JPH035054B2 - - Google Patents

Info

Publication number
JPH035054B2
JPH035054B2 JP14828586A JP14828586A JPH035054B2 JP H035054 B2 JPH035054 B2 JP H035054B2 JP 14828586 A JP14828586 A JP 14828586A JP 14828586 A JP14828586 A JP 14828586A JP H035054 B2 JPH035054 B2 JP H035054B2
Authority
JP
Japan
Prior art keywords
crucible
molecular beam
source
substrate
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14828586A
Other languages
Japanese (ja)
Other versions
JPS636830A (en
Inventor
Junji Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14828586A priority Critical patent/JPS636830A/en
Publication of JPS636830A publication Critical patent/JPS636830A/en
Publication of JPH035054B2 publication Critical patent/JPH035054B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔概要〕 分子線源の水辺面からの傾斜角度を、分子線源
の中のソースの液面の面積に応じて調整可能にし
た分子線結晶成長装置である。
DETAILED DESCRIPTION OF THE INVENTION [Summary] This is a molecular beam crystal growth apparatus in which the inclination angle of the molecular beam source from the waterside surface can be adjusted according to the area of the liquid surface of the source in the molecular beam source.

〔産業上の利用分野〕[Industrial application field]

本発明は分子線結晶成長装置に関するもので、
さらに詳しく言えば、分子線強度(量)を一定に
保ち結晶の成長速度を一定に保つ構成とした装置
に関するものである。
The present invention relates to a molecular beam crystal growth apparatus,
More specifically, it relates to an apparatus configured to keep the molecular beam intensity (amount) constant and the crystal growth rate constant.

〔従来の技術〕[Conventional technology]

化合物半導体の成長において、例えばGaAs基
板上に、GaAs、AlGaAsなどを順に成長して半
導体装置を作る際には、第2図の断面図に示され
る如き分子線結晶成長装置が用いられ、同図にお
いて、11は超高真空に保たれるチヤンバ、12
はるつぼ収納部、13はるつぼ(分子線セル)、
14はるつぼを加熱するヒータ、15はるつぼに
入れられた半導体元素のソース(例えばGa)、1
6はその上に結晶が成長される半導体単結晶基板
(例えばGaAs基板で、それはある適当な温度に
加熱されている)である。
In the growth of compound semiconductors, for example, when manufacturing a semiconductor device by sequentially growing GaAs, AlGaAs, etc. on a GaAs substrate, a molecular beam crystal growth apparatus as shown in the cross-sectional view of Figure 2 is used. , 11 is a chamber maintained in an ultra-high vacuum, 12
Crucible storage section, 13 crucible (molecular beam cell),
14 is a heater that heats the crucible; 15 is a source of semiconductor element (e.g. Ga) placed in the crucible; 1
6 is a semiconductor single crystal substrate (for example a GaAs substrate, heated to a certain suitable temperature) on which a crystal is grown.

Gaソース15がるつぼ13内で加熱されると
溶融する。ここで真空チヤンバ11は10-10Torr
程度の超高真空に保たれているので、Ga分子は
ソース15の液面19から飛び出し、分子流とな
つ基板16に照射し、基板16上にGa結晶が成
長する。るつぼ13は前記した分子流が基板16
に照射するようらつぱ状に構成され、かつ、基板
16に対し一定の入射角をもつようある角度傾い
ている。
When the Ga source 15 is heated within the crucible 13, it melts. Here, the vacuum chamber 11 is 10 -10 Torr
Since the vacuum is kept at an extremely high vacuum, Ga molecules jump out from the liquid surface 19 of the source 15 and irradiate the substrate 16 in the form of a molecular stream, so that Ga crystals grow on the substrate 16. The crucible 13 has a substrate 16 where the molecular flow described above is
The beam is arranged in a tapered shape so as to irradiate the area, and is tilted at a certain angle so as to have a constant angle of incidence with respect to the substrate 16.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

るつぼ13と基板16をより詳細に示す第3図
を参照すると、るつぼ13は前記した如くらつぱ
状になつていることに加えて、ヒータ14はるつ
ぼの外方に点線で示す如き温度分布をもつてい
て、るつぼの開口部では最も高くなつている。
Referring to FIG. 3, which shows the crucible 13 and the substrate 16 in more detail, in addition to the crucible 13 having a rippled shape as described above, the heater 14 has a temperature distribution outside the crucible as shown by the dotted line. It is the highest point at the opening of the crucible.

