JPH06224446A - Static-induction semiconductor device and its manufacture - Google Patents

Static-induction semiconductor device and its manufacture

Info

Publication number
JPH06224446A
JPH06224446A JP1028893A JP1028893A JPH06224446A JP H06224446 A JPH06224446 A JP H06224446A JP 1028893 A JP1028893 A JP 1028893A JP 1028893 A JP1028893 A JP 1028893A JP H06224446 A JPH06224446 A JP H06224446A
Authority
JP
Japan
Prior art keywords
region
source region
gate
semiconductor substrate
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1028893A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tomii
和志 富井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1028893A priority Critical patent/JPH06224446A/en
Publication of JPH06224446A publication Critical patent/JPH06224446A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize that a gate-source reverse breakdown strength is ensured or that an ON voltage is lowered so as to be compatible with a normally-OFF characteristic in a static-induction semiconductor device. CONSTITUTION:In a static-induction semiconductor device 1, gate regions 3 and a source region 4 are formed on the surface part on one side of a semiconductor substrate 2 in such a way that the source region is situated between the gate regions 3, and impurity regions 8 whose conductivity type is the same as that of the source region and whose impurity concentration is between the impurity concentration of the source region and the impurity concentration of the semiconductor substrate are formed between the gate regions and the source region on the surface part on one side of the semiconductor substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、静電誘導半導体装置
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static induction semiconductor device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】静電誘導半導体装置として、図6に示す
ような静電誘導トランジスタがある。静電誘導トランジ
スタ71の場合、n- 型の半導体基板72の一側の表面
部分に、p+ 型のゲート領域73とn+ 型のソース領域
74がゲート領域73の間にソース領域74が位置する
ように設けられていて、前記半導体基板72の他側には
+ 型のドレイン領域75が設けられており、ソース領
域74とドレイン領域75の間は主電流通路となるn-
型の高比抵抗領域76となっている。
2. Description of the Related Art As an electrostatic induction semiconductor device, there is an electrostatic induction transistor as shown in FIG. In the case of the static induction transistor 71, the source region 74 is located between the p + type gate region 73 and the n + type source region 74 on the surface portion on one side of the n type semiconductor substrate 72. And an n + -type drain region 75 is provided on the other side of the semiconductor substrate 72, and n serves as a main current path between the source region 74 and the drain region 75.
It is a high specific resistance region 76 of the mold.

【0003】ゲート領域73にはゲート電極83が、ソ
ース領域74にはソース電極84が、そして、ドレイン
領域75にはドレイン電極85がそれぞれコンタクトす
るように設けられている。この静電誘導トランジスタ7
1はゲート電極83に印加する電圧の調整により、ソー
ス電極84とドレイン電極75との間を流れる主電流を
制御するものである。
A gate electrode 83 is provided in contact with the gate region 73, a source electrode 84 is provided in the source region 74, and a drain electrode 85 is provided in contact with the drain region 75. This static induction transistor 7
Reference numeral 1 controls the main current flowing between the source electrode 84 and the drain electrode 75 by adjusting the voltage applied to the gate electrode 83.

【0004】この静電誘導トランジスタ71には、ゲー
ト印加電圧が0でソース・ドレイン間が導通状態にある
ノーマリイオン型と、ゲート印加電圧が0でソース・ド
レイン間が遮断状態にあるノーマリイオフ型とがある。
後者のノーマリイオフ型の静電誘導サイリスタの場合、
ゲートへの印加電圧が0でも、pn接合のビルトイン電
圧により、ゲートから延びる空乏層がお互いに繋がって
ピンチオフし遮断状態となるのである。
The static induction transistor 71 includes a normally ion type in which the gate applied voltage is 0 and the source / drain is conductive, and a normally-off type in which the gate applied voltage is 0 and the source / drain is cut off. There is.
In the case of the latter normally-off static induction thyristor,
Even if the voltage applied to the gate is 0, the built-in voltage of the pn junction causes the depletion layers extending from the gate to be connected to each other and pinch off to be in a cutoff state.

