JPH0744256B2 - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0744256B2
JPH0744256B2 JP63291306A JP29130688A JPH0744256B2 JP H0744256 B2 JPH0744256 B2 JP H0744256B2 JP 63291306 A JP63291306 A JP 63291306A JP 29130688 A JP29130688 A JP 29130688A JP H0744256 B2 JPH0744256 B2 JP H0744256B2
Authority
JP
Japan
Prior art keywords
type
diffusion region
insulating film
conductivity type
type diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63291306A
Other languages
Japanese (ja)
Other versions
JPH02137255A (en
Inventor
弘治 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63291306A priority Critical patent/JPH0744256B2/en
Publication of JPH02137255A publication Critical patent/JPH02137255A/en
Publication of JPH0744256B2 publication Critical patent/JPH0744256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路に関し、特にMOS型容量素子を
備えた半導体集積回路に関する。
The present invention relates to a semiconductor integrated circuit, and more particularly to a semiconductor integrated circuit including a MOS type capacitance element.

〔従来の技術〕[Conventional technology]

従来、この種の半導体集積回路は、第5図に示すよう
に、p型シリコン基板1の主面に設けたn型ウェル2
と、n型ウェル2の表面のチャネル形成領域に設けたp-
型領域3と、n型ウェル2を含む表面に設けたゲート絶
縁膜4と、ゲート絶縁膜4の上に設けたゲート電極5
と、ゲート電極5に整合してn型ウェル2の表面に設け
たp+型拡散領域6と、p+型拡散領域6に隣接してn型ウ
ェル2の表面に設けたn+型拡散領域7と、ゲート電極5
を含む表面に設けた層間絶縁膜8と層間絶縁膜8に設け
たコンタクト用開孔部と、前記開孔部を介してゲート電
極5に接続した配線9、p+型拡散領域6の一方に接続し
た配線10、他方のp+型拡散領域6及びn+型拡散領域7の
双方に接続する配線11とをそれぞれ備え、配線10と配線
11を接続してMOS型容量素子を構成する。
Conventionally, as shown in FIG. 5, a semiconductor integrated circuit of this type has an n-type well 2 provided on the main surface of a p-type silicon substrate 1.
And p provided in the channel formation region on the surface of the n-type well 2.
Type region 3, gate insulating film 4 provided on the surface including n-type well 2, and gate electrode 5 provided on gate insulating film 4.
And ap + type diffusion region 6 provided on the surface of the n type well 2 in alignment with the gate electrode 5, and an n + type diffusion region provided on the surface of the n type well 2 adjacent to the p + type diffusion region 6. 7 and gate electrode 5
To one of the p + -type diffusion region 6 and the wiring 9 connected to the gate electrode 5 through the opening, and the interlayer insulating film 8 provided on the surface including the contact opening formed in the interlayer insulating film 8. The wiring 10 and the wiring 10 connected to each other are provided, and the wiring 11 connected to both the p + type diffusion region 6 and the n + type diffusion region 7 on the other side, respectively.
11 is connected to form a MOS type capacitive element.

このようにしてゲート絶縁膜4を介して対向するゲート
電極5とp-型領域とにより構成される容量部のC−V特
性は第6図に示すように、ゲート電極5に負電圧を印加
したときの容量Cはゲート絶縁膜のみで形成される容量
COXになるが、OV近傍ではp-型領域3の表面に空乏層が
でき、容量Cは となり小さくなる。ゲート電極の電圧を次第に上げるに
従いn型反転層が形成されるようになるが、n+型拡散領
域7がチャネル領域と接していない為、n型反転層とp
型領域3の間の空乏層がC−V特性に関与し第6図のよ
うに一定値におさまってしまう。
As shown in FIG. 6, the CV characteristic of the capacitance portion constituted by the gate electrode 5 and the p type region facing each other with the gate insulating film 4 interposed therebetween is shown in FIG. The capacitance C at that time is the capacitance formed only by the gate insulating film.
Although it becomes C OX , a depletion layer is formed on the surface of the p type region 3 near OV, and the capacitance C is It will be smaller. The n-type inversion layer is formed as the voltage of the gate electrode is gradually increased. However, since the n + -type diffusion region 7 is not in contact with the channel region, the n-type inversion layer and p-type
The depletion layer between the mold regions 3 contributes to the CV characteristics and stays at a constant value as shown in FIG.

