JPH03293759A - Capacitor to be incorporated into mos integrated circuit device - Google Patents

Capacitor to be incorporated into mos integrated circuit device

Info

Publication number
JPH03293759A
JPH03293759A JP9700890A JP9700890A JPH03293759A JP H03293759 A JPH03293759 A JP H03293759A JP 9700890 A JP9700890 A JP 9700890A JP 9700890 A JP9700890 A JP 9700890A JP H03293759 A JPH03293759 A JP H03293759A
Authority
JP
Japan
Prior art keywords
capacitor
film
conductor
semiconductor region
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9700890A
Other languages
Japanese (ja)
Inventor
Keiichi Iwai
岩井 圭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9700890A priority Critical patent/JPH03293759A/en
Publication of JPH03293759A publication Critical patent/JPH03293759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form a capacitor having a desired capacitance value in a small chip area by providing a conductor facing a semiconductor area on an oxide film covering semiconductor area and an electrode film which faces the conductor and is connected with the semiconductor area at the same potential on an insulating film covering the conductor. CONSTITUTION:An electrode film 50 is formed on an insulating film 40 and the film 50 is connected with the connecting layer 10a of a semiconductor area 10 through a window opened through the insulating film 40 so as to connect the film 50 with the area 10 at the same potential. At the same time, a wiring film 30a which is connected with the conductor 30 in a conductive state through the window of the film 40 is also provided. Accordingly, a capacitor which uses the film 40 as a dielectric body is formed between the conductor 30 and electrode film 50 and connected in parallel with a conventional capacitor between the conductor 30 and semiconductor area 10 and the wiring film 30a and electrode film 50 work as the pair of terminals T of the composite capacitor as shown in the figure. Therefore, the composite capacitor can be incorporated into a small chip area through a simple process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMO5集積回路装置内に組み込まれるキャパシ
タに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to capacitors incorporated within MO5 integrated circuit devices.

〔従来の技術] MO3集積回路装置では導電体と酸化膜とシリコン半導
体を利用してキャパシタを形成するのが通例で、以下こ
れを図を参照して説明する。
[Prior Art] In an MO3 integrated circuit device, a capacitor is usually formed using a conductor, an oxide film, and a silicon semiconductor, and this will be explained below with reference to the drawings.

第5図はキャパシタ電極としての導電体に金属を用いた
従来例である。n形の基板lを覆うプロセス酸化膜2に
明けた窓部にn形層3を高不純物濃度で拡散してその上
に酸化膜5を付け、さらにその上にキャパシタ電極とし
てアルミ等の金属の電極膜6を図示のように配設する。
FIG. 5 shows a conventional example in which a metal is used as a conductor as a capacitor electrode. An n-type layer 3 is diffused with a high impurity concentration into the window opened in the process oxide film 2 covering the n-type substrate l, an oxide film 5 is formed on it, and a metal such as aluminum is further applied as a capacitor electrode on top of it. The electrode film 6 is arranged as shown.

キャパシタは誘電体としての酸化膜5を挟むn形層3と
電極膜6との間に形成され、その接続用に眉間絶縁M9
を通してそれらにそれぞれ導電接触する配線膜3aと6
8を設けて1対の端子Tとする。
The capacitor is formed between the n-type layer 3 and the electrode film 6, sandwiching an oxide film 5 as a dielectric, and a glabella insulator M9 is used for the connection.
The wiring films 3a and 6 are in conductive contact with each other through the wiring films 3a and 6.
8 to form a pair of terminals T.

第6図は導電体にゲート用の多結晶シリコンを利用した
従来例である。前例のn形層3のかわりにP形のウェル
4を電界効果トランジスタに対すると同時に拡散して、
その表面をゲート酸化膜と同じ薄い酸化膜5で覆った上
に多結晶シリコンの導電体7を配設し、さらにウェル4
の表面の一部にはp形の接続層8を高不純物濃度で拡散
する。
FIG. 6 shows a conventional example in which polycrystalline silicon for the gate is used as the conductor. Instead of the n-type layer 3 in the previous example, a P-type well 4 is diffused at the same time as for the field effect transistor.
A conductor 7 made of polycrystalline silicon is provided on the surface of which is covered with a thin oxide film 5 that is the same as the gate oxide film, and a well 4
A p-type connection layer 8 is diffused at a high impurity concentration into a part of the surface.

キャパシタは酸化膜5を誘電体としてウェル4と導電体
70間に形成され、その集積回路との接続用に配線膜4
aと7aが設けられる。
The capacitor is formed between the well 4 and the conductor 70 using the oxide film 5 as a dielectric, and the wiring film 4 is used for connection with the integrated circuit.
a and 7a are provided.

〔発明が解決しようとするtsn〕[tsn that the invention attempts to solve]

上述のようなキャパシタをMOS集積回路装置のチップ
内に集積化する際、これをMOS)ランジスタと共通化
された工程でかつできるだけ小さな面積内に作り込める
ことが望ましい。
When integrating the above-mentioned capacitor into a chip of a MOS integrated circuit device, it is desirable to be able to fabricate it in the same process as the MOS transistor and in as small an area as possible.