【0005】[0005]

【発明が解決しようとする課題】静電誘導サイリスタの
場合、ノーマリイオン型とノーマリイオフ型とでは後者
のノーマリイオフ型の方が使用頻度が高く有用であると
いうことが出来るのであるが、ゲート・ソース間の逆方
向耐圧が低い。静電誘導サイリスタ71の場合、ゲート
・ソース間の逆方向耐圧はゲート領域73とソース領域
74で挟まれた高比抵抗領域76と同じ不純物濃度の僅
かな厚みのn- 型領域79でもたせることになる。ノー
マリイオフ型の場合、ゲート領域73の間隔を狭くして
おり、n- 型領域79の幅は非常に狭く(間隔は非常に
短く)、ゲート・ソース間の逆方向耐圧が低くなってし
まうのである。
In the case of the electrostatic induction thyristor, it can be said that the normally-off type, which is the latter of the normally-ion type and the normally-off type, is more frequently used and is more useful. The reverse breakdown voltage is low. In the case of the electrostatic induction thyristor 71, the reverse breakdown voltage between the gate and the source should be provided by the n -type region 79 having the same impurity concentration and a slight thickness as the high resistivity region 76 sandwiched between the gate region 73 and the source region 74. become. In the case of the normally-off type, the interval between the gate regions 73 is narrowed, the width of the n type region 79 is very narrow (the interval is very short), and the reverse breakdown voltage between the gate and the source becomes low. .

【0006】それだけでなく、静電誘導サイリスタ71
の場合、ソース領域の有効面積を広くして、ソース・ド
レイン間のオン電圧を低くするということが難しい。ゲ
ート領域73とソース領域74のピッチを縮小して微細
化を図ればソース領域の有効面積が広くなり低オン電圧
化できるのであるが、ゲート領域73とソース領域74
の間隔が狭くなる結果、上の場合と同様、n- 型領域7
9の幅は非常に狭く(間隔は非常に短く)、ゲート・ソ
ース間の逆方向耐圧が低くなってしまうからである。
Besides, the electrostatic induction thyristor 71
In this case, it is difficult to increase the effective area of the source region and reduce the on-voltage between the source and drain. If the pitch between the gate region 73 and the source region 74 is reduced to achieve miniaturization, the effective area of the source region becomes wider and the on-state voltage can be lowered.
As a result, the n -type region 7
This is because the width of 9 is very narrow (the interval is very short), and the reverse breakdown voltage between the gate and the source becomes low.