又、第5図に示すn+型拡散領域7がチャネル領域と接し
ていない為、従来例に示すMOS容量には余分な抵抗成分
もしくは、容量成分が関与してしまう。
Further, since the n + type diffusion region 7 shown in FIG. 5 is not in contact with the channel region, an extra resistance component or capacitance component is involved in the MOS capacitance shown in the conventional example.

第7図は第5図の容量部のチャネル長方向に対し垂直な
面の断面図である。
FIG. 7 is a cross-sectional view of a plane perpendicular to the channel length direction of the capacitor portion of FIG.

図に示すように、n型ウェル2に対し正極性の電圧を印
加して、チャネル領域の表面にn型反転層12が形成され
た場合に、n型反転層12は、素子領域を区画するフィー
ルド絶縁膜13の下面に設けたチャネルストッパ14を介す
るn+型拡散領域7との接続の並列接続の形になってお
り、主としてチャネルストッパ14とn型ウェル2の抵抗
成分と、n型反転層12とp-型領域3の間及びP-型領域3
とn型ウェル2の間の容量成分が関与してきてししまう
結果となり純粋なMOS容量以外に余分なものがついてし
まう。
As shown in the figure, when a positive voltage is applied to the n-type well 2 and the n-type inversion layer 12 is formed on the surface of the channel region, the n-type inversion layer 12 partitions the element region. The parallel connection is made to the connection with the n + type diffusion region 7 through the channel stopper 14 provided on the lower surface of the field insulating film 13, and mainly the resistance component of the channel stopper 14 and the n type well 2 and the n type inversion. Between layer 12 and p - type region 3 and P - type region 3
As a result, the capacitance component between the n-type well 2 and the n-type well 2 is involved, and an extra element is added in addition to the pure MOS capacitance.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述した従来の半導体集積回路は、n+型拡散領域7がチ
ャネル領域と接していないのでMOS容量のC−V特性が
2極間の電位差により階段状に変化したり、チャネルと
n+型拡散領域7の間に抵抗成分が介在し純粋なMOS容量
のみではなく回路上不具合が生じるという欠点がある。
In the conventional semiconductor integrated circuit described above, since the n + type diffusion region 7 is not in contact with the channel region, the CV characteristic of the MOS capacitor changes stepwise due to the potential difference between the two poles,
There is a drawback that a resistance component is interposed between the n + type diffusion regions 7 and not only a pure MOS capacitance but also a circuit defect occurs.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の半導体集積回路は、一導電型半導体基板の一主
面に設けた逆導電型のウェルと、前記ウェルを含む表面
に形成したゲート絶縁膜と、前記ウェル上の前記ゲート
絶縁膜の上に形成したゲート電極と、前記ゲート電極直
下の前記ウェルの表面のチャネル領域に形成した低不純
物濃度の第1の一導電型拡散領域と、前記第1の一導電
型拡散領域の一方の側面に接続して形成した高不純物濃
度の第2の一導電型拡散領域と、前記第1の一導電型拡
散領域の他方の側面に接触して形成した高不純物濃度の
逆導電型拡散領域と、前記ゲート電極を含む表面に形成
した層間絶縁膜と、前記層間絶縁膜に形成したコンタク
トホールを介して前記第2の一導電型拡散領域と前記逆
導電型拡散領域とを電気的に接続した配線とを備えて構
成したMOS型容量素子を有する。
The semiconductor integrated circuit according to the present invention includes a well of opposite conductivity type provided on one main surface of a semiconductor substrate of one conductivity type, a gate insulating film formed on a surface including the well, and a gate insulating film on the well. The first electrode of the first conductivity type diffusion region having a low impurity concentration formed in the channel region on the surface of the well immediately below the gate electrode, and the first electrode of the first conductivity type diffusion region. A high impurity concentration second conductivity type diffusion region formed by connection, a high impurity concentration reverse conductivity type diffusion region formed in contact with the other side surface of the first conductivity type diffusion region, and An interlayer insulating film formed on the surface including the gate electrode, and a wiring electrically connecting the second one conductivity type diffusion region and the opposite conductivity type diffusion region through a contact hole formed in the interlayer insulating film. MOS type capacitor configured with Having.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を示す半導体チップの断
面図である。
FIG. 1 is a sectional view of a semiconductor chip showing a first embodiment of the present invention.