周知のように、最近ではMOS)ランジスタのゲートに
多結晶シリコンが用いられるので、上述の観点からは第
5図の従来例のように導電体6に金属を用いると工程の
共通化に不利である。また酸化膜5を付ける工程を共通
化すると、その膜厚をあまり薄くできないので所要チッ
プ面積が大きくなりやすい問題がある。
As is well known, recently polycrystalline silicon is used for the gates of MOS transistors, so from the above point of view, using metal for the conductor 6 as in the conventional example shown in FIG. 5 is disadvantageous for standardizing the process. be. Furthermore, if the process of applying the oxide film 5 is made common, there is a problem that the required chip area tends to increase because the film thickness cannot be made very thin.

これに対して、第6図の従来例では、酸化膜5および導
電体6をそれぞれMOS)ランジスタのゲート酸化膜お
よびゲートと同じ工程で作り込むことができ、かつ酸化
膜5の厚みも数百人程度に薄くできるので1n平方あた
り数十fFの静電容量が得られ、従ってキャパシタに対
する所要チップ面積を第5図の場合に比べて約1桁縮小
することができる利点がある。
On the other hand, in the conventional example shown in FIG. 6, the oxide film 5 and the conductor 6 can be formed in the same process as the gate oxide film and the gate of the MOS transistor, respectively, and the thickness of the oxide film 5 can be several hundred hundreds. Since it can be made as thin as a human being, a capacitance of several tens of fF can be obtained per 1n square, which has the advantage that the required chip area for the capacitor can be reduced by about one order of magnitude compared to the case of FIG.

しかし、この第6図の構造でも例えば数百pFのキャパ
シタを作り込むには100μ角程度のチップ面積を要す
るので、最近のように1μないしそれ以下のデザインル
ールでMOSトランジスタ等の回路要素が高集積化され
るようになって来ると、キャパシタだけがいわば取り残
されてそれに要するチップ面積が他の回路要素に比べて
格段に大き過ぎるようになって来た。
However, even with the structure shown in Fig. 6, a chip area of about 100 μ square is required to fabricate a capacitor of several hundred pF, so recently, circuit elements such as MOS transistors are being made with high design rules of 1 μ or less. With the advent of integration, capacitors have been left behind, and the chip area required for them has become much larger than that of other circuit elements.

また第6図の構造のキャパシタでは、その一方の電極に
比較的不純物濃度が低いウェル4を利用するので、電圧
が掛かると酸化膜5と接するその表面付近に空乏層が発
生し、酸化膜5の等価的な膜厚が大きくなってその静電
容量値がかなり大幅に低下する問題がある。かかる静電
容量値の電圧依存性は導電体7の電位をウェル4より低
く維持できれば解消するが、集積回路装置の実際の使用
状態ではこの条件を常に満たすことが困難な場合が多い
ので、静電容量の低下分を見込んでキャパシタのサイズ
をあらかじめ大きめに構成しておく必要がある。
In addition, in the capacitor having the structure shown in FIG. 6, since the well 4 with a relatively low impurity concentration is used for one electrode, when a voltage is applied, a depletion layer is generated near the surface in contact with the oxide film 5. There is a problem in that the equivalent film thickness becomes large and the capacitance value decreases considerably. Such voltage dependence of the capacitance value can be eliminated if the potential of the conductor 7 can be maintained lower than that of the well 4, but in the actual use of integrated circuit devices, it is often difficult to always satisfy this condition. It is necessary to configure the capacitor size to be larger in advance to account for the decrease in capacitance.

本発明はかかる現状に立脚して、高集積化されるMOS
集積回路装置にも適合するよう、できるだけ小さなチッ
プ面積内に簡単な工程で組み込めるキャパシタを提供す
ることを目的とする。
Based on the current situation, the present invention provides a highly integrated MOS
It is an object of the present invention to provide a capacitor that can be incorporated in a chip area as small as possible through a simple process so as to be suitable for an integrated circuit device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、集積回路用チップ内の半導体領域と、
その表面を覆う薄い酸化膜と、酸化膜上に半導体領域と
対向配置された導電体と、導電体を覆う眉間絶縁膜と、
その上に導電体と対向配置された電極膜とを設け、半導
体領域と電極膜とを同電位に接続してそれらと導電体と
の間にキャパシタを形成することによって上述の目的を
達成することができる。
According to the present invention, a semiconductor region within an integrated circuit chip;
A thin oxide film covering the surface, a conductor disposed on the oxide film facing the semiconductor region, and an insulating film between the eyebrows covering the conductor.
The above object is achieved by providing a conductor and an electrode film facing each other thereon, connecting the semiconductor region and the electrode film to the same potential, and forming a capacitor between them and the conductor. Can be done.