【0007】この発明は、上記事情に鑑み、ゲート・ソ
ース間の逆方向耐圧の確保あるいは低オン電圧化がノー
マリイオフ特性を両立させつつ実現できる実用性の高い
静電誘導半導体装置と、この実用的な静電誘導半導体装
置を容易に製造することの出来る静電誘導半導体装置を
提供することを課題とする。
In view of the above circumstances, the present invention provides a highly practical static induction semiconductor device which can realize a reverse breakdown voltage between a gate and a source or a low on-voltage while achieving a normally-off characteristic, and a practical practicable electrostatic induction semiconductor device. An object of the present invention is to provide an electrostatic induction semiconductor device capable of easily manufacturing a simple electrostatic induction semiconductor device.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するた
め、この発明の静電誘導半導体装置は、半導体基板の一
側の表面部分に、ゲート領域とソース領域がゲート領域
の間にソース領域が位置するように設けられていて、前
記半導体基板の一側の表面部分におけるゲート領域とソ
ース領域の間に、ソース領域と同導電型でソース領域の
不純物濃度と半導体基板の不純物濃度の間の不純物濃度
の不純物拡散領域が設けられている構成となっており、
この静電誘導半導体装置は、前記半導体基板として、基
板一側の表面部分にゲート領域用の不純物拡散領域が形
成された半導体基板を用い、基板一側の表面に前記ソー
ス領域および前記不純物領域の両領域形成域が窓となっ
ているマスクを形成しておいて、ゲート領域とは反対導
電型の不純物を前記窓から導入した後、続いて、マスク
の窓の縁に側壁を形成してからゲート領域とは反対導電
型の不純物を先の導入の場合よりも高い濃度となるよう
に再び導入し、ソース領域および前記不純物拡散領域を
形成することにより得ることが出来る。
In order to solve the above-mentioned problems, the electrostatic induction semiconductor device of the present invention is such that a source region is provided between a gate region and a source region on a surface portion on one side of a semiconductor substrate. An impurity of the same conductivity type as the source region and between the source region and the semiconductor substrate between the gate region and the source region on the one surface portion of the semiconductor substrate. It is configured to have an impurity diffusion region of concentration,
In this electrostatic induction semiconductor device, a semiconductor substrate in which an impurity diffusion region for a gate region is formed on a surface portion on one side of the substrate is used as the semiconductor substrate, and the source region and the impurity region are formed on the surface on one side of the substrate. After forming a mask in which both regions forming regions are windows and introducing an impurity of a conductivity type opposite to that of the gate region through the windows, subsequently, forming a side wall at the edge of the mask window, It can be obtained by reintroducing an impurity having a conductivity type opposite to that of the gate region so as to have a higher concentration than in the case of the previous introduction, and forming the source region and the impurity diffusion region.

【0009】この発明の静電誘導半導体装置の場合、ソ
ース領域は半導体基板と同じ導電型で不純物濃度が半導
体基板の4桁(10000倍)以上ほどは高く、ゲート
領域とソース領域の間のおける不純物拡散領域はソース
領域と同導電型で不純物濃度が例えば半導体基板の1桁
(10倍)ほど高くてソース領域の不純物濃度と半導体
基板の不純物濃度の中間の不純物濃度となっている。不
純物拡散領域の不純物濃度は確保しようとするゲート・
ソース間の逆方向耐圧に応じた値とする。
In the case of the electrostatic induction semiconductor device of the present invention, the source region has the same conductivity type as that of the semiconductor substrate and the impurity concentration is as high as four digits (10000 times) or more than that of the semiconductor substrate, and the source region is located between the gate region and the source region. The impurity diffusion region has the same conductivity type as the source region, and has an impurity concentration higher by, for example, one order of magnitude (10 times) that of the semiconductor substrate and an intermediate impurity concentration between the source region and the semiconductor substrate. Gates that try to secure the impurity concentration in the impurity diffusion region
The value is set according to the reverse breakdown voltage between the sources.

【0010】この発明の静電誘導半導体装置は、トラン
ジスタ構造の場合だけでなく、サイリスタ構造の場合も
ある。サイリスタ構造の場合は、普通、ソースはカソー
ドと通称されており、ドレインはアノードと通称されて
いる。この発明の静電誘導半導体装置は、普通、ノーマ
リイオフ特性であるが、ノーマリイオン特性であっても
よい。
The electrostatic induction semiconductor device of the present invention may have not only a transistor structure but also a thyristor structure. In the case of a thyristor structure, the source is commonly referred to as the cathode and the drain is commonly referred to as the anode. The static induction semiconductor device of the present invention usually has normally-off characteristics, but it may have normally-ion characteristics.

【0011】[0011]

【作用】この発明の静電誘導半導体装置の場合、半導体
基板の一側の表面部分におけるゲート領域とソース領域
の間が、ソース領域と同導電型で不純物濃度がソース領
域の不純物濃度と半導体基板の不純物濃度の間の不純物
濃度の拡散領域であるため、耐圧が高まり、ノーマリイ
オフ特性であっても、ゲート・ソース間の逆方向耐圧の
確保や低オン電圧化が図れるようになる。その詳細な理
由は以下の通りである。
In the electrostatic induction semiconductor device of the present invention, between the gate region and the source region on the surface portion on one side of the semiconductor substrate, the conductivity type is the same as that of the source region, and the impurity concentration of the source region is the impurity concentration of the semiconductor substrate. Since it is a diffusion region having an impurity concentration between those impurity concentrations, the breakdown voltage is increased, and even in the normally-off characteristic, the reverse breakdown voltage between the gate and the source can be secured and the on-voltage can be lowered. The detailed reason is as follows.

