JPS636830A - Molecular beam crystal growth apparatus - Google Patents

Molecular beam crystal growth apparatus

Info

Publication number
JPS636830A
JPS636830A JP14828586A JP14828586A JPS636830A JP S636830 A JPS636830 A JP S636830A JP 14828586 A JP14828586 A JP 14828586A JP 14828586 A JP14828586 A JP 14828586A JP S636830 A JPS636830 A JP S636830A
Authority
JP
Japan
Prior art keywords
molecular beam
crucible
source
crystal growth
liquid surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14828586A
Other languages
Japanese (ja)
Other versions
JPH035054B2 (en
Inventor
Junji Saito
淳二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14828586A priority Critical patent/JPS636830A/en
Publication of JPS636830A publication Critical patent/JPS636830A/en
Publication of JPH035054B2 publication Critical patent/JPH035054B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To reduce the variation in the depositing area of the liquid surface of a source material by altering the inclination from the horizontal surface of a molecular beam source to 0-90 deg., and regulating the inclining angle corresponding to the area of the liquid surface of the source material in a crucible. CONSTITUTION:When the temperature of a heater 14 and hence a crucible 13 is constant, a molecular beam intensity is proportional to the depositing surface of a source. Then, when gallium Ga to become a molecular beam source is filled in the crucible 13, Ga molecular beam is produced by the deposition from the melted liquid surface. A vacuum chamber 11 integrated with the crucible container 12 for containing the crucible 13 is so inclined at 45 deg. of inclining angle from the horizontal surface 18 of the liquid surface by utilizing vacuum bellows 17. As the Ga source is consumed, the inclining angle is reduced to finally 30 deg..

Description

【発明の詳細な説明】 〔概要〕 分子線源の水辺面からの傾斜角度を、分子線源の中のソ
ースの液面の面積に応じて調整可能にした分子線結晶成
長装置である。
DETAILED DESCRIPTION OF THE INVENTION [Summary] This is a molecular beam crystal growth apparatus in which the inclination angle of the molecular beam source from the waterside surface can be adjusted according to the area of the liquid surface of the source in the molecular beam source.

〔産業上の利用分野〕[Industrial application field]

本発明は分子線結晶成長装置に関するもので、さらに詳
しく言えば、分子線強度(量)を−定に保ち結晶の成長
速度を一定に保つ構成とした装置に関するものである。
The present invention relates to a molecular beam crystal growth apparatus, and more specifically, to an apparatus configured to maintain a constant molecular beam intensity (amount) and a constant crystal growth rate.

〔従来の技術〕[Conventional technology]

化合物半導体の成長において、例えばGaAs基板上に
GaAs、  Aj! GaAsなどを順に成長して半
導体装置を作る際には、第2図の断面図に示される如き
分子線結晶成長装置が用いられ、同図において、11は
超高真空に保たれるチャンバ、12はるつぼ収納部、1
3はるつぼ(分子線セル)、14はるつぼを加熱するヒ
ータ、15はるつぼに入れられた半導体元素のソース(
例えばGa) 、16はその上に結晶が成長される半導
体単結晶基板(例えばGaAs基板で、それはある適当
な温度に加熱されている)である。
In the growth of compound semiconductors, for example, GaAs, Aj! When manufacturing a semiconductor device by sequentially growing GaAs or the like, a molecular beam crystal growth apparatus as shown in the cross-sectional view of FIG. 2 is used. Crucible storage section, 1
3 is a crucible (molecular beam cell), 14 is a heater that heats the crucible, and 15 is a source of semiconductor elements placed in the crucible (
(e.g. Ga), 16 is a semiconductor single crystal substrate (e.g. a GaAs substrate, which has been heated to some suitable temperature) on which the crystal is grown.

Gaソース15がるつぼ13内で加熱されると溶融する
。ここで真空チャンバ11は10−′6Torr程度の
超高真空に保たれているので、Ga分子はソース15の
液面19から飛び出し、分子流となって基板16に照射
し、基板16上にGa結晶が成長する。るつぼ13は前
記した分子流が基板16に照射するようらっは状に構成
され、かつ、基板16に対し一定の入射角をもつようあ
る角度傾いている。
When the Ga source 15 is heated in the crucible 13, it melts. Here, since the vacuum chamber 11 is maintained at an ultra-high vacuum of about 10-'6 Torr, Ga molecules jump out from the liquid surface 19 of the source 15, become a molecular stream, and irradiate the substrate 16. Crystals grow. The crucible 13 is configured in the shape of a mirror so that the above-described molecular flow irradiates the substrate 16, and is tilted at a certain angle so as to have a constant angle of incidence with respect to the substrate 16.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

るつぼ13と基板16をより詳細に示す第3図を参照す
ると、るつぼ13は前記した如くらっは状になっている
ことに加えて、ヒータ14はるつぼの外方に点線で示す
如き温度分布をもっていて、るつぼの開口部では最も高
くなっている。
Referring to FIG. 3, which shows the crucible 13 and the substrate 16 in more detail, in addition to the fact that the crucible 13 has a square shape as described above, the heater 14 has a temperature distribution outside the crucible as shown by the dotted line. and is highest at the opening of the crucible.

