacitors
US6124625A (en) 1988-05-31 2000-09-26 Micron Technology, Inc. Chip decoupling capacitor
US4924344A (en) * 1989-02-27 1990-05-08 Teledyne Industries, Inc. Circuitry for protection against electromotively-induced voltage transients in solid state relay circuits
US4916572A (en) * 1989-02-27 1990-04-10 Teledyne Industries, Inc. Circuitry for protecting against load voltage transients in solid state relay circuits
US4931778A (en) * 1989-02-27 1990-06-05 Teledyne Industries, Inc. Circuitry for indicating the presence of an overload or short circuit in solid state relay circuits
US5189588A (en) * 1989-03-15 1993-02-23 Matsushita Electric Industrial Co., Ltd. Surge protection apparatus
US5173755A (en) * 1989-05-12 1992-12-22 Western Digital Corporation Capacitively induced electrostatic discharge protection circuit
US4930036A (en) * 1989-07-13 1990-05-29 Northern Telecom Limited Electrostatic discharge protection circuit for an integrated circuit
JP2555890B2 (en) * 1989-08-14 1996-11-20 日本電気株式会社 Input protection device for semiconductor integrated circuit
US5436183A (en) * 1990-04-17 1995-07-25 National Semiconductor Corporation Electrostatic discharge protection transistor element fabrication process
US5166557A (en) * 1991-01-02 1992-11-24 Texas Instruments Incorporated Gate array with built-in programming circuitry
JP3199808B2 (en) * 1991-05-14 2001-08-20 セイコーインスツルメンツ株式会社 Semiconductor integrated circuit device
US5301084A (en) * 1991-08-21 1994-04-05 National Semiconductor Corporation Electrostatic discharge protection for CMOS integrated circuits
US5301081A (en) * 1992-07-16 1994-04-05 Pacific Monolithics Input protection circuit
US5276582A (en) * 1992-08-12 1994-01-04 National Semiconductor Corporation ESD protection using npn bipolar transistor
US5598313A (en) * 1994-12-23 1997-01-28 International Business Machines Corporation Electrostatic discharge suppression circuit for integrated circuit chips
US5563525A (en) * 1995-02-13 1996-10-08 Taiwan Semiconductor Manufacturing Company Ltd ESD protection device with FET circuit
JP2770784B2 (en) * 1995-05-31 1998-07-02 日本電気株式会社 Silicon-on-insulator semiconductor device
US5708288A (en) * 1995-11-02 1998-01-13 Motorola, Inc. Thin film silicon on insulator semiconductor integrated circuit with electrostatic damage protection and method
GB2308731A (en) * 1995-12-22 1997-07-02 Motorola Gmbh Semiconductor device with electrostatic discharge protection
US5683918A (en) * 1996-04-01 1997-11-04 Motorola, Inc. Method of making semiconductor-on-insulator device with closed-gate electrode
US5726844A (en) * 1996-04-01 1998-03-10 Motorola, Inc. Protection circuit and a circuit for a semiconductor-on-insulator device
US5717560A (en) * 1996-08-23 1998-02-10 Intel Corporation ESD protection device using static capacitance coupling between drain and gate
US5773326A (en) * 1996-09-19 1998-06-30 Motorola, Inc. Method of making an SOI integrated circuit with ESD protection
US5952695A (en) * 1997-03-05 1999-09-14 International Business Machines Corporation Silicon-on-insulator and CMOS-on-SOI double film structures
US6191633B1 (en) * 1997-09-12 2001-02-20 Nec Corporation Semiconductor integrated circuit with protection circuit against electrostatic discharge
US6046897A (en) * 1997-09-29 2000-04-04 Motorola, Inc. Segmented bus architecture (SBA) for electrostatic discharge (ESD) protection
US5959488A (en) * 1998-01-24 1999-09-28 Winbond Electronics Corp. Dual-node capacitor coupled MOSFET for improving ESD performance
US6114756A (en) 1998-04-01 2000-09-05 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit leadframes
US6414391B1 (en) * 1998-06-30 2002-07-02 Micron Technology, Inc. Module assembly for stacked BGA packages with a common bus bar in the assembly
US6369994B1 (en) 1998-07-31 2002-04-09 International Business Machines Corporation Method and apparatus for handling an ESD event on an SOI integrated circuit
US6208191B1 (en) * 1998-10-29 2001-03-27 Microchip Technology Incorporated Positive and negative voltage clamp for a wireless communication input circuit
US6323522B1 (en) * 1999-01-08 2001-11-27 International Business Machines Corporation Silicon on insulator thick oxide structure and process of manufacture
US6188122B1 (en) 1999-01-14 2001-02-13 International Business Machines Corporation Buried capacitor for silicon-on-insulator structure
JP2001060663A (en) * 1999-08-20 2001-03-06 Nec Corp Semiconductor integrated circuit device