なお、上記構成中の酸化膜と導電体と絶縁膜と電極膜と
は、集積回路装置のMOSトランジスタ用にゲート酸化
膜とゲートと眉間絶縁膜と配線膜を設ける際にそれぞれ
同時に作り込むのが、集積回路装置にMOSトランジス
タを作り込むに要する以外になんら工程を増加させるこ
となくキャパシタを作り込める点で有利である。
Note that the oxide film, conductor, insulating film, and electrode film in the above structure should be formed at the same time when providing the gate oxide film, gate, eyebrow insulating film, and wiring film for the MOS transistor of the integrated circuit device. This method is advantageous in that a capacitor can be fabricated without increasing any steps other than those required to fabricate a MOS transistor in an integrated circuit device.

本発明の有利な実施態様においては、導電体を複数個の
開口をもつパターンで形成し、これらの開口から半導体
基板に不純物を注入しかつ熱拡散させて高不純物濃度の
半導体領域を導電体の下側に面パターンで作り込むこと
により、半導体領域内の空乏層発生を防止して静電容量
値に電圧依存性のないキャパシタを得る。
In an advantageous embodiment of the invention, the conductor is formed in a pattern with a plurality of openings, through which impurities are implanted into the semiconductor substrate and thermally diffused to cover the highly doped semiconductor region with the conductor. By forming a planar pattern on the lower side, generation of a depletion layer in the semiconductor region is prevented and a capacitor whose capacitance value is not dependent on voltage is obtained.

本発明の異なる実施U様においては、導電体を複数個の
開口をもつパターンで形成し、これらの開口から半導体
基板にあらかじめ拡散された一方の導電形の半導体領域
内に他方の導電形の不純物を注入して熱拡散させること
により高不純物濃度で別の半導体領域を面パターンで作
り込み、別の半導体領域および電極膜を同電位に接続し
て同しく同電位に接続される半導体領域および導電体と
の間にキャパシタを形成させることにより、上述と同様
にその静電容量の電圧依存性をなくすとともに半導体領
域と別の半導体領域との間のρn接合がもつ接合容量を
利用してキャパシタの静電容量を増加させる。
In a different embodiment U of the present invention, the conductor is formed in a pattern having a plurality of openings, and impurities of the other conductivity type are diffused into the semiconductor region of one conductivity type through these openings into the semiconductor substrate. By implanting and thermally diffusing another semiconductor region with a high impurity concentration, a surface pattern is created with a high impurity concentration, and the other semiconductor region and the electrode film are connected to the same potential to form a semiconductor region and a conductive film that are also connected to the same potential. By forming a capacitor between the semiconductor region and the other semiconductor region, the voltage dependence of the capacitance can be eliminated as described above, and the capacitor can be formed using the junction capacitance of the ρn junction between one semiconductor region and another semiconductor region. Increase capacitance.

本発明のさらに異なる実施態様では、導電体を複数個の
開口をもつパターンで形成し、これらの開口から半導体
基板にあらかじめ拡散された一方の導電形の半導体領域
内に他方の導電形の不純物を注入することにより高不純
物濃度で導電性領域を半導体領域内に開口に対応するパ
ターンで作り込み、導電体および導電性領域を同電位に
接続して、同じ(同電位に接続される半導体領域および
電極膜との間にキャパシタを形成させることにより、半
導体領域とそれとは逆導電形の導電性領域との間のpn
接合がもつ接合容量を利用してキャパシタの静電容量を
一層増加させる。
In yet another embodiment of the invention, the conductor is formed in a pattern with a plurality of openings, and impurities of one conductivity type are introduced into the semiconductor region of one conductivity type previously diffused into the semiconductor substrate through these openings. By implanting a conductive region with a high impurity concentration in a pattern corresponding to the opening in the semiconductor region, the conductor and the conductive region are connected to the same potential, and the semiconductor region connected to the same potential and By forming a capacitor between the semiconductor region and the conductive region opposite to that of the semiconductor region, the pn
The capacitance of the capacitor is further increased by utilizing the junction capacitance of the junction.

〔作用〕[Effect]

本発明は導電体の上に絶縁膜と電極膜を設けて導電体上
の従来遊んでいたスペースを有効利用しながら追加キャ
パシタを形成し、電極膜を半導体領域と同電位に接続し
てかかる追加キャパシタを半導体領域と導電膜の間の従
来のキャパシタに対して並列接続することにより、その
静電容量値を増加させるものである。
The present invention forms an additional capacitor by providing an insulating film and an electrode film on a conductor, effectively utilizing the conventional idle space on the conductor, and connects the electrode film to the same potential as the semiconductor region. By connecting a capacitor in parallel to a conventional capacitor between a semiconductor region and a conductive film, its capacitance value is increased.

本発明のかかる構成ではMO3I−ランジスク用の層間
絶縁膜および配線膜を追加キャパシタ用の絶縁膜および
電極膜にそれぞれ利用できるから、本発明ではキャパシ
タの静電容量値を増加させるために工程を追加する必要
はとくにない。
In this configuration of the present invention, the interlayer insulating film and wiring film for the MO3I-randisk can be used as the insulating film and electrode film for the additional capacitor, respectively, so the present invention adds a process to increase the capacitance value of the capacitor. There's no particular need to do that.

