JPS636830A - Molecular beam crystal growth apparatus - Google Patents
Molecular beam crystal growth apparatusInfo
- Publication number
- JPS636830A JPS636830A JP14828586A JP14828586A JPS636830A JP S636830 A JPS636830 A JP S636830A JP 14828586 A JP14828586 A JP 14828586A JP 14828586 A JP14828586 A JP 14828586A JP S636830 A JPS636830 A JP S636830A
- Authority
- JP
- Japan
- Prior art keywords
- molecular beam
- crucible
- source
- crystal growth
- liquid surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims description 23
- 239000000758 substrate Substances 0.000 claims description 16
- 239000004065 semiconductor Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 3
- 238000000151 deposition Methods 0.000 abstract 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- 229910052733 gallium Inorganic materials 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000008020 evaporation Effects 0.000 description 17
- 238000001704 evaporation Methods 0.000 description 17
- 230000007423 decrease Effects 0.000 description 7
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 235000015067 sauces Nutrition 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
分子線源の水辺面からの傾斜角度を、分子線源の中のソ
ースの液面の面積に応じて調整可能にした分子線結晶成
長装置である。DETAILED DESCRIPTION OF THE INVENTION [Summary] This is a molecular beam crystal growth apparatus in which the inclination angle of the molecular beam source from the waterside surface can be adjusted according to the area of the liquid surface of the source in the molecular beam source.
本発明は分子線結晶成長装置に関するもので、さらに詳
しく言えば、分子線強度(量)を−定に保ち結晶の成長
速度を一定に保つ構成とした装置に関するものである。The present invention relates to a molecular beam crystal growth apparatus, and more specifically, to an apparatus configured to maintain a constant molecular beam intensity (amount) and a constant crystal growth rate.
化合物半導体の成長において、例えばGaAs基板上に
GaAs、 Aj! GaAsなどを順に成長して半
導体装置を作る際には、第2図の断面図に示される如き
分子線結晶成長装置が用いられ、同図において、11は
超高真空に保たれるチャンバ、12はるつぼ収納部、1
3はるつぼ(分子線セル)、14はるつぼを加熱するヒ
ータ、15はるつぼに入れられた半導体元素のソース(
例えばGa) 、16はその上に結晶が成長される半導
体単結晶基板(例えばGaAs基板で、それはある適当
な温度に加熱されている)である。In the growth of compound semiconductors, for example, GaAs, Aj! When manufacturing a semiconductor device by sequentially growing GaAs or the like, a molecular beam crystal growth apparatus as shown in the cross-sectional view of FIG. 2 is used. Crucible storage section, 1
3 is a crucible (molecular beam cell), 14 is a heater that heats the crucible, and 15 is a source of semiconductor elements placed in the crucible (
(e.g. Ga), 16 is a semiconductor single crystal substrate (e.g. a GaAs substrate, which has been heated to some suitable temperature) on which the crystal is grown.
Gaソース15がるつぼ13内で加熱されると溶融する
。ここで真空チャンバ11は10−′6Torr程度の
超高真空に保たれているので、Ga分子はソース15の
液面19から飛び出し、分子流となって基板16に照射
し、基板16上にGa結晶が成長する。るつぼ13は前
記した分子流が基板16に照射するようらっは状に構成
され、かつ、基板16に対し一定の入射角をもつようあ
る角度傾いている。When the Ga source 15 is heated in the crucible 13, it melts. Here, since the vacuum chamber 11 is maintained at an ultra-high vacuum of about 10-'6 Torr, Ga molecules jump out from the liquid surface 19 of the source 15, become a molecular stream, and irradiate the substrate 16. Crystals grow. The crucible 13 is configured in the shape of a mirror so that the above-described molecular flow irradiates the substrate 16, and is tilted at a certain angle so as to have a constant angle of incidence with respect to the substrate 16.
るつぼ13と基板16をより詳細に示す第3図を参照す
ると、るつぼ13は前記した如くらっは状になっている
ことに加えて、ヒータ14はるつぼの外方に点線で示す
如き温度分布をもっていて、るつぼの開口部では最も高
くなっている。Referring to FIG. 3, which shows the crucible 13 and the substrate 16 in more detail, in addition to the fact that the crucible 13 has a square shape as described above, the heater 14 has a temperature distribution outside the crucible as shown by the dotted line. and is highest at the opening of the crucible.