US6583972B2 (en) 2000-06-15 2003-06-24 Sarnoff Corporation Multi-finger current ballasting ESD protection circuit and interleaved ballasting for ESD-sensitive circuits
EP1301972B1 (en) 2000-07-13 2016-03-23 Broadcom Corporation Methods and systems for improving esd clamp response time
US6498372B2 (en) 2001-02-16 2002-12-24 International Business Machines Corporation Conductive coupling of electrical structures to a semiconductor device located under a buried oxide layer
JP3678212B2 (en) * 2002-05-20 2005-08-03 ウシオ電機株式会社 Super high pressure mercury lamp
US6755700B2 (en) * 2002-11-12 2004-06-29 Modevation Enterprises Inc. Reset speed control for watercraft
US20040105202A1 (en) * 2002-12-03 2004-06-03 Industrial Technology Research Institute Electrostatic discharge protection device and method using depletion switch
US6781502B1 (en) * 2003-05-06 2004-08-24 Semiconductor Components Industries, L.L.C. Method of forming a protection circuit and structure therefor
US7439592B2 (en) * 2004-12-13 2008-10-21 Broadcom Corporation ESD protection for high voltage applications
US7505238B2 (en) * 2005-01-07 2009-03-17 Agnes Neves Woo ESD configuration for low parasitic capacitance I/O
JP2007273689A (en) * 2006-03-31 2007-10-18 Denso Corp Semiconductor device
WO2008088795A2 (en) * 2007-01-17 2008-07-24 Lerner Medical Devices, Inc. Fiber optic brush for light delivery
WO2008088814A2 (en) * 2007-01-17 2008-07-24 Lerner Medical Devices, Inc. Phototherapy handpiece
EP2120762A1 (en) * 2007-01-17 2009-11-25 Lerner Medical Devices, Inc. Fiber optic phototherapy device
WO2008088792A1 (en) * 2007-01-17 2008-07-24 Lerner Medical Devices, Inc. Light source and fiber optic brush for light delivery
WO2010112971A2 (en) 2009-03-31 2010-10-07 Freescale Semiconductor, Inc. Integrated protection circuit
US8045306B2 (en) * 2009-10-16 2011-10-25 Himax Technologies Limited Electrical-overstress protection circuit for an integrated circuit
US7911752B1 (en) 2009-10-29 2011-03-22 Ememory Technology Inc. Programming PAD ESD protection circuit
KR101936921B1 (en) * 2012-08-28 2019-01-11 에스케이하이닉스 주식회사 Anti fuse of semiconductor device and method for forming the same
US9153958B2 (en) * 2013-08-15 2015-10-06 Nxp B.V. Bias-insensitive trigger circuit for bigFET ESD supply protection
CN110825692B (en) * 2019-10-08 2024-01-23 深圳市稳先微电子有限公司 System on chip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757145A (en) * 1972-06-30 1973-09-04 Itt Integrable igfet circuit
US3777216A (en) * 1972-10-02 1973-12-04 Motorola Inc Avalanche injection input protection circuit
JPS5299786A (en) * 1976-02-18 1977-08-22 Agency Of Ind Science & Technol Mos integrated circuit
JPS5372472A (en) * 1976-12-08 1978-06-27 Nec Corp Semiconductor device
JPS54159188A (en) * 1978-06-06 1979-12-15 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JPS5690555A (en) 1981-07-22
DE3064607D1 (en) 1983-09-22
EP0032018B1 (en) 1983-08-17
US4423431A (en) 1983-12-27
EP0032018A1 (en) 1981-07-15

Similar Documents

Publication Publication Date Title
JPS6048106B2 (en) semiconductor integrated circuit
US6707118B2 (en) Semiconductor-on-insulator resistor-capacitor circuit
JPH0214792B2 (en)
US5087955A (en) Input-output circuit of reduced device area for semicustom semiconductor integrated circuit
US4893164A (en) Complementary semiconductor device having high switching speed and latchup-free capability
US5907182A (en) Semiconductor device having element with high breakdown voltage
US4969020A (en) Semiconductor device
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
JPH0653497A (en) Semiconductor device equipped with i/o protective circuit
US4922316A (en) Infant protection device
JP3033548B2 (en) Semiconductor device, electrostatic protection element, and dielectric breakdown prevention method
US5327000A (en) Semiconductor device interconnected to analog IC driven by high voltage
US5285095A (en) Semiconductor integrated circuit with input protective transistor effective against electric surge
US20010038126A1 (en) Structure for esd protection with single crystal silicon sided junction diode
JPH0456469B2 (en)
JPS6328500B2 (en)
KR100290916B1 (en) Elector static discharge protection circuit and method for manufacturing the same
US5432369A (en) Input/output protection circuit
JPH0817206B2 (en) Semiconductor device
JPH0513443A (en) Integrated circuit
US6544828B1 (en) Adding a poly-strip on isolation's edge to improve endurance of high voltage NMOS on EEPROM
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit
JPH04354158A (en) Semiconductor element
JPS6237822B2 (en)
JPH01273346A (en) Semiconductor device