るつぼは基板に対してある一定の入射角で設定
されているが、水平面18に対しての傾斜角度は
固定されている。かかる方式においては、るつぼ
の中に蓄えられた(チヤージされた)ソース材料
の消費につれて液面(蒸発面積)Aは第3図に示
される如く液面aへと小になり、そのため蒸発し
てくる分子線強度(分子線の量)が小になり、そ
の結果結晶の成長速度が一定に保たれず、結晶成
長が再現性良く実施されえない問題がある。
The crucible is set at a constant angle of incidence with respect to the substrate, but the angle of inclination with respect to the horizontal plane 18 is fixed. In this method, as the source material stored (charged) in the crucible is consumed, the liquid level (evaporation area) A decreases to liquid level a as shown in FIG. The resulting molecular beam intensity (amount of molecular beam) becomes small, and as a result, the crystal growth rate cannot be kept constant, causing the problem that crystal growth cannot be performed with good reproducibility.

従来の分子線結晶成長装置では、再現性良く結
晶成長を行うために、分子線強度モニターによ
る分子線強度の測定をなし、または成長速度チ
エツクのために特に結晶成長を行う、などの手段
がとられたが、いずれの方法によつても精度がと
れなかつたり、または煩雑な作業を行わなければ
ならなかつた。
In conventional molecular beam crystal growth equipment, in order to grow crystals with good reproducibility, methods such as measuring molecular beam intensity with a molecular beam intensity monitor or performing crystal growth specifically to check the growth rate are used. However, none of these methods were accurate or required complicated work.

本発明はこのような点に鑑みて創作されたもの
で、消費によるソースの液面の蒸発面積の変化を
減少し、分子線強度を安定化することができ、再
現性の良い結晶成長を行うことのできる分子線結
晶成長装置を提供することを目的とする。
The present invention was created in view of these points, and is capable of reducing changes in the evaporation area of the liquid level of the source due to consumption, stabilizing the molecular beam intensity, and achieving crystal growth with good reproducibility. The purpose of the present invention is to provide a molecular beam crystal growth apparatus that can perform the following steps.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の原理を示す図である。 FIG. 1 is a diagram showing the principle of the present invention.

本発明においては、超高真空中で複数の半導体
元素(ソース14)を加熱し、分子線として同元
素を取り出して適当に加熱した半導体単結晶基板
16上に照射することにより同基板16上に半導
体単結晶を成長する分子線結晶成長装置におい
て、分子線源(るつぼ13)の水平面18からの
傾斜を0゜から90゜に変更可能とし、しかもこの傾
斜角度をるつぼ13のソース材料15の液面19
の面積(蒸発面積)に対応して調整可能な構成と
する。
In the present invention, a plurality of semiconductor elements (source 14) are heated in an ultra-high vacuum, and the same elements are extracted as molecular beams and irradiated onto the semiconductor single crystal substrate 16 which has been appropriately heated. In a molecular beam crystal growth apparatus for growing semiconductor single crystals, the inclination of the molecular beam source (crucible 13) from the horizontal plane 18 can be changed from 0° to 90°, and this inclination angle Face 19
The structure can be adjusted according to the area (evaporation area).

〔作用〕[Effect]

本発明の装置においては、るつぼ中のソース1
5の液面の面積が、るつぼの水平面からの傾斜角
度によつて自由に変えられることを利用し、ソー
ス15の量が多く蒸発面積が大なるときは水平面
から深い角度にし、ソース15の量が減るに従つ
て蒸発面積が小になれば、るつぼを水平面方向に
傾きを小さくして蒸発面積を大きくし、それによ
つて分子線強度を一定に保つのである。
In the apparatus of the present invention, the source 1 in the crucible
Taking advantage of the fact that the area of the liquid surface in step 5 can be freely changed by changing the inclination angle from the horizontal surface of the crucible, when the amount of source 15 is large and the evaporation area is large, the area of the liquid surface in step 5 is set at a deep angle from the horizontal surface, and the amount of source 15 is changed. If the evaporation area becomes smaller as the amount decreases, the crucible is tilted horizontally to increase the evaporation area, thereby keeping the molecular beam intensity constant.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

本願発明者は、前記問題点の解決に際して下記
のとおり分析した。
The inventor of the present application conducted the following analysis to solve the above problem.

先ず、ヒータ14、従つてるつぼ13の温度分
布なく一定であるとして、分子線強度はソースの
蒸発面積に比例する。それ故に、第3図に示され
る如くソースが消費され量が少なくなつてくれば
それだけ分子線強度が小になるのであるから、そ
れを補償すべく、第1図に示される如くるつぼを
傾けてソースの蒸発面積をできるだけ大きくなる
ようにしてやるとよい。
First, assuming that the temperature of the heater 14 and therefore the crucible 13 is constant without any distribution, the molecular beam intensity is proportional to the evaporation area of the source. Therefore, as the source is consumed and the amount decreases as shown in Figure 3, the molecular beam intensity decreases accordingly, so in order to compensate for this, the crucible is tilted as shown in Figure 1. It is best to make the evaporation area of the sauce as large as possible.