なお、本発明の前述の有利な実施態様がもつ作用は次項
に述べるとおりである。
The effects of the above-mentioned advantageous embodiments of the present invention are as described in the next section.

〔実施例〕〔Example〕

以下、図を参照しながら本発明の若干の実施例を説明す
る。第1図に本発明によるMOS集積回路装置内組み込
み用キャパシタの基本的な実施例構造を断面で示す。
Hereinafter, some embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows, in cross section, a basic embodiment structure of a capacitor for incorporation into a MOS integrated circuit device according to the present invention.

この第1図の例では基板1はn形で、そのプロセス酸化
膜2で囲まれた数十n角の表面にP形の半導体1域lO
を数μの深さに拡散してその表面に酸化膜20を0.2
〜0.8nの厚みで付け、その上に導電体30を0.5
〜1μの厚みの多結晶シリコンで形成した後、半導体領
域10にp形の接続層10aを高不純物濃度で拡散し、
かつ全面上に絶縁膜40をCVD法で0.5n程度の厚
みに成長させる。
In the example shown in FIG. 1, the substrate 1 is of n-type, and a P-type semiconductor region 1O
is diffused to a depth of several μm and an oxide film 20 of 0.2 μm is formed on the surface.
The conductor 30 is applied with a thickness of ~0.8n and 0.5n is applied on top of it.
After forming polycrystalline silicon with a thickness of ~1μ, a p-type connection layer 10a is diffused in the semiconductor region 10 with a high impurity concentration,
Then, an insulating film 40 is grown on the entire surface by CVD to a thickness of about 0.5 nm.

なお、上の半導体領域10.酸化!120.導電体30
および絶縁M40はMOS)ランジスタのウェル。
Note that the upper semiconductor region 10. Oxidation! 120. conductor 30
and insulation M40 is a MOS) transistor well.

ゲート酸化膜、ゲートおよび層間絶縁膜とそれぞれ同工
程で作り込むことができ、ここまでは前述の第6図の従
来例と同じである。また絶縁膜40には、眉間絶縁膜に
対すると同様に酸化シリコンや燐シリケートガラスを用
いることができる。
The gate oxide film, the gate, and the interlayer insulating film can be formed in the same process, and the process up to this point is the same as the conventional example shown in FIG. 6 described above. Furthermore, silicon oxide or phosphorus silicate glass can be used for the insulating film 40, as in the case of the glabellar insulating film.

次に、MOS)ランジスタの配線膜用のアルミ等を利用
して、絶縁膜40上に0.5〜1nの厚みの電極膜50
を形成し、かつ同時に絶縁膜に明けた窓を介して半導体
領域lO用の接続層10aに導電接触させることにより
この電極膜50を半導体領域10と同電位に接続する。
Next, an electrode film 50 with a thickness of 0.5 to 1 nm is formed on the insulating film 40 using aluminum or the like for a wiring film of a MOS transistor.
This electrode film 50 is connected to the same potential as the semiconductor region 10 by forming the electrode film 50 and at the same time bringing it into conductive contact with the connection layer 10a for the semiconductor region 10 through a window opened in the insulating film.

またこれと同時に、導電体30に対し絶縁IW40の窓
を介してこれと導電接触する配線膜30aが設けられる
。これにより、導電体30とt橿膜50の間に絶縁膜4
0を誘電体とするキャパシタが形成されて、導体30と
半導体領域lOの間の従来のキャパシタと並列接続され
、配線膜30aと電極膜53とが図のようにかかる合成
キャパシタの1対の端子Tの役目を果たす。
At the same time, a wiring film 30a is provided which is in conductive contact with the conductor 30 through the window of the insulating IW 40. As a result, the insulating film 4 is formed between the conductor 30 and the T-shaped film 50.
A capacitor having 0 as a dielectric is formed and connected in parallel with the conventional capacitor between the conductor 30 and the semiconductor region IO, and the wiring film 30a and the electrode film 53 are connected to a pair of terminals of such a composite capacitor as shown in the figure. Fulfills the role of T.

しかし、このままでは絶縁膜40が酸化11I20に比
べてずっと厚いので、従来のキャパシタに対する上の追
加キャパシタの静電容量はかなり小さい。
However, as is, the capacitance of the additional capacitor above with respect to the conventional capacitor is quite small because the insulating film 40 is much thicker than the oxide 11I20.

このため、第1図の実施例では、半導体領域10と導電
体30に対する接続用窓を絶縁膜40に開口するエツチ
ング工程を利用して、絶縁1I140の電極WA50と
接する面に図のように細かな凹部を多数個掘り込むこと
により、電極M50の実効厚みを減少させてキャパシタ
の静電容量を増加させる。
For this reason, in the embodiment shown in FIG. 1, an etching process is used to open connection windows for the semiconductor region 10 and the conductor 30 in the insulating film 40, so that fine etching is performed on the surface of the insulating layer 140 in contact with the electrode WA50. By digging a large number of concave portions, the effective thickness of the electrode M50 is reduced and the capacitance of the capacitor is increased.

このためには、絶縁1140に対する窓明は用フォトレ
ジスト膜にがかる凹部用に窓用よりもずっと小さな径の
窓や幅のスリットを狭い配列ピッチで開口して置き、絶
縁1I140をプラズマエツチング法等で掘り込むこと
でよい。大開口部では絶縁膜40を貫いて接続窓が抜か
れるが、小開口部では途中までしか掘り込まれないで凹
部が形成される。かかる凹部を電極M2O下の絶縁膜4
0の全面に設けることにより実効厚みを半分程度に減少
させるのは容易で、本実施例のキャパシタの静電容量を
従来の30〜50%増しにすることができる。
To this end, windows for the insulator 1140 are formed by opening windows and slits with a much smaller diameter and width at a narrow arrangement pitch for the recesses on the photoresist film, and the insulator 1140 is etched using a plasma etching method or the like. It is good to dig into it. In the large opening, the connection window is cut through the insulating film 40, but in the small opening, the connection window is dug only halfway to form a recess. The insulating film 4 under the electrode M2O
By providing the capacitor on the entire surface of the capacitor, it is easy to reduce the effective thickness to about half, and the capacitance of the capacitor of this embodiment can be increased by 30 to 50% compared to the conventional capacitor.

第2図に示す実施例では、導電体が複数の開口をもつパ
ターンで形成され、開口を介する不純物の注入と拡散に
より半導体領域が作り込まれる。
In the embodiment shown in FIG. 2, a conductor is formed in a pattern having a plurality of openings, and a semiconductor region is formed by implanting and diffusing impurities through the openings.

このため、基板1の表面に付けられた酸化膜20上に配
設される多結晶シリコン等の導電体31を図のように複
数個の開口をもつパターンで形成する。
For this purpose, a conductor 31 made of polycrystalline silicon or the like disposed on the oxide film 20 formed on the surface of the substrate 1 is formed in a pattern having a plurality of openings as shown in the figure.

この導電体31は、スリット状1円形または方形の小開
口を望ましくは5fm程度以下の細かなピッチで並べる
ことによって、全体としては桟状ないし網状のパターン
に形成される。
The conductor 31 is formed into a cross-shaped or net-like pattern as a whole by arranging small slit-like circular or rectangular openings at a fine pitch of preferably about 5 fm or less.

次に、この導電体31をマスクとするイオン注入法によ
りその開口を通して基板1の表面に不純物を導入し、そ
の熱拡散時に不純物を基板1の表面に沿う方向にも拡散
させることにより、この例ではn形の基板1の表面部に
p形の半導体領域11を少なくとも10’!原子/C4
の高不純物濃度で、かつ図のような面パターンで作り込
む、以降は、全体をやや薄いめの絶縁膜40で覆った上
で、前実施例と同じ要領でアルミ等の電極膜50と導電
体31用の接続膜31aを設けて1対の端子Tとする。
Next, impurities are introduced into the surface of the substrate 1 through the openings by ion implantation using the conductor 31 as a mask, and the impurities are also diffused in the direction along the surface of the substrate 1 during thermal diffusion. Now, on the surface of the n-type substrate 1, a p-type semiconductor region 11 is formed at least 10'! Atom/C4
After that, after covering the entire surface with a slightly thinner insulating film 40, a conductive film 50 of aluminum or the like is formed in the same manner as in the previous embodiment. A connecting film 31a for the body 31 is provided to form a pair of terminals T.

二の第2図の実施例でも、導電体31と電極膜50の間
のキャパシタが導体31と半導体領域110間のキャパ
シタに並列接続されるが、後者に高電圧が掛かった時に
も半導体領域11が高不純物濃度なのでその酸化膜20
との界面付近に空乏層が発生することがなく、従って電
圧依存性のない静電容量をもつキャパシタを作り込むこ
とができる。なお、この実施例では絶縁膜40が前の実
施例よりも厚くなるが、図示のように導電体31と電極
膜500対向面積が増え、従来よりも20〜40%大き
い静電容量をもつキャパシタが得られる。
In the embodiment shown in FIG. 2, the capacitor between the conductor 31 and the electrode film 50 is connected in parallel to the capacitor between the conductor 31 and the semiconductor region 110, but even when a high voltage is applied to the latter, the semiconductor region 110 Since the impurity concentration is high, the oxide film 20
A depletion layer is not generated near the interface with the capacitor, and therefore a capacitor with capacitance that is independent of voltage can be fabricated. Note that in this embodiment, the insulating film 40 is thicker than in the previous embodiment, but as shown in the figure, the opposing area between the conductor 31 and the electrode film 500 is increased, creating a capacitor with a capacitance 20 to 40% larger than that of the conventional one. is obtained.

第3図の実施例では、第2図の実施例に加えて半導体領
域を2個作り込むことにより、青領域間の接合容量を利
用したキャパシタが追加される。
In the embodiment shown in FIG. 3, two semiconductor regions are created in addition to the embodiment shown in FIG. 2, thereby adding a capacitor that utilizes the junction capacitance between the blue regions.

このため、n形の基板1にMOS)ランジスタのウェル
に対応するp形の半導体領域10を拡散し、で置いた上
で、前の実施例と同様な要領で複数個の開口を備える導
電体31を配設し、半導体領域10の表面部にそれとは
逆のn形の高不純物濃度で別の半導体領域12を面パタ
ーンで作り込む。
For this purpose, a p-type semiconductor region 10 corresponding to the well of a MOS transistor is diffused and placed on an n-type substrate 1, and a conductor with a plurality of openings is formed in the same manner as in the previous embodiment. 31 is disposed, and another semiconductor region 12 is formed in a planar pattern on the surface of the semiconductor region 10 with an opposite n-type impurity concentration.

さらに絶縁膜40で全体を覆った後、電極膜50を別の
半導体領域12と接続するよう設け、同時にこの実施例
では導電体31用の接続膜31aを図のように接続層1
0aを介して半導体領域10に接続するように設ける。
Further, after covering the entire surface with an insulating film 40, an electrode film 50 is provided to be connected to another semiconductor region 12, and at the same time, in this embodiment, a connecting film 31a for a conductor 31 is formed on a connecting layer 1 as shown in the figure.
It is provided so as to be connected to the semiconductor region 10 via 0a.

これにより、この実施例では半導体領域10と別の半導
体領域12との間のpn接合がもつ接合容量を利用した
キャパシタが前の実施例によるキャパシタに加えて並列
接続される。
As a result, in this embodiment, a capacitor utilizing the junction capacitance of the pn junction between the semiconductor region 10 and another semiconductor region 12 is connected in parallel in addition to the capacitor according to the previous embodiment.

この第3図の実施例では、酸化膜20に接する別の半導
体領域12が高不純物濃度なので、前実施例と闇様にキ
ャパシタの静電容量に電圧依存性がな(、両生導体領域
10と12の間の接合容量を利用したキャパシタが加わ
る分だけ静電容量値が増加して、従来の2倍以上の静電
容量をもつキャパシタを作り込むことができる。ただし
、この実施例の場合には、両生導体領域10と12間の
pn接合に対して逆バイアスを掛けた状態で利用する必
要があるので、キャパシタの使用上極性の制限が生じる
In the embodiment shown in FIG. 3, since the other semiconductor region 12 in contact with the oxide film 20 has a high impurity concentration, the capacitance of the capacitor has no voltage dependence (as in the previous embodiment). The capacitance value increases by the addition of a capacitor that utilizes the junction capacitance between Since it is necessary to use the capacitor with a reverse bias applied to the pn junction between the bidirectional conductor regions 10 and 12, there are restrictions on polarity when using the capacitor.

図ではキャパシタの正側端子がTρで負側端子がTnで
それぞれ示されている。
In the figure, the positive side terminal of the capacitor is shown as Tρ, and the negative side terminal is shown as Tn.

第4図に示す実施例では、n形の基板1にp形の半導体
領域を拡散して酸化膜20で覆い、その上に開口を備え
る導電体31を配設するのは前実施例と同しであるが、
スリット状の開口が図示のように広げられており、かつ
導電体31が全体として例えば櫛形のパターンに形成さ
れる。また、かかる導電体31をマスクとしてその広い
開口からイオン注入されるn形の不純物の熱拡散範囲が
前よりも少なくすることにより、望ましくは10!0原
子/ cd以上の高不純物濃度の領域をp形の半導体領
域10内に図のように開口に対応するパターン、ただし
全体としては導電体31と入り組んだ櫛形パターンで作
り込んでn形の導電性領域32とする。
In the embodiment shown in FIG. 4, a p-type semiconductor region is diffused into an n-type substrate 1 and covered with an oxide film 20, and a conductor 31 with an opening is disposed thereon, as in the previous embodiment. However,
The slit-shaped opening is widened as shown, and the conductor 31 is formed as a whole in a comb-shaped pattern, for example. In addition, by using the conductor 31 as a mask and reducing the thermal diffusion range of the n-type impurity ion-implanted through its wide opening, a region with a high impurity concentration of preferably 10!0 atoms/cd or more can be formed. As shown in the figure, a pattern corresponding to the opening is formed in the p-type semiconductor region 10, but the overall pattern is a comb-shaped pattern intricately connected to the conductor 31 to form an n-type conductive region 32.

以後は、全体を絶縁膜40で覆った上に電極膜50を設
けるが、この実施例ではこの電極膜50を図のように接
続層10aを介して半導体領域10と同電位に接続する
。さらに、導電体31の方では、図示のようにそれ用の
配!1Il131aを絶縁膜40の窓部内で導電性領域
32と導電接触させることによりこれと同電位に接続す
る。
Thereafter, an electrode film 50 is provided on the entire surface covered with an insulating film 40, but in this embodiment, this electrode film 50 is connected to the same potential as the semiconductor region 10 via a connection layer 10a as shown in the figure. Furthermore, for the conductor 31, as shown in the figure, there is an arrangement for it! 1Il 131a is brought into conductive contact with the conductive region 32 within the window of the insulating film 40, thereby connecting it to the same potential.

従ってこの実施例では、図かられかるように、導電体3
1と半導体領域10の間の酸化膜20を誘電体とするキ
ャパシタ、導電体31および導電性領域32と電極膜5
0の間の絶縁膜40を誘電体とするキャパシタ、および
p形の半導体領域10とn形の導電性領域32の間のp
n接合を利用したキャパシタの3個の並列接続キャパシ
タが作り込まれ、かつ半導体領域10と導電性領域32
の間の接合面積を第3図の実施例よりも広くとれるので
、全体の静電容量を今までの実施例よりも一層増加させ
て従来の3倍程度にすることができる。なお、この実施
例では前実施例と同様にキャパシタに掛ける電圧の極性
に制約があり、第1図の実施例よりも程度は少ないが静
電容量に若干の電圧依存性がある。
Therefore, in this embodiment, as shown in the figure, the conductor 3
A capacitor using the oxide film 20 between the semiconductor region 1 and the semiconductor region 10 as a dielectric, the conductor 31 and the conductive region 32, and the electrode film 5
0 between the p-type semiconductor region 10 and the n-type conductive region 32;
Three parallel-connected capacitors using n-junctions are built in, and a semiconductor region 10 and a conductive region 32 are formed.
Since the junction area between them can be made larger than in the embodiment shown in FIG. 3, the overall capacitance can be further increased compared to the previous embodiments, to about three times that of the conventional one. In this embodiment, as in the previous embodiment, there are restrictions on the polarity of the voltage applied to the capacitor, and the capacitance has some voltage dependence, although to a lesser extent than in the embodiment of FIG.

以上の実施例からもわかるように、本発明はこれらの実
施例に限定されず、その要旨内で種々の態様で実施をす
ることができる。実施例はあくまで例示であり、その具
体的な構成や接続の態様を目的ないし必要に応じて適宜
に組み合わせながら本発明を実施できる。
As can be seen from the above examples, the present invention is not limited to these examples, and can be implemented in various ways within the scope of the invention. The embodiments are merely illustrative, and the present invention can be practiced by appropriately combining the specific configurations and connection modes depending on the purpose or necessity.

〔発明の効果〕〔Effect of the invention〕

以上のとおり本発明では、半導体領域と、それを覆う酸
化膜と、その上に半導体領域と対向配置される導電体と
、これを覆う絶縁膜と、その上に導電体と対向配置され
半導体領域に同電位接続された電極膜とでキャパシタを
構成することにより、次の効果を上げることができる。
As described above, the present invention includes a semiconductor region, an oxide film covering the semiconductor region, a conductor disposed on the semiconductor region facing the semiconductor region, an insulating film covering the semiconductor region, and a semiconductor region disposed on the semiconductor region facing the conductor. By configuring a capacitor with an electrode film connected to the same potential as the capacitor, the following effects can be achieved.

(a)導電体と半導体領域の間のキャパシタのほか、導
電体上の従来遊んでいた面積を有効利用しながら並列接
続キャパシタをそれと電極膜の間に形成し、従来より小
チツプ面積内に所望の静電容量値のキャパシタを作り込
める。
(a) In addition to the capacitor between the conductor and the semiconductor region, a parallel-connected capacitor can be formed between the conductor and the electrode film, making effective use of the previously unused area on the conductor, allowing the desired chip to be formed within a smaller chip area than before. A capacitor with a capacitance value of

(b)MOS)ランジスタの構成要素をそのまま利用し
てこの並列接続キャパシタを構成できるから、MO3集
積回路装置の製作工程数をとくに増加させる必要がない
(b) Since the parallel-connected capacitor can be constructed using the components of the MOS transistor as they are, there is no need to particularly increase the number of manufacturing steps for the MO3 integrated circuit device.

(C)さらに本発明の有利な実施態様によれば、静電容
量値の電圧依存性をな(し、かつ所定のチップ面積内に
一層大きな静電容量値のキャパシタを作り込むことがで
きる。
(C) Furthermore, according to an advantageous embodiment of the invention, it is possible to make the capacitance value voltage dependent (and to build a capacitor with a larger capacitance value within a given chip area).

