JPS6364988A - Method for growing single crystal - Google Patents

Method for growing single crystal

Info

Publication number
JPS6364988A
JPS6364988A JP20731986A JP20731986A JPS6364988A JP S6364988 A JPS6364988 A JP S6364988A JP 20731986 A JP20731986 A JP 20731986A JP 20731986 A JP20731986 A JP 20731986A JP S6364988 A JPS6364988 A JP S6364988A
Authority
JP
Japan
Prior art keywords
partition wall
melt
single crystal
molten liquid
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20731986A
Other languages
Japanese (ja)
Inventor
Shinichi Sawada
真一 澤田
Koji Tada
多田 紘二
Masami Tatsumi
雅美 龍見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20731986A priority Critical patent/JPS6364988A/en
Publication of JPS6364988A publication Critical patent/JPS6364988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To improve the temperature distribution along the radial and axial directions of molten liquid of raw material and to facilitate the control of crystal diameter in the growth of a single crystal using a liquid-encapsulated pull-up process, by dividing the molten raw material into two with a partition wall floating on the molten liquid. CONSTITUTION:A molten liquid 2 of raw material is put into a crucible 1 and the surface of the molten liquid 2 is divided into two with a partition wall 16 floating on the molten liquid. Only the outside of the partition wall 16 is covered with a liquid encapsulation agent 4 and the surface 9 of the molten liquid inside of the partition wall 16 is made free. The molten liquid 2 is heated under controlling the composition to effect the growth of a compound semiconductor single crystal. The partition wall 16 moves along vertical direction according to the variation of the level of the molten liquid surface 9 caused by the growth of the crystal and the heat 13 transferred from the side wall to the molten liquid 2 becomes larger than the heat 14 transferred through the bottom. Accordingly, a convection shown by arrows 18 is generated to enable the improvement of the temperature distribution and facilitate the control of the crystal diameter.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、III−V族およびII−VI族化合物半導
体の単結晶育成方法に関するものであり、更に詳しくは
、GaAs5InP等のI−V族化合物半導体および2
nSe、 CdTe等のII−VI族化合物半導体の単
結晶を改良された液体封止引上法により育成する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for growing single crystals of group III-V and group II-VI compound semiconductors. and 2
The present invention relates to a method for growing single crystals of II-VI group compound semiconductors such as nSe and CdTe by an improved liquid-sealed pulling method.

従来の技術 近年、化合物半導体を利用した各種デバイス、例えば半
導体レーザ、発光ダイオード、各種センサー等における
発展には目醒しいものがある。これはこれら化合物半導
体の結晶育成技術の進歩に負うところが大きい。このよ
うな目的に対しては高純度、低欠陥のバルク単結晶を育
成することが必要とされ、従来から種々の方法が提起さ
れ、現在においてもその改良が続けられている。
2. Description of the Related Art In recent years, there has been remarkable progress in various devices using compound semiconductors, such as semiconductor lasers, light emitting diodes, and various sensors. This is largely due to advances in crystal growth technology for these compound semiconductors. For this purpose, it is necessary to grow bulk single crystals with high purity and low defects, and various methods have been proposed in the past, and improvements are still being made.

特に、従来より結晶育成方法として使用されてきた引上
げ法(チョクラルスキー法とも呼ばれる)は、るつぼの
中に原料融液を作り、種結晶を融液に接触させた後徐々
に引上げて種結晶につづく結晶を成長させる方法である
が、化合物半導体の場合は、結晶を構成する原子の解離
圧が著しく異なり、しかも中には高温において非常に高
い解離圧を示すものがあるため、引上げ法をそのまま応
用することは困難であった。化合物半導体単結晶を引上
げ法で成長させるには、解離および蒸発を防ぐため成長
容器内を成長の間常に解離しやすい物質の蒸気で飽和さ
せたり、あるいは原料融液を不揮発性物質の液体で覆い
、高圧の不活性ガスで加圧する等の方法がとられる。
In particular, the pulling method (also called the Czochralski method), which has traditionally been used as a crystal growth method, involves creating a raw material melt in a crucible, bringing a seed crystal into contact with the melt, and then gradually pulling it up to form a seed crystal. However, in the case of compound semiconductors, the dissociation pressures of the atoms that make up the crystals are significantly different, and some of them exhibit extremely high dissociation pressures at high temperatures. It was difficult to apply it as is. In order to grow compound semiconductor single crystals by the pulling method, the inside of the growth container must be constantly saturated with vapor of a substance that easily dissociates during growth to prevent dissociation and evaporation, or the raw material melt must be covered with a liquid of a non-volatile substance. , pressurizing with high-pressure inert gas, etc.