次に、るつぼの温度のみを考えると、従来例の
如く開口部で温度が最も高いとすれば、ソースの
消費が進むと、第3図に示される如くソースの蒸
発面は開口部から遠くなり(蒸発面積の減少に加
えて)ソース蒸発面の温度が下がり分子線強度が
小になるのであるから、それを補償すべくソース
の蒸発面が開口部近くに位置していることが最も
望ましい。そこで、ソースの消費につれて蒸発面
積が小になつてくるのであれば第1図に示される
如く、るつぼを傾けてソースの蒸発面が開口部近
くに位置するようにすればよい。
Next, considering only the temperature of the crucible, if the temperature is highest at the opening as in the conventional example, as the source is consumed, the evaporation surface of the source will become farther away from the opening, as shown in Figure 3. Since (in addition to reducing the evaporation area) the temperature of the source evaporation surface decreases and the molecular beam intensity decreases, it is most desirable that the evaporation surface of the source be located near the opening to compensate for this. Therefore, if the evaporation area becomes smaller as the source is consumed, the crucible may be tilted so that the evaporation surface of the source is located near the opening, as shown in FIG.

上記の分析に従つた本発明を、分子線源(ソー
ス)15にGaソースを用いた例について説明す
る。Ga分子線は溶融した液面からの蒸発によつ
て取り出されるが、初期のGaソースチヤージ状
態で、Ga分子線液の水平面18からの傾斜角度
は45゜にした。この傾斜角度をGaソースが消費さ
れるにつれて浅くし、最終的には30゜まで傾けた。
The present invention according to the above analysis will be explained using an example in which a Ga source is used as the molecular beam source 15. The Ga molecular beam is extracted by evaporation from the molten liquid surface, and the inclination angle of the Ga molecular beam liquid from the horizontal plane 18 was set to 45° in the initial Ga source charge state. This angle of inclination was made shallower as the Ga source was consumed, and finally reached an angle of 30°.

この例において、Gaソースの蒸発面の面積は
100から30%まて変化(減少)したが、Gaソース
の液面が常に温度が最も高いるつぼの開口部近く
にあるので、Ga分子線強度の変化は−10%程度
に抑えることができた。
In this example, the area of the evaporation surface of the Ga source is
Although it changed (decreased) from 100 to 30%, since the liquid level of the Ga source was always near the opening of the crucible where the temperature was highest, the change in Ga molecular beam intensity could be suppressed to about -10%. .

従来の方法で同じ量だけGaの消費が進んだ場
合には、蒸発面積は100から25%まで変化し、Ga
分子線強度は−20%程度変化していたものであ
る。
If Ga consumption progresses by the same amount using the conventional method, the evaporation area will change from 100% to 25%, and Ga
The molecular beam intensity changed by about -20%.

かくして、本発明によれば、分子線強度の変動
を従来よりも約1/2に低減することができた。
Thus, according to the present invention, fluctuations in molecular beam intensity could be reduced to about 1/2 compared to the conventional method.

るつぼを前記した如くに傾けるには、るつぼ1
3が収納されたるつぼ収納部12が一体化されて
いる真空チヤンバ11を、真空ベローズ17を利
用して傾けるとよい。るつぼの傾きが第1図に示
される如くに変化すると、基板に照射する分子線
の量が変化するから、るつぼが傾くときは基板も
同じく傾くように基板16のためのホルダを真空
チヤンバ11に固定すると、るつぼと基板は分子
線入射角が常に一定になるように保たれる。
To tilt the crucible as described above, crucible 1
It is preferable to use the vacuum bellows 17 to tilt the vacuum chamber 11 in which the crucible housing part 12 in which the crucible 3 is housed is integrated. When the inclination of the crucible changes as shown in FIG. 1, the amount of molecular beam irradiated to the substrate changes, so a holder for the substrate 16 is placed in the vacuum chamber 11 so that when the crucible is tilted, the substrate is also tilted. When fixed, the crucible and substrate maintain a constant molecular beam incidence angle.

なお第2図において、基板上にGaAs結晶を成
長するのであれば、上方のるつぼ収納部におかれ
たるつぼにAsソースを入れる。上方のるつぼ収
納部も真空チヤンバ11と一体化しているから、
真空チヤンバ11が前記した如く傾くときには
Asの入ったるつぼも同様に傾く。
In FIG. 2, if a GaAs crystal is to be grown on the substrate, an As source is put into the crucible placed in the upper crucible housing. Since the upper crucible storage section is also integrated with the vacuum chamber 11,
When the vacuum chamber 11 tilts as described above,
The crucible containing As tilts in the same way.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、分子線
蒸発面の面積および位置を調整することによつて
分子線強度の低減を抑えることができるので、再
現性の良い結晶成長を行うことができる。
As described above, according to the present invention, reduction in molecular beam intensity can be suppressed by adjusting the area and position of the molecular beam evaporation surface, so crystal growth can be performed with good reproducibility. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示す図、第2図は本発
明実施例の断面図、第3図は従来例の問題点を示
す図である。 第1図ないし第3図において、11は真空チヤ
ンバ、12はるつぼ収納部、13はるつぼ、14
はヒータ、15はソース、16は基板、17は真
空ベローズである。
FIG. 1 is a diagram showing the principle of the present invention, FIG. 2 is a sectional view of an embodiment of the present invention, and FIG. 3 is a diagram showing problems in the conventional example. 1 to 3, 11 is a vacuum chamber, 12 is a crucible storage section, 13 is a crucible, and 14
15 is a heater, 15 is a source, 16 is a substrate, and 17 is a vacuum bellows.

Claims (1)

【特許請求の範囲】 1 真空中で複数の半導体元素15を加熱し同元
素を分子線として取り出し半導体単結晶基板16
上に照射して同基板16上に半導体単結晶を成長
する装置において、 半導体元素15を収納する分子線源の水平面1
8からの傾斜を同元素15の消費に対応して変更
する構成としたことを特徴とする分子線結晶成長
装置。
[Claims] 1. Heating a plurality of semiconductor elements 15 in vacuum and extracting the same elements as molecular beams semiconductor single crystal substrate 16
In an apparatus for growing a semiconductor single crystal on the same substrate 16 by irradiating it upward, a horizontal plane 1 of a molecular beam source containing a semiconductor element 15 is used.
A molecular beam crystal growth apparatus characterized in that the slope from 8 to 8 is changed in accordance with the consumption of the same element 15.
JP14828586A 1986-06-26 1986-06-26 Molecular beam crystal growth apparatus Granted JPS636830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14828586A JPS636830A (en) 1986-06-26 1986-06-26 Molecular beam crystal growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14828586A JPS636830A (en) 1986-06-26 1986-06-26 Molecular beam crystal growth apparatus

Publications (2)

Publication Number Publication Date
JPS636830A JPS636830A (en) 1988-01-12
JPH035054B2 true JPH035054B2 (en) 1991-01-24

Family

ID=15449347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14828586A Granted JPS636830A (en) 1986-06-26 1986-06-26 Molecular beam crystal growth apparatus

Country Status (1)

Country Link
JP (1) JPS636830A (en)

Also Published As

Publication number Publication date
JPS636830A (en) 1988-01-12

Similar Documents

Publication Publication Date Title
US4693207A (en) Apparatus for the growth of semiconductor crystals
JPH035054B2 (en)
US4365588A (en) Fixture for VPE reactor
US4081293A (en) Uniform thermomigration utilizing sample movement
JP2599767B2 (en) Solution growth equipment
JPS63319288A (en) Flanged quartz crucible
US3756194A (en) Centrifugal drum for growing crystal
US4016829A (en) Apparatus for crystal growth
JPH02111690A (en) Growth of compound semiconductor crystal and apparatus therefor
JPH03115189A (en) Method for growing crystal and substrate holder used therein
JPS6127976Y2 (en)
JPH04198096A (en) Method for growing znse crystal
JPH03295892A (en) Method and device for pulling up single crystal
JPH03214621A (en) Heat-treatment apparatus of compound semiconductor substrate
JPS5821830A (en) Apparatus for liquid phase epitaxial growth
JPS5948536B2 (en) Semiconductor crystal growth equipment
JPS5835959B2 (en) Liquid phase epitaxial growth method
JPS6364988A (en) Method for growing single crystal
JPH03187994A (en) Substrate holder in molecular beam vapor growth equipment
JPH04362087A (en) Single crystal pulling up device
JPS62109312A (en) Cell for molecular beam source
JPH026385A (en) Method for forming thin film and apparatus therefor
JPS60192339A (en) Liquid phase epitaxial growing method
JPH01305892A (en) Si molecular beam source
JPH01111795A (en) Liquid phase epitaxy growing device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term