【0012】この発明の静電誘導半導体装置でのゲート
・ソース間の逆方向耐圧は、ゲート領域であるp+
域、ソース領域であるn+ 領域および両領域間のn-
域からなるpinダイオード構造でのリーチスルー耐圧
として捉えることが出来る。pinダイオード構造のリ
ーチスルー耐圧は、i層(つまりn- 領域)の幅と濃度
に支配され、幅が一定であれば濃度が低いほど耐圧は低
くなる。ただ、i層の濃度を余り高くするとノーマリイ
オフ特性を実現することが難しくなる。この発明の場
合、半導体基板の表面部分におけるゲート領域とソース
領域の間だけ部分的にソース領域の不純物濃度と半導体
基板の不純物濃度の間という適度な不純物濃度とするた
め、ゲート・ソース間の逆方向耐圧の確保あるいは低オ
ン電圧化をノーマリイオフ特性との両立を図りつつ実現
できるのである。
The reverse breakdown voltage between the gate and the source in the electrostatic induction semiconductor device of the present invention is a pin diode composed of a p + region which is a gate region, an n + region which is a source region and an n region between both regions. It can be regarded as a reach-through breakdown voltage in the structure. The reach-through breakdown voltage of the pin diode structure is controlled by the width and the concentration of the i layer (that is, the n region), and if the width is constant, the lower the concentration is, the lower the breakdown voltage is. However, if the concentration of the i layer is too high, it becomes difficult to realize the normally-off characteristic. In the case of the present invention, since an appropriate impurity concentration between the impurity concentration of the source region and the impurity concentration of the semiconductor substrate is appropriately provided only between the gate region and the source region on the surface portion of the semiconductor substrate, the gate-source reverse It is possible to achieve the directional breakdown voltage and lower the on-voltage while achieving compatibility with the normally-off characteristic.

【0013】この発明の静電誘導半導体装置では、ゲー
ト領域とソース領域の間の狭いところにソース領域と同
導電型の適当な不純物濃度の微小な不純物拡散領域を形
成する必要があるのであるが、この発明の静電誘導半導
体装置の製造方法の場合、ゲート領域が形成されている
半導体基板の一側の表面に前記ソース領域および前記不
純物領域の両領域形成域が窓となっているマスクを形成
しておいて、ゲート領域とは反対導電型の不純物を前記
窓から導入した後、続いて、マスクの窓の縁に側壁(サ
イドウォール)を形成してからゲート領域とは反対導電
型の不純物を先の導入の場合よりも高い濃度となるよう
に再び導入し、ソース領域および前記不純物拡散領域を
形成しており、二段の不純物導入とサイドウォールの採
用でゲート領域とソース領域の間の狭い不純物拡散領域
形成のために極く微小な窓を開けるパターンニングを行
わずに済ませられるため、容易にこの発明の静電誘導半
導体装置を製造できることになる。
In the electrostatic induction semiconductor device of the present invention, it is necessary to form a fine impurity diffusion region of the same conductivity type as the source region and an appropriate impurity concentration in a narrow space between the gate region and the source region. In the method of manufacturing an electrostatic induction semiconductor device according to the present invention, a mask in which both the source region and the impurity region forming regions serve as windows is formed on the surface of one side of the semiconductor substrate in which the gate region is formed. After being formed, an impurity having a conductivity type opposite to that of the gate region is introduced through the window, and subsequently, a side wall (sidewall) is formed at the edge of the window of the mask and then a conductivity type of the conductivity type opposite to that of the gate region is formed. Impurities are reintroduced so as to have a higher concentration than in the case of the previous introduction to form the source region and the impurity diffusion region. Order to be finished without patterning to open the very small window to a narrow impurity diffusion regions formed between the over scan region, will be readily manufactured electrostatic induction semiconductor device of the present invention.

【0014】[0014]

【実施例】以下、この発明の実施例を、図面を参照しな
がら詳しく説明する。図1は、この発明の実施例にかか
る静電誘導トランジスタの断面構造をあらわす。図1の
静電誘導トランジスタ1は、n- 型の半導体基板(例え
ば、シリコン基板)2の表側(一側)の表面部分に、p
+ 型のゲート領域3とn+ 型のソース領域4がゲート領
域3の間にソース領域4が位置するように設けられてい
て、半導体基板2の裏側(他側)にn+ 型のドレンイ領
域5が設けられており、ソース領域4とドレイン領域5
の間は主電流通路となるn- 型の高比抵抗領域6であ
る。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a sectional structure of a static induction transistor according to an embodiment of the present invention. The static induction transistor 1 shown in FIG. 1 has a p - type semiconductor substrate (for example, a silicon substrate) 2 having a p-type
+ -Type gate region 3 and the n + -type source region 4 is provided so as to position the source region 4 between the gate region 3, n + -type Doren'i region on the back side of the semiconductor substrate 2 (the other side) 5, the source region 4 and the drain region 5 are provided.
An n -type high specific resistance region 6 serving as a main current passage is provided between the two.

【0015】半導体基板2の表側では、ゲート領域3に
はゲート電極13が、ソース領域4にはソース電極14
がそれぞれ絶縁膜9の開孔を通してコンタクトしてお
り、裏側ではドレイン領域5にドレイン電極15がコン
タクトしている。そして、半導体基板2の表側の表面部
分におけるゲート領域3とソース領域4の間には、n型
であってソース領域4の不純物濃度と半導体基板2の不
純物濃度の間という適切な不純物濃度の不純物拡散領域
8が形成されていて、ゲート・ソース間の逆方向耐圧が
高い構造であることは前述の通りである。
On the front side of the semiconductor substrate 2, the gate electrode 13 is in the gate region 3 and the source electrode 14 is in the source region 4.
Are in contact with each other through the openings in the insulating film 9, and the drain electrode 15 is in contact with the drain region 5 on the back side. Then, between the gate region 3 and the source region 4 in the front surface portion of the semiconductor substrate 2, an n-type impurity having an appropriate impurity concentration between the impurity concentration of the source region 4 and the impurity concentration of the semiconductor substrate 2 is provided. As described above, the diffusion region 8 is formed and the structure has a high reverse breakdown voltage between the gate and the source.

【0016】この静電誘導トランジスタ1は、この発明
の静電誘導半導体装置の製造方法により、以下の如くに
して得ることが出来る。まず、図2にみるように、裏面
側にドレイン領域5用のn+ 層となっているn - /n+
半導体基板2の表面にゲート領域形成域に窓22の開い
ている絶縁物(酸化膜)マスク21を設け、p型不純物
を注入・拡散することで導入し、半導体基板1の表面部
分のn- 層にゲート領域3用のp+ 領域を形成する。
This static induction transistor 1 is the invention
According to the manufacturing method of the electrostatic induction semiconductor device of
You can get it. First, as shown in FIG. 2, the back surface
N for drain region 5 on the side+Layered n -/ N+
Opening of the window 22 in the gate region forming region on the surface of the semiconductor substrate 2
The insulator (oxide film) mask 21
Is introduced by injecting and diffusing the surface of the semiconductor substrate 1.
N minutes-P for gate region 3 in the layer+Form an area.

【0017】ついで、図3にみるように、半導体基板2
の表面に、窓24がゲート領域3の間の位置に開いてい
る絶縁物(酸化膜)マスク23を設け、n型不純物を注
入・拡散で導入し、半導体基板2の表面部分のn- 層を
n型の不純物領域10とする。続いて、図4にみるよう
に、窓24の縁に側壁(サイドウオール)25を形成す
る。この側壁25は高温CVDで堆積形成した絶縁物膜
を異方性ドライエッチング等でエッチングすることで形
成できる。
Next, as shown in FIG. 3, the semiconductor substrate 2
An insulator (oxide film) mask 23 having a window 24 opened at a position between the gate regions 3 is provided on the surface of, and n-type impurities are introduced by implantation / diffusion, and the n layer of the surface portion of the semiconductor substrate 2 is formed. Is an n-type impurity region 10. Subsequently, as shown in FIG. 4, a side wall (side wall) 25 is formed at the edge of the window 24. The sidewall 25 can be formed by etching an insulating film deposited by high temperature CVD by anisotropic dry etching or the like.

【0018】そして、図5にみるうように、側壁25の
形成で開口面積の狭くなった窓24より再びn型不純物
を注入・拡散で導入し、半導体基板2の表側の表面部分
に、ソース領域4と、ソース領域4の不純物濃度と半導
体基板の不純物濃度の間の不純物濃度の不純物拡散領域
8を形成する。この2回目のn型不純物を注入・拡散は
1回目よりも高濃度となるように行う。この後、必要な
各電極13〜15を形成し、図1の静電誘導トランジス
タを得る。なお、マスク23や側壁25は絶縁膜9にな
る。
Then, as shown in FIG. 5, n-type impurities are introduced again by implantation / diffusion through the window 24 whose opening area is narrowed by the formation of the side wall 25, and the source is formed on the front surface of the semiconductor substrate 2. A region 4 and an impurity diffusion region 8 having an impurity concentration between the impurity concentration of the source region 4 and the impurity concentration of the semiconductor substrate are formed. This second n-type impurity implantation / diffusion is performed so as to have a higher concentration than the first time. Thereafter, required electrodes 13 to 15 are formed to obtain the static induction transistor of FIG. The mask 23 and the side wall 25 become the insulating film 9.

【0019】窓24は、当初はソース領域4と不純物拡
散領域8の形成域分だけ基板表面を露出させるように形
成する。側壁25の形成された後の窓24は、ソース領
域4の形成域分だけを露出させている。したがって、2
回目のn型不純物は殆どソース領域だけに導入され両領
域4,8がそれぞれ適当な不純物濃度の拡散領域となる
のである。図3の不純物領域10は内側がソース領域4
となり、外側が不純物拡散領域8となる。側壁25の形
成には別段マスクは不要で簡単な側壁形成工程が加わる
だけであるから製造は容易である。
The window 24 is initially formed so as to expose the surface of the substrate by the formation region of the source region 4 and the impurity diffusion region 8. The window 24 after the side wall 25 is formed exposes only the formation region of the source region 4. Therefore, 2
Most of the n-type impurity is introduced only into the source region, and both regions 4 and 8 serve as diffusion regions having appropriate impurity concentrations. The impurity region 10 shown in FIG.
And the outer side becomes the impurity diffusion region 8. No additional mask is required for forming the side wall 25, and only a simple side wall forming step is added, so that the manufacturing is easy.

【0020】この発明は上記実施例に限らない。半導体
基板2のn+ 層がp+ 層である静電誘導サイリスタが他
の実施例としてあげられる。また、上記実施例の場合、
第1回目のn型不純物の導入の際には注入だけして、拡
散は2回目のn型不純物の導入のあとで第1,2回目の
両n型不純物を同時に拡散させるようにしてもよい。
The present invention is not limited to the above embodiment. Another example is a static induction thyristor in which the n + layer of the semiconductor substrate 2 is a p + layer. In the case of the above embodiment,
In the first introduction of the n-type impurity, only the implantation may be performed, and the diffusion may be such that after the second introduction of the n-type impurity, both the first and second n-type impurities are diffused at the same time. .

【0021】[0021]

【発明の効果】この発明の静電誘導半導体装置の場合、
半導体基板におけるゲート領域とソース領域の間の表面
部分には、ゲート・ソース間の逆方向耐圧を高める作用
をする適切な不純物濃度の拡散領域が設けられているた
め、ゲート・ソース間の逆方向耐圧の確保あるいは低オ
ン電圧化がノーマリイオフ特性の両立を図りつつ実現さ
せられるから、非常に実用性が高い。
According to the electrostatic induction semiconductor device of the present invention,
In the surface portion of the semiconductor substrate between the gate region and the source region, a diffusion region with an appropriate impurity concentration that increases the reverse breakdown voltage between the gate and the source is provided. It is highly practical because it can be realized while ensuring the breakdown voltage and lowering the on-state voltage while achieving both the normally-off characteristics.

【0022】この発明の静電誘導半導体装置の製造方法
は、製造過程において新たな困難性を伴うことなく、上
記の実用性の高い静電誘導半導体装置を容易に製造でき
るため、有用性が顕著である。
The method of manufacturing an electrostatic induction semiconductor device according to the present invention can easily manufacture the highly practical electrostatic induction semiconductor device described above without any additional difficulty in the manufacturing process, and thus is extremely useful. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の静電誘導トランジスタの要部構成をあ
らわす断面図。
FIG. 1 is a cross-sectional view showing the main configuration of a static induction transistor of an example.

【図2】図1の静電誘導トランジスタの製造でのゲート
領域形成工程を示す断面図。
2 is a cross-sectional view showing a gate region forming step in manufacturing the static induction transistor of FIG.

【図3】図1の静電誘導トランジスタの製造でのn型不
純物導入工程を示す断面図。
3 is a cross-sectional view showing an n-type impurity introduction step in manufacturing the static induction transistor of FIG.

【図4】図1の静電誘導トランジスタの製造での側壁形
成工程を示す断面図。
FIG. 4 is a cross-sectional view showing a side wall forming step in manufacturing the static induction transistor of FIG.

【図5】図1の静電誘導トランジスタの製造でのn型不
純物再導入工程を示す断面図。
5 is a cross-sectional view showing an n-type impurity re-introduction process in manufacturing the static induction transistor in FIG.

【図6】従来の静電誘導トランジスタの要部構成をあら
わす断面図。
FIG. 6 is a cross-sectional view showing a main part configuration of a conventional static induction transistor.

【符号の説明】[Explanation of symbols]