後者の方法は液体封止引上げ法(以下LEC法とよぶ)
とよばれ、特にその詳細は「日経エレクトロニクス」(
1982年5月24日発行、 p210〜p215)に
おいて示されている。しかしながら、このLEC法では
原料融液と雰囲気ガスとの間において平衡が成立せず、
原料中の組成、ひいては成長単結晶のストイキオメトリ
−を制御することができないため、現在では改良された
LEC法による単結晶の育成方法が提案されている。
The latter method is the liquid confinement pulling method (hereinafter referred to as the LEC method).
For details, please refer to "Nikkei Electronics" (
Published May 24, 1982, p.210-p.215). However, in this LEC method, equilibrium is not established between the raw material melt and the atmospheric gas,
Since it is not possible to control the composition of the raw material and thus the stoichiometry of the grown single crystal, an improved method of growing single crystals using the LEC method has now been proposed.

発明が解決しようとする問題点 以上述べたように、化合物半導体結晶の育成方法に関し
て広範な研究が行なわれてきたが、組成制御等の面で未
だ不十分であり更に検討が必要とされている。その1例
として、特に第8図に示されるような改良されたLEC
法による結晶育成方法が現在提案されている。この方法
ではるつぼ1中の原料融液2が隔壁3により2分されて
おり、隔壁の外側のみを液体封止剤4で覆い、隔壁の内
側の融液面をフリーな状態とし、液体封止剤4による不
純物捕獲と、フリーな融液面で組成制御を行うものであ
る(第8図において液体封止剤4は必要ならば、隔壁内
側融液のみを覆い、隔壁外側の融液面で組成制御を行な
うような態嘩も可能である〉。更に、るつぼ1は封止容
器6内に密封され、ヒーター7により気化した揮発性成
分8が容器6内に封止されているので、上記の如く原料
融液表面9において原料の組成を制御できる。このよう
な状態で、原料融液2をヒーター10により加熱し、種
結晶11から単結晶12を育成する。
Problems to be Solved by the Invention As mentioned above, extensive research has been conducted on methods for growing compound semiconductor crystals, but it is still insufficient in terms of composition control, etc., and further studies are required. . As an example, in particular, the improved LEC as shown in FIG.
A method of growing crystals by the method is currently proposed. In this method, the raw material melt 2 in the crucible 1 is divided into two parts by a partition wall 3, and only the outside of the partition wall is covered with the liquid sealant 4, and the melt surface inside the partition wall is left in a free state. The liquid sealant 4 captures impurities and controls the composition on the free melt surface (in Fig. 8, if necessary, the liquid sealant 4 covers only the melt inside the partition wall, and seals the melt surface on the outside of the partition wall). Furthermore, since the crucible 1 is sealed in a sealed container 6, and the volatile components 8 vaporized by the heater 7 are sealed in the container 6, the above-mentioned The composition of the raw material can be controlled on the raw material melt surface 9 as shown in FIG.

しかしながら、上記方法におけるるつぼ構造では、第4
図に示されるように、隔壁の存在のためるつぼ側面から
原料、特にその中心部への熱伝達13が抑制され、るつ
ぼ底部からの熱伝達14が優勢となり、融液の対流15
が発生する。第5図は融液表面における結晶径方向の温
度分布を示す図であるが、この結果径方向の温度が不均
一となり、上記方法によっては安定した結晶径の制御が
不可能であることがわかる。
However, in the crucible structure in the above method, the fourth
As shown in the figure, due to the presence of the partition wall, heat transfer 13 from the side of the crucible to the raw material, especially its center, is suppressed, heat transfer 14 from the bottom of the crucible becomes dominant, and convection 15 of the melt
occurs. Figure 5 is a diagram showing the temperature distribution in the crystal radial direction on the melt surface. As a result, the temperature in the radial direction becomes non-uniform, and it can be seen that it is impossible to stably control the crystal diameter using the above method. .