第1図に示すように、p型シリコン基板1の主面にn型
ウェル2を選択的に設け、n型ウェル2の表面のチャネ
ル形成領域にp型不純物を選択的にイオン注入してp-
領域3を設ける。次に、n型ウェル2を含む表面にゲー
ト絶縁膜4を設け、ゲート絶縁膜4の上に多結晶シリコ
ン層を堆積してこれを選択的にエッチングしてゲート電
極5を形成する。次に、ゲート電極5に整合してn型ウ
ェル2内に不純物をイオン注入しP+型拡散領域6を設
け、同様に不純物をイオン注入してゲート電極5に整合
し且つp-型領域3と隣接するn+型拡散領域7を選択的に
形成する。次に、ゲート電極5を含む表面に層間絶縁膜
8を堆積し、コンタクト用の開孔部を設ける。次に、前
記開孔部を介してゲート電極5に接続する配線9、p+
拡散領域6に接続する配線10、n+型拡散領域7と接続す
る配線11をそれぞれ設け、配線10と配線11を接続してMO
S型容量素子を形成する。
As shown in FIG. 1, an n-type well 2 is selectively provided on the main surface of a p-type silicon substrate 1, and a p-type impurity is selectively ion-implanted into a channel forming region on the surface of the n-type well 2 to form a p-type impurity. -Provide the mold region 3. Next, a gate insulating film 4 is provided on the surface including the n-type well 2, a polycrystalline silicon layer is deposited on the gate insulating film 4, and this is selectively etched to form a gate electrode 5. Next, an impurity is ion-implanted into the n-type well 2 so as to be aligned with the gate electrode 5 to form a P + -type diffusion region 6. Similarly, an impurity is ion-implanted so as to be aligned with the gate electrode 5 and the p -type region 3 is formed. An n + type diffusion region 7 adjacent to is formed selectively. Next, an interlayer insulating film 8 is deposited on the surface including the gate electrode 5 to form an opening for contact. Next, a wiring 9 connected to the gate electrode 5 through the opening, a wiring 10 connected to the p + type diffusion region 6 and a wiring 11 connected to the n + type diffusion region 7 are provided, respectively, and the wiring 10 and the wiring 10 are provided. Connect 11 and MO
Form an S-type capacitor.

第2図は本発明の第1の実施例のC−V特性図である。FIG. 2 is a CV characteristic diagram of the first embodiment of the present invention.

第2図に示すように、ゲート電極5にn型ウェル2に対
して負電圧を印加した場合の容量Cはゲート絶縁膜のみ
で得られる容量COXとなり、OV近傍から正電圧側にかけ
チャネル表面に空乏層が形成され、容量Cは となり小さくなるが、電圧を更に増加させるとn型反転
層が形成され、n+型拡散領域7がチャネル領域に隣接し
ている為に容量値は再びCOXに戻る。よって第6図の従
来のMOS容量のC−V特性と比較してわかるように、こ
の実施例のC−V特性の方が電圧依存性がなくなった。
又n+型領域4をチャネルに隣接して形成した為、電圧を
上げた時できるn型反転層と接する為従来のMOS容量素
子と異なるウェル領域の抵抗成分を除外することができ
る。
As shown in FIG. 2, the capacitance C when a negative voltage is applied to the gate electrode 5 with respect to the n-type well 2 becomes the capacitance C OX obtained only by the gate insulating film, and the channel surface extends from near OV to the positive voltage side. A depletion layer is formed in the However, when the voltage is further increased, an n-type inversion layer is formed, and the capacitance value returns to C OX again because the n + -type diffusion region 7 is adjacent to the channel region. Therefore, as can be seen by comparing with the C-V characteristic of the conventional MOS capacitor of FIG. 6, the C-V characteristic of this embodiment has less voltage dependence.
Further, since the n + type region 4 is formed adjacent to the channel, it is in contact with the n type inversion layer that can be formed when the voltage is increased, so that the resistance component of the well region different from the conventional MOS capacitor element can be excluded.

第3図は本発明の第2の実施例を示す等価回路図であ
る。
FIG. 3 is an equivalent circuit diagram showing the second embodiment of the present invention.