るつぼは基板に対しである一定の入射角で設定されてい
るが、水平面18に対しての傾斜角度は固定されている
。かかる方式においては、るつぼの中に蓄えられた(チ
ャージされた)ソース材料の消費につれて液面(蒸発面
積)Aは第3図に示される如く液面aへと小になり、そ
のため蒸発してくる分子線強度(分子線の量)が小にな
り、その結果結晶の成長速度が一定に保たれず、結晶成
長が再現性良〈実施されえない問題がある。The crucible is set at a constant angle of incidence with respect to the substrate, but the angle of inclination with respect to the horizontal plane 18 is fixed. In this method, as the source material stored (charged) in the crucible is consumed, the liquid level (evaporation area) A decreases to liquid level a as shown in FIG. The resulting molecular beam intensity (amount of molecular beam) becomes small, and as a result, the crystal growth rate cannot be kept constant, causing the problem that crystal growth cannot be performed with good reproducibility.
従来の分子線結晶成長装置では、再現性良く結晶成長を
行うために、■分子線強度モニターによる分子線強度の
測定をなし、または■成長速度チエツクのために特に結
晶成長を行う、などの手段がとられたが、いずれの方法
によっても精度がとれなかったり、または煩雑な作業を
行わなければならなかった。In conventional molecular beam crystal growth equipment, in order to grow crystals with good reproducibility, methods such as (1) measuring the molecular beam intensity with a molecular beam intensity monitor, or (2) performing crystal growth specifically to check the growth rate are used. However, either method was not accurate or required complicated work.
本発明はこのような点に鑑みて創作されたもので、消費
によるソースの液面の蒸発面積の変化を減少し、分子線
強度を安定化することができ、再現性の良い結晶成長を
行うことのできる分子線結晶成長装置を提供することを
目的とする。The present invention was created in view of these points, and is capable of reducing changes in the evaporation area of the liquid level of the source due to consumption, stabilizing the molecular beam intensity, and achieving crystal growth with good reproducibility. The purpose of the present invention is to provide a molecular beam crystal growth apparatus that can perform the following steps.
第1図は本発明の原理を示す図である。 FIG. 1 is a diagram showing the principle of the present invention.
本発明においては、超高真空中で複数の半導体元素(ソ
ース14)を加熱し、分子線として同元素を取り出して
適当に加熱した半導体単結晶基板16上に照射すること
により同基板16上に半導体単結晶を成長する分子線結
晶成長装置において、分子線源(るつぼ13)の水平面
18からの傾斜をOoから90°に変更可能とし、しか
もこの傾斜角度をるつぼ13の中のソース材料15の液
面19の面積(蒸発面積)に対応して調整可能な構成と
する。In the present invention, a plurality of semiconductor elements (source 14) are heated in an ultra-high vacuum, and the same elements are extracted as molecular beams and irradiated onto the semiconductor single crystal substrate 16 which has been appropriately heated. In a molecular beam crystal growth apparatus for growing semiconductor single crystals, the inclination of the molecular beam source (crucible 13) from the horizontal plane 18 can be changed from Oo to 90°, and this inclination angle can be changed to The structure can be adjusted according to the area of the liquid surface 19 (evaporation area).
本発明の装置においては、るつぼ中のソース15の液面
の面積が、るつぼの水平面からの傾斜角度によって自由
に変えられることを利用し、ソース15の量が多く蒸発
面積が大なるときは水平面から深い角度にし、ソース1
5の量が減るに従って蒸発面積が小になれば、るつぼを
水平面方向に傾きを小さくして蒸発面積を大きくし、そ
れによって分子線強度を一定に保つのである。In the apparatus of the present invention, the area of the liquid surface of the source 15 in the crucible can be freely changed by changing the inclination angle from the horizontal plane of the crucible. From a deep angle, sauce 1
If the evaporation area becomes smaller as the amount of 5 decreases, the crucible is tilted horizontally to increase the evaporation area, thereby keeping the molecular beam intensity constant.
以下、図面を参照して本発明の実施例を詳細に説明する
。Embodiments of the present invention will be described in detail below with reference to the drawings.
本願発明者は、前記問題点の解決に際して下記のとおり
分析した。The inventor of the present application conducted the following analysis to solve the above problem.
先ず、ヒータ14、従ってるつぼ13の温度が温度分布
なく一定であるとして、分子線強度はソースの蒸発面積
に比例する。それ故に、第3図に示される如くソースが
消費され量が少なくなってくればそれだけ分子線強度が
小になるのであるから、それを補償すべく、第1図に示
される如くるつぼを傾けてソースの蒸発面積をできるだ
け大きくなるようにしてやるとよい。First, assuming that the temperature of the heater 14 and therefore the crucible 13 is constant without temperature distribution, the molecular beam intensity is proportional to the evaporation area of the source. Therefore, as the source is consumed and the amount decreases as shown in Figure 3, the molecular beam intensity decreases accordingly.In order to compensate for this, the crucible is tilted as shown in Figure 1. It is best to make the evaporation area of the sauce as large as possible.