さらに隔壁3はヒーターlOにより与えられる熱伝達を
遮断する効果を有し、融液の加熱を維持するためにはヒ
ーターのパワーを大きくする必要がある。このため結晶
軸方向の温度分布は第6図に示されるように、融液表面
上方で逆に温度が高くなる傾向を有し、このため種結晶
11の劣化がおこりやすく良好な単結晶が得られないと
いう欠点を有していた。
Furthermore, the partition wall 3 has the effect of blocking the heat transfer provided by the heater IO, and in order to maintain heating of the melt, it is necessary to increase the power of the heater. For this reason, as shown in Figure 6, the temperature distribution in the crystal axis direction has a tendency for the temperature to become higher above the melt surface, making it easy for the seed crystal 11 to deteriorate, making it difficult to obtain a good single crystal. It had the disadvantage that it could not be used.

従って、本発明の目的は上記の如き欠点のない、すなわ
ち単結晶の径方向および軸方向の温度分布の浸れたるつ
ぼ構造を得、かつ結晶径制御の容易な、種結晶の劣化の
ない単結晶の育成方法を得ることにある。
Therefore, the object of the present invention is to provide a single crystal without the above-mentioned drawbacks, that is, to obtain a immersed crucible structure with temperature distribution in the radial and axial directions of a single crystal, to easily control the crystal diameter, and without deterioration of the seed crystal. The aim is to obtain a method for cultivating.

問題点を解決するための手段 本発明者等は従来の化合物半導体結晶の育成方法にみら
れる上記の如き諸欠点を解決すべく種々検討、研究を重
ねた結果、前記隔壁を融液に浮遊させたるつぼ構造を採
用することが上記目的を達成するうえで極めて有利であ
ることを見出し本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted various studies and studies to solve the above-mentioned drawbacks of conventional compound semiconductor crystal growth methods. The present invention was completed based on the discovery that adopting a crucible structure is extremely advantageous in achieving the above object.

即ち、本発明の化合物半導体単結晶の育成方法は、封止
容器内に維持されたるつぼ内に収納され、隔壁によって
2分された表面の一方が液体封止剤で覆われている原料
融液から単結晶を引き上げるLEC法による化合物半導
体単結晶の育成方法において、上記隔壁を浮遊させ、該
浮遊状態にある隔壁によって上記融液表面を2分し、そ
のいずれか一方にのみ液体封止剤を存在させて引上げを
行なうことを特徴としている。
That is, the method for growing a compound semiconductor single crystal of the present invention uses a raw material melt that is housed in a crucible maintained in a sealed container, and one of the surfaces of which is divided into two parts by a partition wall is covered with a liquid sealant. In a method for growing a compound semiconductor single crystal by the LEC method in which a single crystal is pulled up from a substrate, the partition wall is suspended, the surface of the melt is divided into two parts by the partition wall in a floating state, and a liquid sealant is applied only to one of the two. It is characterized by the fact that it is pulled up by making it exist.

第1図は本発明の方法を実施するための装置におけるる
つぼ構造部分の一つの例を模式的に示した縦断面図であ
る。
FIG. 1 is a longitudinal cross-sectional view schematically showing one example of a crucible structural part in an apparatus for carrying out the method of the present invention.

ここで上記隔壁は融液に浮遊し、融液表面レベルの変動
に従って上下し融液表面を2分割しかつ液体封止剤を隔
壁の内側または外側に分離できるものであればどのよう
な形状、大きさを有していても良く、これら形状および
大きさは育成しようとする単結晶の大きさおよび適切な
組成制御が可能な条件として決定されるべきものである
が、特にその形状は好ましくはるつぼに対して同心円状
になるように、設けることが好ましい。また、隔壁が単
結晶引上げ時等において融液に浮遊しながら水平方向に
変動し、単結晶成長に悪影響を及ぼすことを防ぐため、
るつぼ内壁または隔壁外側に複数の隔壁を支持するため
の部材を設け、隔壁側またはるつぼ側にわずかな移動間
隙のみを与える構造とすることも可能である。このよう
な支持部材としては、例えばるつぼ壁において円周方向
におよそ等間隔で固定され該壁からそれぞれがるつぼに
垂直に突き出し、隔壁とわずかな間隙を有しかつ隔壁を
るつぼ中心付近に位置させるような複数の、好ましくは
3つ以上の板状または棒状構造であっても良いし、また
同様な構造で固定部を隔壁側に設けたものでも良い。更
に一端をるつぼ壁に固定され、他端が隔壁外径よりわず
かに大きな径を有する環状部材であり、この環状部材内
に隔壁を配置させるような構造のものでも良い。上記の
ような支持部材は融液上方に設けても良いし、融液内部
に設けても良いが、融液中に設ける場合は当然融液と反
応をひきおこさない材料を使用することが望ましい。
Here, the partition wall may have any shape as long as it can float in the melt, move up and down according to fluctuations in the melt surface level, divide the melt surface into two, and separate the liquid sealant to the inside or outside of the partition wall. These shapes and sizes should be determined based on the size of the single crystal to be grown and conditions that enable appropriate composition control, but in particular, the shape is preferably It is preferable to provide it concentrically with respect to the crucible. In addition, in order to prevent the partition walls from moving horizontally while floating in the melt during single crystal pulling, etc., and having a negative impact on single crystal growth,
It is also possible to provide a structure in which a member for supporting a plurality of partition walls is provided on the inner wall of the crucible or on the outside of the partition wall, and only a small movement gap is provided on the partition wall side or the crucible side. Such supporting members are, for example, fixed to the crucible wall at approximately equal intervals in the circumferential direction, protruding from the wall perpendicularly to the crucible, having a slight gap with the partition wall, and positioning the partition wall near the center of the crucible. A plurality of, preferably three or more, plate-like or rod-like structures may be used, or a similar structure with a fixing portion provided on the partition wall side may be used. Furthermore, it may be an annular member having one end fixed to the crucible wall and the other end having a diameter slightly larger than the outer diameter of the partition wall, and the partition wall may be disposed within this annular member. The support member described above may be provided above the melt or inside the melt, but if it is provided in the melt, it is naturally desirable to use a material that does not cause a reaction with the melt. .

ここで隔壁16は融液2上に浮遊し、融液に浸漬する下
部において融液の浸入しない一部空間17を有するよう
な構造であり、このような隔壁は融液中における浮力を
増大させるものであればどのような形で空間を有してい
てもよい。例えば隔壁16はこのような隔壁の1つの例
としてあげられるが、この他にも隔壁全体を2重構造と
して内部に空間を有する形状のもの、または融液に浸漬
する部分特に下端部に内部が空洞となった部材を隔壁円
周上に備えるような形状のもめも本発明の目的達成に対
し有効である。更に上記隔壁は原料融液2に浮遊するこ
とが本発明において必要な要件であるため、空間17を
特に有する構造でなくても原料融液に対し比較的比重の
軽い材質から成るものであれば、第7図に示すような断
面構造を有する形状のものでも良い。
Here, the partition wall 16 has a structure such that it floats on the melt 2 and has a partial space 17 where the melt does not enter at the lower part that is immersed in the melt, and such a partition increases the buoyancy in the melt. Any type of space may be used as long as it has space. For example, the partition wall 16 is an example of such a partition wall, but there are also partition walls that have a double structure as a whole and have a space inside, or a partition wall that has an internal space in the part that is immersed in the melt, especially the lower end. A shape in which a hollow member is provided on the circumference of the partition wall is also effective in achieving the object of the present invention. Furthermore, since it is a necessary requirement in the present invention for the partition wall to float in the raw material melt 2, it does not have to have a structure specifically having the space 17, as long as it is made of a material whose specific gravity is relatively light relative to the raw material melt. , or may have a cross-sectional structure as shown in FIG.

このような隔壁を構成する材料としては、炭素、窒化ホ
ウ素、窒化アルミニウム、アルミナ、石英および炭化ケ
イ素等から選ばれるセラミックス、あるいはモリブデン
およびタングステン等から選ばれる金属等が使用できる
As a material constituting such a partition, ceramics selected from carbon, boron nitride, aluminum nitride, alumina, quartz, silicon carbide, etc., or metals selected from molybdenum, tungsten, etc. can be used.

また上記封止剤は上記のように隔壁の外側のみを覆うこ
とが好ましいが、場合によっては隔壁の内側のみを覆っ
ても良いし、また封止剤で覆われた部分とそうでない部
分の面積比は任意であるが、いずれにせよ組成制御が可
能な形で行なうことが必要である。このような封止剤と
しては原料融液やるつぼと化学反応をおこさないような
不揮発性の化合物がそれぞれの融液に対応して選ばれ特
にB2O3、BaCl2、CaC]z等が使用できる。
In addition, it is preferable that the sealant covers only the outside of the partition wall as described above, but in some cases it may cover only the inside of the partition wall, and the area between the part covered with the sealant and the part not covered with the sealant is preferable. The ratio is arbitrary, but in any case it is necessary to do it in a way that allows composition control. As such a sealant, a nonvolatile compound that does not cause a chemical reaction with the raw material melt or the crucible is selected depending on the respective melt, and in particular, B2O3, BaCl2, CaC]z, etc. can be used.