第1図で示したMOS型容量素子の接続に関し、第1のMOS
型容量素子21に対し第2のMOS型容量素子22を逆極性に
して並列接続にした容量素子である。MOS型容量素子21,
22は実質的に同一の形状,材質で構成される。
Regarding the connection of the MOS type capacitance element shown in FIG. 1, the first MOS
The second MOS type capacitance element 22 has a reverse polarity to the capacitance type capacitance element 21 and is connected in parallel. MOS type capacitor 21,
22 is composed of substantially the same shape and material.

第4図は本発明の第2の実施例のC−V特性図である。FIG. 4 is a CV characteristic diagram of the second embodiment of the present invention.

図に示すように、第1のMOS型容量素子のC−V特性23
と第2のMOS型容量素子のC−V特性はOV点を中心にし
て対称形となっており、合成した容量素子のC−V特性
25は第1,第2のMOS容量素子21,22の特性の和になり、こ
の特性を見てわかる通りOV近傍でのくぼみの大きさは、
個々の容量の場合と同じであるが、合成された容量素子
の特性で平坦な部分の容量値が2倍になっているので、
実質的に変動値の比が低減し、電圧依存性の小さいMOS
型容量素子が得られる。
As shown in the figure, the C-V characteristic of the first MOS capacitor 23
The C-V characteristic of the second MOS type capacitance element is symmetrical about the OV point, and the C-V characteristic of the synthesized capacitance element is
25 is the sum of the characteristics of the first and second MOS capacitance elements 21 and 22, and as you can see from this characteristic, the size of the dent near OV is
Although it is the same as the case of individual capacitors, the capacitance value of the flat part is doubled due to the characteristics of the combined capacitive element,
MOS whose voltage fluctuation ratio is reduced and voltage dependency is small
A type capacitive element is obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、MOS型容量素子のチャネ
ル領域に隣接してp+,n+両領域を設けることにより、従
来に比べ大幅に容量値の電圧依存性を軽減でき、余分な
抵抗成分を排除できる為、高精度の回路に使用できる効
果がある。
As described above, according to the present invention, by providing both the p + and n + regions adjacent to the channel region of the MOS-type capacitance element, the voltage dependency of the capacitance value can be significantly reduced compared to the conventional case, and the extra resistance can be reduced. Since the components can be eliminated, there is an effect that it can be used in a high-precision circuit.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例を示す半導体チップの断
面図、第2図は本発明の第1の実施例のC−V特性図、
第3図は本発明の第2の実施例を示す等価回路図、第4
図は本発明の第2の実施例のC−V特性図、第5図は従
来の半導体集積回路の一例を示す半導体チップの断面
図、第6図は従来の半導体集積回路のC−V特性図、第
7図は第5図の容量部のチャネル長方向に対し垂直な面
の断面図である。 1……p型シリコン基板、2……n型ウェル、3……p-
型領域、4……ゲート絶縁膜、5……ゲート電極、6…
…p+型拡散領域、7……n+型拡散領域、8……層間絶縁
膜、9,10,11……配線、12……n型反転層、13……フィ
ールド絶縁膜、14……チャネルストッパ、21,22……MOS
型容量素子、23……第1のMOS型容量素子のC−V特
性、24……第2のMOS型容量素子のC−V特性、25……
合成した容量素子のC−V特性。
FIG. 1 is a sectional view of a semiconductor chip showing a first embodiment of the present invention, FIG. 2 is a CV characteristic diagram of the first embodiment of the present invention,
FIG. 3 is an equivalent circuit diagram showing the second embodiment of the present invention, and FIG.
FIG. 5 is a CV characteristic diagram of the second embodiment of the present invention, FIG. 5 is a sectional view of a semiconductor chip showing an example of a conventional semiconductor integrated circuit, and FIG. 6 is a CV characteristic of a conventional semiconductor integrated circuit. FIG. 7 and FIG. 7 are cross-sectional views of a plane perpendicular to the channel length direction of the capacitor portion of FIG. 1 ...... p-type silicon substrate, 2 ...... n-type well, 3 ...... p -
Mold region, 4 ... Gate insulating film, 5 ... Gate electrode, 6 ...
… P + type diffusion region, 7 …… n + type diffusion region, 8 …… Interlayer insulating film, 9,10,11 …… wiring, 12 …… n type inversion layer, 13 …… Field insulating film, 14 …… Channel stopper, 21,22 …… MOS
-Type capacitive element, 23 ... C-V characteristic of first MOS-type capacitive element, 24 ... C-V characteristic of second MOS-type capacitive element, 25 ...
C-V characteristics of the synthesized capacitive element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一導電型半導体基板の一主面に設けた逆導
電型のウェルと、前記ウェルを含む表面に形成したゲー
ト絶縁膜と、前記ウェル上の前記ゲート絶縁膜の上に形
成したゲート電極と、前記ゲート電極直下の前記ウェル
の表面のチャネル領域に形成した低不純物濃度の第1の
一導電型拡散領域と、前記第1の一導電型拡散領域の一
方の側面に接続して形成した高不純物濃度の第2の一導
電型拡散領域と、前記第1の一導電型拡散領域の他方の
側面に接触して形成した高不純物濃度の逆導電型拡散領
域と、前記ゲート電極を含む表面に形成した層間絶縁膜
と、前記層間絶縁膜に形成したコンタクトホールを介し
て前記第2の一導電型拡散領域と前記逆導電型拡散領域
とを電気的に接続した配線とを備えて構成したMOS型容
量素子を有することを特徴とする半導体集積回路。
1. A well of opposite conductivity type provided on one main surface of a semiconductor substrate of one conductivity type, a gate insulating film formed on a surface including the well, and a gate insulating film formed on the well. A gate electrode, a first impurity diffusion region of a low impurity concentration formed in a channel region on the surface of the well directly below the gate electrode, and one side surface of the diffusion region of the first conductivity. The formed high impurity concentration second conductivity type diffusion region, the high impurity concentration reverse conductivity type diffusion region formed in contact with the other side surface of the first conductivity type diffusion region, and the gate electrode An interlayer insulating film formed on the surface including the insulating layer, and a wiring electrically connecting the second one conductivity type diffusion region and the opposite conductivity type diffusion region through a contact hole formed in the interlayer insulating film. Must have a MOS type capacitive element configured The semiconductor integrated circuit according to claim.
JP63291306A 1988-11-17 1988-11-17 Semiconductor integrated circuit Expired - Lifetime JPH0744256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291306A JPH0744256B2 (en) 1988-11-17 1988-11-17 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291306A JPH0744256B2 (en) 1988-11-17 1988-11-17 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH02137255A JPH02137255A (en) 1990-05-25
JPH0744256B2 true JPH0744256B2 (en) 1995-05-15