るつぼは基板に対しである一定の入射角で設定されてい
るが、水平面18に対しての傾斜角度は固定されている
。かかる方式においては、るつぼの中に蓄えられた(チ
ャージされた)ソース材料の消費につれて液面(蒸発面
積)Aは第3図に示される如く液面aへと小になり、そ
のため蒸発してくる分子線強度(分子線の量)が小にな
り、その結果結晶の成長速度が一定に保たれず、結晶成
長が再現性良〈実施されえない問題がある。
The crucible is set at a constant angle of incidence with respect to the substrate, but the angle of inclination with respect to the horizontal plane 18 is fixed. In this method, as the source material stored (charged) in the crucible is consumed, the liquid level (evaporation area) A decreases to liquid level a as shown in FIG. The resulting molecular beam intensity (amount of molecular beam) becomes small, and as a result, the crystal growth rate cannot be kept constant, causing the problem that crystal growth cannot be performed with good reproducibility.

従来の分子線結晶成長装置では、再現性良く結晶成長を
行うために、■分子線強度モニターによる分子線強度の
測定をなし、または■成長速度チエツクのために特に結
晶成長を行う、などの手段がとられたが、いずれの方法
によっても精度がとれなかったり、または煩雑な作業を
行わなければならなかった。
In conventional molecular beam crystal growth equipment, in order to grow crystals with good reproducibility, methods such as (1) measuring the molecular beam intensity with a molecular beam intensity monitor, or (2) performing crystal growth specifically to check the growth rate are used. However, either method was not accurate or required complicated work.

本発明はこのような点に鑑みて創作されたもので、消費
によるソースの液面の蒸発面積の変化を減少し、分子線
強度を安定化することができ、再現性の良い結晶成長を
行うことのできる分子線結晶成長装置を提供することを
目的とする。
The present invention was created in view of these points, and is capable of reducing changes in the evaporation area of the liquid level of the source due to consumption, stabilizing the molecular beam intensity, and achieving crystal growth with good reproducibility. The purpose of the present invention is to provide a molecular beam crystal growth apparatus that can perform the following steps.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の原理を示す図である。 FIG. 1 is a diagram showing the principle of the present invention.

本発明においては、超高真空中で複数の半導体元素(ソ
ース14)を加熱し、分子線として同元素を取り出して
適当に加熱した半導体単結晶基板16上に照射すること
により同基板16上に半導体単結晶を成長する分子線結
晶成長装置において、分子線源(るつぼ13)の水平面
18からの傾斜をOoから90°に変更可能とし、しか
もこの傾斜角度をるつぼ13の中のソース材料15の液
面19の面積(蒸発面積)に対応して調整可能な構成と
する。
In the present invention, a plurality of semiconductor elements (source 14) are heated in an ultra-high vacuum, and the same elements are extracted as molecular beams and irradiated onto the semiconductor single crystal substrate 16 which has been appropriately heated. In a molecular beam crystal growth apparatus for growing semiconductor single crystals, the inclination of the molecular beam source (crucible 13) from the horizontal plane 18 can be changed from Oo to 90°, and this inclination angle can be changed to The structure can be adjusted according to the area of the liquid surface 19 (evaporation area).

〔作用〕[Effect]

本発明の装置においては、るつぼ中のソース15の液面
の面積が、るつぼの水平面からの傾斜角度によって自由
に変えられることを利用し、ソース15の量が多く蒸発
面積が大なるときは水平面から深い角度にし、ソース1
5の量が減るに従って蒸発面積が小になれば、るつぼを
水平面方向に傾きを小さくして蒸発面積を大きくし、そ
れによって分子線強度を一定に保つのである。
In the apparatus of the present invention, the area of the liquid surface of the source 15 in the crucible can be freely changed by changing the inclination angle from the horizontal plane of the crucible. From a deep angle, sauce 1
If the evaporation area becomes smaller as the amount of 5 decreases, the crucible is tilted horizontally to increase the evaporation area, thereby keeping the molecular beam intensity constant.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本願発明者は、前記問題点の解決に際して下記のとおり
分析した。
The inventor of the present application conducted the following analysis to solve the above problem.