また、本発明の■−■族化合物半導体は主としてGaA
s、 InkXGap、 InAs、 1nsbまたは
GaSb等、かつII−Vl族化合物半導体としては主
として1nSe。
Furthermore, the ■-■ group compound semiconductor of the present invention is mainly composed of GaA
s, InkXGap, InAs, 1nsb or GaSb, and the II-Vl group compound semiconductor is mainly 1nSe.

CdSe、 CdTe、 ZnTe、 ZnSまたはC
dS等を含むが、本発明の方法はあらゆる■−■族およ
びII−Vl族その他化合物半導体に対して隔壁材料、
形状および封止剤等を選択することにより適用すること
は可能である。
CdSe, CdTe, ZnTe, ZnS or C
Although the method of the present invention includes barrier rib materials,
Application is possible by selecting the shape, sealant, etc.

作用 かくして本発明の単結晶育成方法は上記隔壁−が原料融
液中に浮遊し、かつ原料融液表面のレベルの変動に従っ
て上下し、常に液体封止剤を隔壁の内側または外側に分
離するように、配置することを特徴としているが、この
隔壁を浮遊させることにより、第1図においてヒーター
により原料融液に対して与えられる熱に関しては側面か
らの熱伝達量13が底部よりの熱伝達量14よりも太き
(なる。
Operation Thus, in the single crystal growth method of the present invention, the partition walls float in the raw material melt and move up and down according to fluctuations in the level of the raw material melt surface, so that the liquid sealant is always separated into the inside or outside of the partition wall. However, by floating this partition, the amount of heat transferred from the side 13 from the bottom to the amount of heat given to the raw material melt by the heater in Fig. 1 is reduced. Thicker than 14.

このため、対流が矢El]18のように発生し、この対
流により融液表面9における結晶径方向の温度分布は第
2図のようになり、安定な結晶径方向の温度制御を行な
うことが可能となる。
Therefore, convection occurs as shown by the arrow El]18, and this convection causes the temperature distribution in the crystal radial direction on the melt surface 9 to become as shown in Figure 2, making it possible to perform stable temperature control in the crystal radial direction. It becomes possible.

更にヒーターからの熱が有効に融液に対し側面から加わ
るため、ヒーターのパワーは小さくても良い。また、結
晶軸方向の温度分布も第3図に示されるように融液部と
融液上方部との温度の逆転がおこらず、種結晶の劣化を
生じない安定した結晶成長を可能にする温度分布が得ら
れる。
Furthermore, since the heat from the heater is effectively applied to the melt from the side, the power of the heater may be small. Furthermore, as shown in Figure 3, the temperature distribution in the crystal axis direction is at a temperature that does not cause temperature reversal between the melt part and the upper part of the melt, and enables stable crystal growth without causing deterioration of the seed crystal. distribution is obtained.

原料融液を隔壁にて2分し、一方のみを液体封止剤で覆
うことにより、液体封止剤で覆った部分においては、化
合物半導体の揮発性成分の蒸発を防ぐことができ、また
融液の温度制御を行なうことにより液体封止剤で覆われ
ない部分において組成制御を行なうことが可能である。
By dividing the raw material melt into two parts with a partition wall and covering only one side with a liquid encapsulant, it is possible to prevent the volatile components of the compound semiconductor from evaporating in the part covered with the liquid encapsulant, and to prevent the melt from evaporating. By controlling the temperature of the liquid, it is possible to control the composition in the portions not covered with the liquid sealant.

本発明において用いる隔壁は、融液表面を2分し、融液
表面の液体封止剤を隔壁の内側または外側に分離できれ
ばよいため、融液内における対流を阻害しないように、
結晶成長に伴なって生じる融液表面の移動に従って上下
して浮遊することが好ましい。
The partition wall used in the present invention only needs to be able to divide the melt surface into two and separate the liquid sealant on the melt surface to the inside or outside of the partition wall.
It is preferable to float up and down according to the movement of the melt surface caused by crystal growth.

本発明における上記作用により、融液の径方向、軸方向
の温度分布がすぐれ、これに伴い種結晶の劣化がなく、
結晶径制御を容易にする、組成制御の可能な単結晶の育
成方法を得る二とができる。
Due to the above-mentioned effects of the present invention, the temperature distribution of the melt in the radial and axial directions is excellent, and there is no deterioration of the seed crystal.
It is possible to obtain a single crystal growth method that facilitates crystal diameter control and allows composition control.

実施例 以下、実施例により本発明の方法を更に具体的に説明す
るが、本発明の範囲は以下の実施例により同等制限され
ない。
EXAMPLES Hereinafter, the method of the present invention will be explained in more detail with reference to Examples, but the scope of the present invention is not equally limited by the following Examples.

実施例 GaAsの単結晶を本発明の方法によって製造した。Example A single crystal of GaAs was produced by the method of the present invention.

単結晶引上製蓋は液体封止剤加熱ヒーター5を備えた第
8図のような構造をしており、るつぼは第1図のような
構成並びに配置になっている。るつぼは4インチの石英
るつぼを用い、隔壁には窒化ホウ素製のものを用いた。
The single-crystal pulling lid has a structure as shown in FIG. 8, which includes a liquid sealant heating heater 5, and the crucible has the structure and arrangement as shown in FIG. 1. A 4-inch quartz crucible was used as the crucible, and a partition wall made of boron nitride was used.

窒化ホウ素はGaAs融液上に浮かぶため、隔壁の形状
は第7図のようなものとした。
Since boron nitride floats on the GaAs melt, the shape of the partition wall was as shown in FIG. 7.

以上の装置において1000 gのGaAs融液を作製
し、隔壁で2分された外側部分を液体封止剤として50
gの3203で覆った。
In the above apparatus, 1000 g of GaAs melt was prepared, and the outer part divided into two by the partition wall was used as a liquid sealant and 50 g of GaAs melt was prepared.
Covered with 3203 of g.

上軸回転数およびるつぼの回転数はそれぞれ5rpm、
25rpmで引上速度は8mm/時であった。
The upper shaft rotation speed and the crucible rotation speed are each 5 rpm,
The pulling speed was 8 mm/hour at 25 rpm.

得られた結晶は直径60a++n、長さ100mmで転
位密度(エッチピット密度: EPD)は5000〜6
000 / cゴであった。組成ずれはな(、また種結
晶の劣化もなかった。
The obtained crystal has a diameter of 60a++n, a length of 100mm, and a dislocation density (etch pit density: EPD) of 5000 to 6.
It was 000/c. There was no composition shift (and there was no deterioration of the seed crystal.

同様な方法で単結晶育成を8回行なったが、いずれも同
様の結果が得られ、結晶径制御を容易に行なうことがで
きた。
Single crystal growth was performed 8 times using the same method, and similar results were obtained in each case, and the crystal diameter could be easily controlled.

発明の効果 以上詳しく説明したように、本発明の単結晶育成力法に
よれば、るつぼ内の原料融液を隔壁によって2分し、一
方のみを液体封止剤で覆うことにより、組成制御を行な
うLEC法において、上記融液に浮遊し、結晶成長に伴
う融液表面のレベルの変動に従って上下する隔壁を用い
るεとにより、融液の径方向および軸方向の温度分布を
改良することができ、これに伴い種結晶の劣化のない結
晶径制御の容易な主として■−V族、II−VT族化合
物半導体の単結晶の育成方法が得られた。
Effects of the Invention As explained in detail above, according to the single crystal growth force method of the present invention, the composition can be controlled by dividing the raw material melt in the crucible into two parts by a partition wall and covering only one side with a liquid sealant. In the LEC method, the temperature distribution in the radial and axial directions of the melt can be improved by using partition walls that float in the melt and move up and down according to changes in the melt surface level as the crystal grows. Accordingly, a method for growing single crystals mainly of ■-V group and II-VT group compound semiconductors, which does not cause deterioration of the seed crystal and allows easy crystal diameter control, has been obtained.

【図面の簡単な説明】 第1図は本発明の単結晶育成方法を実施するためのるつ
ぼ構造の縦断面図および対流の流れを模式的に示す図で
あり、 第2図は本発明のるつぼ構造における融液表面における
径方向の温度分布を示し、 第3図は本発明のるつぼ構造における軸方向の温度分布
を示し、 第4図は公知の単結晶育成装置のるつぼ構造における対
流の流れを模式的に示す図であり、第5図は公知の単結
晶育成装置のるつぼ構造における融液表面における径方
向の温度分布を示し、第6図は公知の単結晶育成装置の
るつぼ構造における軸方向の温度分布を示し、 第7図は本発明のるつぼ構造に用いられる隔壁の別の態
様の縦断面図を示し、 第8図は公知の単結晶育成装置の縦断面図を示す。 (主な参照番号) 1・・るつぼ、  2・・原料融液、 3・・隔壁、   4・・液体封止剤、5・・液体封止
剤加熱ヒーター、 6・・封止容器、 7・・揮発性成分加熱ヒーター、 8・・揮発性成分、 9・・融液表面、10・・ヒータ
ー、  11・・種結晶、12・・単結晶、   13
・・側面加熱、14・・底部加熱、  15・・対流、
16・・本発明隔壁、 17・・隔壁空間、18・・対
流 第1図 18・−・・対流 第2図     第3図 第4区 第5区     第6図 第7図 1・・ろっは゛ 4・・・液体村上剤 6・・・・村上容器 8・・揮発株瓜分 11・・・糧茄晶 2・原Fl−融液  3・・隔! 5・・・・液楕収封」1斉すカロ奔起ヒーター7・・揮
発性域分加軌七−ター 9−・融液11加  10・・ヒーター12・単結晶
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a vertical cross-sectional view of a crucible structure for carrying out the single crystal growth method of the present invention and a diagram schematically showing the flow of convection, and FIG. 2 is a diagram schematically showing the crucible structure of the present invention. Figure 3 shows the temperature distribution in the radial direction on the melt surface in the structure, Figure 3 shows the temperature distribution in the axial direction in the crucible structure of the present invention, and Figure 4 shows the flow of convection in the crucible structure of a known single crystal growth apparatus. FIG. 5 shows the temperature distribution in the radial direction on the melt surface in the crucible structure of a known single crystal growth device, and FIG. 6 shows the temperature distribution in the axial direction in the crucible structure of the known single crystal growth device. FIG. 7 shows a longitudinal sectional view of another embodiment of the partition wall used in the crucible structure of the present invention, and FIG. 8 shows a longitudinal sectional view of a known single crystal growth apparatus. (Main reference numbers) 1. Crucible, 2. Raw material melt, 3. Partition wall, 4. Liquid sealant, 5. Liquid sealant heater, 6. Sealed container, 7.・Volatile component heating heater, 8.. Volatile component, 9.. Melt surface, 10.. Heater, 11.. Seed crystal, 12.. Single crystal, 13.
・・Side heating, 14.・Bottom heating, 15.・Convection,
16... Partition wall of the present invention, 17... Partition space, 18... Convection Figure 1 18... Convection Figure 2 Figure 3 Ward 4 Ward 5 Figure 6 Figure 7 Figure 1... 4... Liquid Murakami agent 6... Murakami container 8... Volatile stock melon portion 11... Seed crystal 2. Original Fl-melt 3... Interval! 5...Liquid ellipsoidal containment" 1 Calorie activation heater 7... Volatile region addition 7-ter 9- Melt 11 addition 10... Heater 12. Single crystal

Claims (6)