1 静電誘導トランジスタ 2 半導体基板 3 ゲート領域 4 ソース領域 5 ドレイン領域 6 高比抵抗領域 8 不純物拡散領域 1 static induction transistor 2 semiconductor substrate 3 gate region 4 source region 5 drain region 6 high resistivity region 8 impurity diffusion region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一側の表面部分に、ゲート
領域とソース領域がゲート領域の間にソース領域が位置
するように設けられていて、前記半導体基板の一側の表
面部分におけるゲート領域とソース領域の間に、ソース
領域と同導電型でソース領域の不純物濃度と半導体基板
の不純物濃度の間の不純物濃度の不純物拡散領域が設け
られている静電誘導半導体装置。
1. A gate region and a source region are provided on a surface portion on one side of a semiconductor substrate such that the source region is located between the gate regions, and the gate region on the surface portion on one side of the semiconductor substrate. And an impurity diffusion region having the same conductivity type as that of the source region and an impurity concentration between the impurity concentration of the source region and the impurity concentration of the semiconductor substrate are provided between the source region and the source region.
【請求項2】 半導体基板の一側の表面部分に、ゲート
領域とソース領域がゲート領域の間にソース領域が位置
するように設けられていて、前記半導体基板の一側の表
面部分におけるゲート領域とソース領域の間に、ソース
領域と同導電型でソース領域の不純物濃度と半導体基板
の不純物濃度の間の不純物濃度の不純物拡散領域が設け
られている静電誘導半導体装置の製造方法であって、前
記半導体基板として、基板一側の表面部分にゲート領域
用の不純物拡散領域が形成された半導体基板を用い、基
板一側の表面に前記ソース領域および前記不純物領域の
両領域形成域が窓となっているマスクを形成しておい
て、ゲート領域とは反対導電型の不純物を前記窓から導
入した後、続いて、マスクの窓の縁に側壁を形成してか
らゲート領域とは反対導電型の不純物を先の導入の場合
よりも高い濃度となるように再び導入し、ソース領域お
よび前記不純物拡散領域を形成することを特徴とする静
電誘導半導体装置の製造方法。
2. A gate region and a source region are provided on a surface portion on one side of the semiconductor substrate such that the source region is located between the gate regions, and the gate region on the surface portion on one side of the semiconductor substrate. A method of manufacturing an electrostatic induction semiconductor device, wherein an impurity diffusion region having the same conductivity type as the source region and an impurity concentration between the source region and the semiconductor substrate is provided between the source region and the source region. As the semiconductor substrate, a semiconductor substrate in which an impurity diffusion region for a gate region is formed on the surface portion on the one side of the substrate is used, and both the source region and the impurity region formation regions have windows on the surface on the one side of the substrate. After forming a mask, the impurity of the conductivity type opposite to that of the gate region is introduced through the window, and subsequently, the side wall is formed at the edge of the mask window, and then the opposite side of the gate region is formed. A method of manufacturing an electrostatic induction semiconductor device, comprising: introducing a conductivity type impurity again so as to have a higher concentration than that in the case of the previous introduction to form a source region and the impurity diffusion region.
JP1028893A 1993-01-25 1993-01-25 Static-induction semiconductor device and its manufacture Pending JPH06224446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028893A JPH06224446A (en) 1993-01-25 1993-01-25 Static-induction semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028893A JPH06224446A (en) 1993-01-25 1993-01-25 Static-induction semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH06224446A true JPH06224446A (en) 1994-08-12

Family

ID=11746123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028893A Pending JPH06224446A (en) 1993-01-25 1993-01-25 Static-induction semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH06224446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128965A (en) * 2005-11-01 2007-05-24 Renesas Technology Corp Switching semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128965A (en) * 2005-11-01 2007-05-24 Renesas Technology Corp Switching semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US6713794B2 (en) Lateral semiconductor device
JP3082671B2 (en) Transistor element and method of manufacturing the same
US5306655A (en) Structure and method of manufacture for MOS field effect transistor having lightly doped drain and source diffusion regions
US6833586B2 (en) LDMOS transistor with high voltage source and drain terminals
US5798549A (en) Conductive layer overlaid self-aligned MOS-gated semiconductor devices
US4070687A (en) Composite channel field effect transistor and method of fabrication
JPH04154171A (en) Semiconductor device
JP3219045B2 (en) Manufacturing method of vertical MISFET
US3883372A (en) Method of making a planar graded channel MOS transistor
JPS58100460A (en) Vertical type metal oxide semiconductor device
JPH0237777A (en) Vertical type field-effect transistor
JPH05251694A (en) Mos type semiconductor device and its manufacture
US3860454A (en) Field effect transistor structure for minimizing parasitic inversion and process for fabricating
JPS60217657A (en) Manufacture of semiconductor integrated circuit device
JPH06224446A (en) Static-induction semiconductor device and its manufacture
US20050116298A1 (en) MOS field effect transistor with small miller capacitance
US6248620B1 (en) Method for fabricating a field effect-controlled semiconductor component
JPH1012876A (en) Semiconductor device
JP3073056B2 (en) Static induction semiconductor device
JP3376209B2 (en) Semiconductor device and manufacturing method thereof
JPS59117264A (en) Semiconductor device
JPH07183498A (en) Semiconductor device
JPH01286367A (en) Vertical field effect transistor
JPH08153803A (en) Semiconductor device and manufacture of semiconductor device
JPH02133966A (en) Field effect transistor