Family

ID=17767189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291306A Expired - Lifetime JPH0744256B2 (en) 1988-11-17 1988-11-17 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0744256B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101155943B1 (en) 2004-04-28 2012-06-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 MOS capacitor and semiconductor device
EP1863090A1 (en) 2006-06-01 2007-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP2006319370A (en) * 2006-08-11 2006-11-24 Sharp Corp Mos type capacitive element and method for manufacturing liquid crystal display
JP4512570B2 (en) * 2006-08-11 2010-07-28 シャープ株式会社 Liquid crystal display device and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863160A (en) * 1981-10-09 1983-04-14 Mitsubishi Electric Corp Mos dynamic memory cell

Also Published As

Publication number Publication date
JPH02137255A (en) 1990-05-25

Similar Documents

Publication Publication Date Title
JP3057661B2 (en) Semiconductor device
US6638798B2 (en) Method of fabricating a semiconductor device of high-voltage CMOS structure
JP3167457B2 (en) Semiconductor device
US4908682A (en) Power MOSFET having a current sensing element of high accuracy
JPS63119574A (en) Manufacture of semiconductor device
JPS63308366A (en) Semiconductor integrated circuit
US4704625A (en) Capacitor with reduced voltage variability
JPH0744256B2 (en) Semiconductor integrated circuit
JPH03133170A (en) Semiconductor device
JPH06103735B2 (en) Semiconductor integrated circuit
US7531877B2 (en) Semiconductor device
JPS58213460A (en) Semiconductor integrated circuit device
US5264720A (en) High withstanding voltage transistor
JPH0396267A (en) Semiconductor integrated circuit device
JPS63204655A (en) Mis transistor
JP3019038B2 (en) Semiconductor device
JP2563456B2 (en) MIS type capacitive element
JPH0473960A (en) Integrated circuit
JPH0745789A (en) Mos capacitance of semiconductor device
JPH0525743U (en) Semiconductor device
JPH02240958A (en) Semiconductor integrated circuit device
JP2826239B2 (en) Capacitor
JPS6118344B2 (en)
JPH0352232B2 (en)
JPH03293759A (en) Capacitor to be incorporated into mos integrated circuit device