【特許請求の範囲】[Claims] (1)封止容器内に維持されたるつぼ内に収納され、隔
壁によって2分された表面の一方が液体封止剤で覆われ
ている原料融液から単結晶を引き上げる液体封止引上法
による化合物半導体単結晶の育成方法において、上記隔
壁を浮遊させ、該浮遊状態にある隔壁によって上記融液
表面を2分し、そのいずれか一方にのみ液体封止剤を存
在させて引上げを行なうことを特徴とする上記化合物半
導体単結晶の育成方法。
(1) Liquid-sealed pulling method for pulling a single crystal from a raw material melt stored in a crucible kept in a sealed container, one of the surfaces of which is bisected by a partition wall and covered with a liquid sealant. In the method for growing a compound semiconductor single crystal according to the method, the partition wall is suspended, the surface of the melt is divided into two parts by the partition wall in a floating state, and a liquid sealant is present only on one of the two parts, and pulling is performed. A method for growing a compound semiconductor single crystal as described above.
(2)上記隔壁が炭素、窒化ホウ素、窒化アルミニウム
、アルミナ、石英および炭化ケイ素から成る群から選ば
れるセラミックス、あるいはモリブデンおよびタングス
テンから成る群から選ばれる金属から成ることを特徴と
する特許請求の範囲第1項に記載の単結晶の育成方法。
(2) Claims characterized in that the partition wall is made of a ceramic selected from the group consisting of carbon, boron nitride, aluminum nitride, alumina, quartz, and silicon carbide, or a metal selected from the group consisting of molybdenum and tungsten. The method for growing a single crystal according to item 1.
(3)上記隔壁が融液表面下に浸漬する部分において該
融液に浸漬されない空間を備えた形状を有することを特
徴とする特許請求の範囲第1〜2項のいずれか1項に記
載の単結晶の育成方法。
(3) The partition wall has a shape that includes a space that is not immersed in the melt in a portion that is immersed below the surface of the melt. How to grow single crystals.
(4)上記化合物半導体がIII−V族化合物半導体また
はII−VI族化合物半導体であることを特徴とする特許請
求の範囲第1〜3項のいずれか1項に記載の単結晶の育
成方法。
(4) The method for growing a single crystal according to any one of claims 1 to 3, wherein the compound semiconductor is a III-V group compound semiconductor or a II-VI group compound semiconductor.
(5)上記III−V族化合物半導体がGaAs、InP
、GaP、InAs、InSbまたはGaSbであり、
II−VI族化合物半導体がZnSe、CdTe、ZnTe
、CdS、CdSeまたはZnSであることを特徴とす
る特許請求の範囲第4項に記載の単結晶の育成方法。
(5) The III-V compound semiconductor is GaAs, InP
, GaP, InAs, InSb or GaSb,
Group II-VI compound semiconductors include ZnSe, CdTe, and ZnTe.
, CdS, CdSe, or ZnS, the method for growing a single crystal according to claim 4.
(6)上記液体封止剤が上記隔壁により2分された融液
表面のうち、該隔壁の外側のみを覆うことを特徴とする
特許請求の範囲第1〜5項のいずれか1項に記載の単結
晶の育成方法。
(6) According to any one of claims 1 to 5, the liquid sealant covers only the outside of the partition of the melt surface divided into two by the partition. How to grow single crystals.
JP20731986A 1986-09-03 1986-09-03 Method for growing single crystal Pending JPS6364988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20731986A JPS6364988A (en) 1986-09-03 1986-09-03 Method for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20731986A JPS6364988A (en) 1986-09-03 1986-09-03 Method for growing single crystal

Publications (1)

Publication Number Publication Date
JPS6364988A true JPS6364988A (en) 1988-03-23

Family

ID=16537798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20731986A Pending JPS6364988A (en) 1986-09-03 1986-09-03 Method for growing single crystal

Country Status (1)

Country Link
JP (1) JPS6364988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190141685A (en) * 2017-05-04 2019-12-24 코너 스타 리미티드 Crystal Raising Systems and Methods Including Crucibles and Barriers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190141685A (en) * 2017-05-04 2019-12-24 코너 스타 리미티드 Crystal Raising Systems and Methods Including Crucibles and Barriers

Similar Documents

Publication Publication Date Title
US4999082A (en) Process for producing monocrystalline group II-IV or group III-V compounds and products thereof
US3632431A (en) Method of crystallizing a binary semiconductor compound
US5047113A (en) Method for directional solidification of single crystals
US4923561A (en) Crystal growth method
EP0162467A2 (en) Device for growing single crystals of dissociative compounds
EP0186213B1 (en) Method for synthesizing compound semiconductor polycrystals and apparatus therefor
US5256381A (en) Apparatus for growing single crystals of III-V compound semiconductors
US4619811A (en) Apparatus for growing GaAs single crystal by using floating zone
EP0104741B1 (en) Process for growing crystalline material
US4824520A (en) Liquid encapsulated crystal growth
JPS6364988A (en) Method for growing single crystal
US5145550A (en) Process and apparatus for growing single crystals of III-V compound semiconductor
JPH0314800B2 (en)
US4824519A (en) Method and apparatus for single crystal pulling downwardly from the lower surface of a floating melt
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JPS6379793A (en) Method for growing single crystal
JPH07110797B2 (en) Method for producing compound semiconductor single crystal containing high vapor pressure component
JPH05139885A (en) Method and device for producing single crystal
JP2610034B2 (en) Single crystal growth method
JPH03193689A (en) Production of compound semiconductor crystal
JPH0867593A (en) Method for growing single crystal
JPH0952789A (en) Production of single crystal
KR19980031986A (en) Single crystal manufacturing device by vapor crystal growth method
JPS58172291A (en) Production of single crystal of compound semiconductor
JPH0712030B2 (en) (II)-(VI) Group compound semiconductor crystal growth apparatus