先ず、ヒータ14、従ってるつぼ13の温度が温度分布
なく一定であるとして、分子線強度はソースの蒸発面積
に比例する。それ故に、第3図に示される如くソースが
消費され量が少なくなってくればそれだけ分子線強度が
小になるのであるから、それを補償すべく、第1図に示
される如くるつぼを傾けてソースの蒸発面積をできるだ
け大きくなるようにしてやるとよい。
First, assuming that the temperature of the heater 14 and therefore the crucible 13 is constant without temperature distribution, the molecular beam intensity is proportional to the evaporation area of the source. Therefore, as the source is consumed and the amount decreases as shown in Figure 3, the molecular beam intensity decreases accordingly.In order to compensate for this, the crucible is tilted as shown in Figure 1. It is best to make the evaporation area of the sauce as large as possible.

次に、るつぼの温度のみを考えると、従来例の如く開口
部で温度が最も高いとすれば、ソースの消費が進むと、
第3図に示される如くソースの蒸発面は開口部から遠く
なり(蒸発面積の減少に加えて)ソース蒸発面の温度が
下がり分子線強度が小になるのであるから、それを補償
すべくソースの蒸発面が開口部近くに位置していること
が最も望ましい。そこで、ソースの消費につれて蒸発面
積が小になって(るのであれば、第1図に示される如く
、るつぼを傾けてソースの蒸発面が開口部近くに位置す
るようにすればよい。
Next, considering only the temperature of the crucible, if the temperature is highest at the opening as in the conventional example, as the source continues to be consumed,
As shown in Figure 3, the evaporation surface of the source becomes farther away from the aperture (in addition to a decrease in the evaporation area), the temperature of the source evaporation surface decreases and the molecular beam intensity decreases. Most preferably, the evaporation surface of is located near the opening. Therefore, if the evaporation area becomes smaller as the source is consumed, the crucible may be tilted so that the evaporation surface of the source is located near the opening, as shown in FIG.

上記の分析に従った本発明を、分子線源(ソース) 1
5にGaソースを用いた例について説明する。
The present invention according to the above analysis is applied to a molecular beam source (source) 1
5, an example using a Ga source will be explained.

Ga分子線は熔融した液面からの蒸発によって取り出さ
れるが、初期のGaソースチャージ状態で、Ga分子線
液の水平面18からの傾斜角度は45°にした。
Although the Ga molecular beam is extracted by evaporation from the molten liquid surface, the inclination angle of the Ga molecular beam liquid from the horizontal plane 18 was set to 45° in the initial Ga source charging state.

この傾斜角度をGaソースが消費されるにつれて浅くし
、最終的には30°まで1頃けた。
This angle of inclination was made shallower as the Ga source was consumed, and finally reached around 30°.

この例において、Gaソースの蒸発面の面積は100か
ら30%まで変化(減少)したが、Gaソースの液面が
常に温度が最も高いるつぼの開口部近くにあるので、G
a分子線強度の変化は一10%程度に抑えることができ
た。
In this example, the area of the evaporation surface of the Ga source changed (reduced) from 100 to 30%, but since the liquid level of the Ga source is always near the opening of the crucible where the temperature is highest, the
The change in a molecular beam intensity could be suppressed to about -10%.

従来の方法で同じ量だけGaの消費が進んだ場合には、
蒸発面積は100から25%まで変化し、Ga分子線強
度は一20%程度変化していたものである。
If Ga consumption progresses by the same amount using the conventional method,
The evaporation area varied from 100% to 25%, and the Ga molecular beam intensity varied by about -20%.

かくして、本発明によれば、分子線強度の変動を従来よ
りも約1/2に低減することができた。
Thus, according to the present invention, fluctuations in molecular beam intensity could be reduced to about 1/2 compared to the conventional method.

るつぼを前記した如くに傾けるには、るつぼ13が収納
されたるつぼ収納部12が一体化されている真空チャン
バ11を、真空ベローズ17を利用して傾けるとよい。
To tilt the crucible as described above, it is preferable to tilt the vacuum chamber 11 in which the crucible storage section 12 in which the crucible 13 is housed is integrated, using the vacuum bellows 17.

るつぼの傾きが第1図に示される如くに変化すると、基
板に照射する分子線の量が変化するから、るつぼが傾く
ときは基板も同じく傾くように基板上6のためのホルダ
を真空チャンバ11に固定すると、るつぼと基板は分子
線入射角が常に一定になるように保たれる。
When the inclination of the crucible changes as shown in FIG. 1, the amount of molecular beam irradiated to the substrate changes. Therefore, when the crucible inclines, the holder for the substrate 6 is placed in the vacuum chamber 11 so that the substrate also inclines. When fixed at , the angle of incidence of the molecular beam between the crucible and the substrate is always kept constant.