次に、るつぼの温度のみを考えると、従来例の如く開口
部で温度が最も高いとすれば、ソースの消費が進むと、
第3図に示される如くソースの蒸発面は開口部から遠く
なり(蒸発面積の減少に加えて)ソース蒸発面の温度が
下がり分子線強度が小になるのであるから、それを補償
すべくソースの蒸発面が開口部近くに位置していること
が最も望ましい。そこで、ソースの消費につれて蒸発面
積が小になって(るのであれば、第1図に示される如く
、るつぼを傾けてソースの蒸発面が開口部近くに位置す
るようにすればよい。Next, considering only the temperature of the crucible, if the temperature is highest at the opening as in the conventional example, as the source continues to be consumed,
As shown in Figure 3, the evaporation surface of the source becomes farther away from the aperture (in addition to a decrease in the evaporation area), the temperature of the source evaporation surface decreases and the molecular beam intensity decreases. Most preferably, the evaporation surface of is located near the opening. Therefore, if the evaporation area becomes smaller as the source is consumed, the crucible may be tilted so that the evaporation surface of the source is located near the opening, as shown in FIG.
上記の分析に従った本発明を、分子線源(ソース) 1
5にGaソースを用いた例について説明する。The present invention according to the above analysis is applied to a molecular beam source (source) 1
5, an example using a Ga source will be explained.
Ga分子線は熔融した液面からの蒸発によって取り出さ
れるが、初期のGaソースチャージ状態で、Ga分子線
液の水平面18からの傾斜角度は45°にした。Although the Ga molecular beam is extracted by evaporation from the molten liquid surface, the inclination angle of the Ga molecular beam liquid from the horizontal plane 18 was set to 45° in the initial Ga source charging state.
この傾斜角度をGaソースが消費されるにつれて浅くし
、最終的には30°まで1頃けた。This angle of inclination was made shallower as the Ga source was consumed, and finally reached around 30°.
この例において、Gaソースの蒸発面の面積は100か
ら30%まで変化(減少)したが、Gaソースの液面が
常に温度が最も高いるつぼの開口部近くにあるので、G
a分子線強度の変化は一10%程度に抑えることができ
た。In this example, the area of the evaporation surface of the Ga source changed (reduced) from 100 to 30%, but since the liquid level of the Ga source is always near the opening of the crucible where the temperature is highest, the
The change in a molecular beam intensity could be suppressed to about -10%.
従来の方法で同じ量だけGaの消費が進んだ場合には、
蒸発面積は100から25%まで変化し、Ga分子線強
度は一20%程度変化していたものである。If Ga consumption progresses by the same amount using the conventional method,
The evaporation area varied from 100% to 25%, and the Ga molecular beam intensity varied by about -20%.
かくして、本発明によれば、分子線強度の変動を従来よ
りも約1/2に低減することができた。Thus, according to the present invention, fluctuations in molecular beam intensity could be reduced to about 1/2 compared to the conventional method.
るつぼを前記した如くに傾けるには、るつぼ13が収納
されたるつぼ収納部12が一体化されている真空チャン
バ11を、真空ベローズ17を利用して傾けるとよい。To tilt the crucible as described above, it is preferable to tilt the vacuum chamber 11 in which the crucible storage section 12 in which the crucible 13 is housed is integrated, using the vacuum bellows 17.
るつぼの傾きが第1図に示される如くに変化すると、基
板に照射する分子線の量が変化するから、るつぼが傾く
ときは基板も同じく傾くように基板上6のためのホルダ
を真空チャンバ11に固定すると、るつぼと基板は分子
線入射角が常に一定になるように保たれる。When the inclination of the crucible changes as shown in FIG. 1, the amount of molecular beam irradiated to the substrate changes. Therefore, when the crucible inclines, the holder for the substrate 6 is placed in the vacuum chamber 11 so that the substrate also inclines. When fixed at , the angle of incidence of the molecular beam between the crucible and the substrate is always kept constant.
なお第2図において、基板上にGaAs結晶を成長する
のであれば、上方のるつぼ収納部におかれたるつぼにA
sソースを入れる。上方のるつぼ収納部も真空チャンバ
11と一体化しているから、真空チャンバ11が前記し
た如<傾<ときにはAsの入ったるつぼも同様に傾く。In Fig. 2, if a GaAs crystal is to be grown on the substrate, A
Add the s sauce. Since the upper crucible storage section is also integrated with the vacuum chamber 11, when the vacuum chamber 11 tilts as described above, the crucible containing As also tilts in the same way.