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図までが本発明に関し、第1図は本発明
によるMOS集積回路装置内組み込み用キャパシタの基
本的な、実施例の断面図、第2図から第4図までは本発
明のそれぞれ異なる実施例を第1図と同じ要領で示す断
面図である。第5図以鋒は従来技術に関し、第5図およ
び第6図は互いに異なる従来のMOS集積回路装置内組
み込み用キャパンタを第1図と同し要領で示す断面図で
ある。これらの図において、 l二基板、2:プロセス酸化膜、3:n形層、3a:配
線膜、4:ウェル、4a:配線膜、5:#化膜、6:を
極膜、6a:配線膜、7:導電体、7a:配線膜、8:
接続層、9:層間絶縁膜、10,11 :半導体領域、
10a :接続層、12:別の半導体領域、20二酸化
膜、30.31 :導電体、30a+31a :配線膜
、32:導電性領域、40:絶縁膜、50:電極膜、T
:キャパシタ端子、Tn:キャパシタの負側端子、Tp
:¥2図 第3図
1 to 4 relate to the present invention, FIG. 1 is a sectional view of a basic embodiment of a capacitor for incorporation into a MOS integrated circuit device according to the present invention, and FIGS. 2 to 4 relate to the present invention. FIG. 2 is a sectional view showing different embodiments of the invention in the same manner as FIG. 1; FIGS. 5 and 6 relate to the prior art, and FIGS. 5 and 6 are cross-sectional views showing different conventional capantors for incorporation into a MOS integrated circuit device in the same manner as FIG. 1. In these figures, 12 substrates, 2: process oxide film, 3: n-type layer, 3a: wiring film, 4: well, 4a: wiring film, 5: # film, 6: pole film, 6a: wiring Film, 7: Conductor, 7a: Wiring film, 8:
connection layer, 9: interlayer insulating film, 10, 11: semiconductor region,
10a: Connection layer, 12: Another semiconductor region, 20 Dioxide film, 30.31: Conductor, 30a+31a: Wiring film, 32: Conductive region, 40: Insulating film, 50: Electrode film, T
: Capacitor terminal, Tn: Capacitor negative terminal, Tp
:¥2 figure 3rd figure

Claims (1)

【特許請求の範囲】[Claims]  集積回路が作り込まれるチップ内の半導体領域と、そ
の表面を覆う薄い酸化膜と、この酸化膜上に半導体領域
と対向して設けられた導電体と、この導電体を覆う絶縁
膜と、その上に導電体と対向して設けられた電極膜とを
備え、半導体領域と電極膜とを同電位に接続してそれら
と導電体との間にキャパシタを形成したことを特徴とす
るMOS集積回路装置内組み込み用キャパシタ。
A semiconductor region within a chip in which an integrated circuit is fabricated, a thin oxide film covering the surface of the semiconductor region, a conductor provided on the oxide film facing the semiconductor region, an insulating film covering the conductor, and the A MOS integrated circuit comprising an electrode film provided above and facing a conductor, the semiconductor region and the electrode film being connected to the same potential to form a capacitor between them and the conductor. Capacitor for built-in device.
JP9700890A 1990-04-12 1990-04-12 Capacitor to be incorporated into mos integrated circuit device Pending JPH03293759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9700890A JPH03293759A (en) 1990-04-12 1990-04-12 Capacitor to be incorporated into mos integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9700890A JPH03293759A (en) 1990-04-12 1990-04-12 Capacitor to be incorporated into mos integrated circuit device

Publications (1)

Publication Number Publication Date
JPH03293759A true JPH03293759A (en) 1991-12-25

Family

ID=14180249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9700890A Pending JPH03293759A (en) 1990-04-12 1990-04-12 Capacitor to be incorporated into mos integrated circuit device

Country Status (1)

Country Link
JP (1) JPH03293759A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298307A (en) * 1995-04-27 1996-11-12 Nec Yamagata Ltd Semiconductor device
JP2007208101A (en) * 2006-02-03 2007-08-16 Toshiba Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298307A (en) * 1995-04-27 1996-11-12 Nec Yamagata Ltd Semiconductor device
JP2007208101A (en) * 2006-02-03 2007-08-16 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US6313508B1 (en) Semiconductor device of high-voltage CMOS structure and method of fabricating same
US5622887A (en) Process for fabricating BiCMOS devices including passive devices
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPS6161441A (en) Manufacture of semiconductor device
JP3322492B2 (en) Semiconductor device and manufacturing method thereof
US5965928A (en) Semiconductor device with MOS capacitor and fabrication method thereof
US5395782A (en) Process for fabricating a semiconductor integrated circuit
JPS60140854A (en) High-resistant element
US5508545A (en) Semiconductor device including a pair of transistors having a common channel region, and method of making the same
JPH02208952A (en) Semiconductor device and its manufacture
JPH03293759A (en) Capacitor to be incorporated into mos integrated circuit device
JP3402905B2 (en) Semiconductor element
JPH08195443A (en) Semiconductor device and its manufacture
JP3311759B2 (en) Integrated circuit having screen structure and method of manufacturing the same
JP3127951B2 (en) Semiconductor device and manufacturing method thereof
JPH02137255A (en) Semiconductor integrated circuit
JPH02137256A (en) Semiconductor integrated circuit
JP2826239B2 (en) Capacitor
JPH05129335A (en) Manufacture of vertical-type transistor
JPS6053470B2 (en) Manufacturing method of semiconductor memory
JPH0467678A (en) Semiconductor device
JPH04179162A (en) Semiconductor device and manufacture thereof
JPH04241465A (en) Manufacture of field effect type semiconductor device
JPH04196440A (en) Semiconductor device
JPH06224446A (en) Static-induction semiconductor device and its manufacture