なお第2図において、基板上にGaAs結晶を成長する
のであれば、上方のるつぼ収納部におかれたるつぼにA
sソースを入れる。上方のるつぼ収納部も真空チャンバ
11と一体化しているから、真空チャンバ11が前記し
た如<傾<ときにはAsの入ったるつぼも同様に傾く。
In Fig. 2, if a GaAs crystal is to be grown on the substrate, A
Add the s sauce. Since the upper crucible storage section is also integrated with the vacuum chamber 11, when the vacuum chamber 11 tilts as described above, the crucible containing As also tilts in the same way.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、分子線蒸発面の
面積および位置を調整することによって分子線強度の低
減を抑えることができるので、再現性の良い結晶成長を
行うことができる。
As described above, according to the present invention, reduction in molecular beam intensity can be suppressed by adjusting the area and position of the molecular beam evaporation surface, so crystal growth can be performed with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を示す図、 第2図は本発明実施例の断面図、 第3図は従来例の問題点を示す図である。 第1図ないし第3図において、 11は真空チャンバ、 12はるつぼ収納部、 13はるつぼ、 14はヒータ、 15はソース、 16は基板、 17は真空ベローズである。 飯塚幸三 特許出願人 工業技術院長 U←尋フト→に′本発明の
障理圓 第1図
FIG. 1 is a diagram showing the principle of the present invention, FIG. 2 is a sectional view of an embodiment of the present invention, and FIG. 3 is a diagram showing problems in the conventional example. 1 to 3, 11 is a vacuum chamber, 12 is a crucible housing, 13 is a crucible, 14 is a heater, 15 is a source, 16 is a substrate, and 17 is a vacuum bellows. Kozo Iizuka Patent applicant Director of the Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】 真空中で複数の半導体元素(15)を加熱し同元素を分
子線として取り出し半導体単結晶基板(16)上に照射
して同基板(16)上に半導体単結晶を成長する装置に
おいて、 半導体元素(15)を収納する分子線源の水平面(18
)からの傾斜を同元素(15)の消費に対応して変更す
る構成としたことを特徴とする分子線結晶成長装置。
[Claims] A plurality of semiconductor elements (15) are heated in vacuum, the elements are extracted as molecular beams, and irradiated onto a semiconductor single crystal substrate (16) to grow a semiconductor single crystal on the same substrate (16). In a device that uses a horizontal plane (18
1. A molecular beam crystal growth apparatus characterized in that the inclination from ) is changed in accordance with the consumption of the same element (15).
JP14828586A 1986-06-26 1986-06-26 Molecular beam crystal growth apparatus Granted JPS636830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14828586A JPS636830A (en) 1986-06-26 1986-06-26 Molecular beam crystal growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14828586A JPS636830A (en) 1986-06-26 1986-06-26 Molecular beam crystal growth apparatus

Publications (2)

Publication Number Publication Date
JPS636830A true JPS636830A (en) 1988-01-12
JPH035054B2 JPH035054B2 (en) 1991-01-24

Family

ID=15449347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14828586A Granted JPS636830A (en) 1986-06-26 1986-06-26 Molecular beam crystal growth apparatus

Country Status (1)

Country Link
JP (1) JPS636830A (en)

Also Published As

Publication number Publication date
JPH035054B2 (en) 1991-01-24

Similar Documents

Publication Publication Date Title
JPS636830A (en) Molecular beam crystal growth apparatus
US4693207A (en) Apparatus for the growth of semiconductor crystals
Żytkiewicz Electroepitaxy from a limited solution volume: growth kinetics calculations
KR102731090B1 (en) Apparatus and method for growing silicon single crystal ingot
JP2599767B2 (en) Solution growth equipment
JP3536915B2 (en) Method for producing composite oxide single crystal thin film
JPS5776821A (en) Liquid phase epitaxial growing method
JPH0323290A (en) Molecular ray epitaxy device
JPH026385A (en) Method for forming thin film and apparatus therefor
JPS5922319A (en) Vapor growth of 3-5 group semiconductor
JPH02308521A (en) Liquid-phase epitaxial crystal growth method
JPH03177019A (en) Manufacture of liquid phase epitaxial crystal plate
JPH02196090A (en) Molecular beam crystal growth device
JPS5946096B2 (en) Liquid phase epitaxial growth equipment
JPS60192339A (en) Liquid phase epitaxial growing method
JPH02111690A (en) Growth of compound semiconductor crystal and apparatus therefor
JPH03115189A (en) Method for growing crystal and substrate holder used therein
JPS5821830A (en) Apparatus for liquid phase epitaxial growth
JPS6410091B2 (en)
JPH04300298A (en) Method for liquid-phase epitaxial growth of silicon carbide single crystal
JPH02217392A (en) Molecular beam source
JPH01131096A (en) Molecular beam generator
JPH0359014A (en) Epitaxial growth of diacetylene or polydiacetylene
JPS5948536B2 (en) Semiconductor crystal growth equipment
JPS6330395A (en) Method and jig for growing thin film crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term