以上述べてきたように本発明によれば、分子線蒸発面の
面積および位置を調整することによって分子線強度の低
減を抑えることができるので、再現性の良い結晶成長を
行うことができる。As described above, according to the present invention, reduction in molecular beam intensity can be suppressed by adjusting the area and position of the molecular beam evaporation surface, so crystal growth can be performed with good reproducibility.
第1図は本発明の原理を示す図、
第2図は本発明実施例の断面図、
第3図は従来例の問題点を示す図である。
第1図ないし第3図において、
11は真空チャンバ、
12はるつぼ収納部、
13はるつぼ、
14はヒータ、
15はソース、
16は基板、
17は真空ベローズである。
飯塚幸三
特許出願人 工業技術院長 U←尋フト→に′本発明の
障理圓
第1図FIG. 1 is a diagram showing the principle of the present invention, FIG. 2 is a sectional view of an embodiment of the present invention, and FIG. 3 is a diagram showing problems in the conventional example. 1 to 3, 11 is a vacuum chamber, 12 is a crucible housing, 13 is a crucible, 14 is a heater, 15 is a source, 16 is a substrate, and 17 is a vacuum bellows. Kozo Iizuka Patent applicant Director of the Agency of Industrial Science and Technology
Claims (1)
子線として取り出し半導体単結晶基板(16)上に照射
して同基板(16)上に半導体単結晶を成長する装置に
おいて、 半導体元素(15)を収納する分子線源の水平面(18
)からの傾斜を同元素(15)の消費に対応して変更す
る構成としたことを特徴とする分子線結晶成長装置。[Claims] A plurality of semiconductor elements (15) are heated in vacuum, the elements are extracted as molecular beams, and irradiated onto a semiconductor single crystal substrate (16) to grow a semiconductor single crystal on the same substrate (16). In a device that uses a horizontal plane (18
1. A molecular beam crystal growth apparatus characterized in that the inclination from ) is changed in accordance with the consumption of the same element (15).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14828586A JPS636830A (en) | 1986-06-26 | 1986-06-26 | Molecular beam crystal growth apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14828586A JPS636830A (en) | 1986-06-26 | 1986-06-26 | Molecular beam crystal growth apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS636830A true JPS636830A (en) | 1988-01-12 |
JPH035054B2 JPH035054B2 (en) | 1991-01-24 |
Family
ID=15449347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14828586A Granted JPS636830A (en) | 1986-06-26 | 1986-06-26 | Molecular beam crystal growth apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS636830A (en) |
-
1986
- 1986-06-26 JP JP14828586A patent/JPS636830A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH035054B2 (en) | 1991-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS636830A (en) | Molecular beam crystal growth apparatus | |
US4693207A (en) | Apparatus for the growth of semiconductor crystals | |
Żytkiewicz | Electroepitaxy from a limited solution volume: growth kinetics calculations | |
KR102731090B1 (en) | Apparatus and method for growing silicon single crystal ingot | |
JP2599767B2 (en) | Solution growth equipment | |
JP3536915B2 (en) | Method for producing composite oxide single crystal thin film | |
JPS5776821A (en) | Liquid phase epitaxial growing method | |
JPH0323290A (en) | Molecular ray epitaxy device | |
JPH026385A (en) | Method for forming thin film and apparatus therefor | |
JPS5922319A (en) | Vapor growth of 3-5 group semiconductor | |
JPH02308521A (en) | Liquid-phase epitaxial crystal growth method | |
JPH03177019A (en) | Manufacture of liquid phase epitaxial crystal plate | |
JPH02196090A (en) | Molecular beam crystal growth device | |
JPS5946096B2 (en) | Liquid phase epitaxial growth equipment | |
JPS60192339A (en) | Liquid phase epitaxial growing method | |
JPH02111690A (en) | Growth of compound semiconductor crystal and apparatus therefor | |
JPH03115189A (en) | Method for growing crystal and substrate holder used therein | |
JPS5821830A (en) | Apparatus for liquid phase epitaxial growth | |
JPS6410091B2 (en) | ||
JPH04300298A (en) | Method for liquid-phase epitaxial growth of silicon carbide single crystal | |
JPH02217392A (en) | Molecular beam source | |
JPH01131096A (en) | Molecular beam generator | |
JPH0359014A (en) | Epitaxial growth of diacetylene or polydiacetylene | |
JPS5948536B2 (en) | Semiconductor crystal growth equipment | |
JPS6330395A (en) | Method and jig for growing thin film crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |